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Abstract

We introduce a simple graphical formalism for analyzing 3D elastic collisions using energy and

momentum conservation. We use the formalism to elucidate the physics of the swingby mechanism.

As a concrete example we treat the encounter of Pioneer 10 with Jupiter in 1973.
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I. INTRODUCTION

Some years ago, van Allen1 made a promising suggestion for teaching celestial mechanics.

He analyzed the swingby (or gravitational assist) maneuvre of Pioneer 10 during its en-

counter with Jupiter in 1973. Due to this operation, the spacecraft gained enough speed to

finally leave the solar system. The swingby maneuvre is essential for any spacecraft mission

to one of the outer planets. Simple energy considerations show that a ”direct flight” beyond

Jupiter it is not practical. It would be virtually impossible to lift the required amount of

fuel from earth’s surface. Instead, the spacecraft ”steals” some energy from Mars or Jupiter

to reach its destination.

In this article we show that Pioneer’s encounter with Jupiter is a good example for teach-

ing the physics of three-dimensional elastic collisions. The reasons are threefold: (1) It is

a real-world problem with real data readily available. As van Allen pointed out, very de-

tailed trajectory data for Pioneer 10 and Jupiter are freely available from JPL’s HORIZONS

server.2 The availability of actual data and our ability to compare them with the theoretical

predictions make the topic much more relevant than the usual abstract billiard-ball exam-

ples. (2) Students usually show great interest in any topic related to space flight. (3) The

example clashes with some students’ erroneous beliefs about the collisions: ”But they do

not collide at all”. This misbelief gives us the opportunity to clarify the physical notion of

a collision.

An obvious question to ask is: How large is the velocity of Pioneer after its encounter

with Jupiter? While this is the subject of the present article, it was not in the focus of van

Allen’s interest. He was concerned with the resolution of an apparent paradox: How is the

increase in Pioneer’s speed consistent with energy conservation? He resolved the paradox by

showing that Jupiter’s kinetic energy decreases by the same amount that Pioneer’s energy

increases.

We want to use the Pioneer-Jupiter example to show how energy and momentum conser-

vation allow predictions about the final state (i.e. the final velocities) in an elastic collision.

In doing this, we are confronted with an immediate problem: It is trivial to write down the

energy and momentum conservation equations, but it is difficult to solve them. Explicit

equations tend to be clumsy (to say the least) and are never printed out in the textbook

literature. Many textbooks present variants of a graphical method. Its most lucid version
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is found in the textbook of Landau and Lifshitz.3 The method is quite intricate: It involves

the addition of momentum vectors that have to be scaled by the reduced mass in part. This

is certainly not the stuff our students are delighted about. The formalism is difficult to

comprehend, difficult to apply and difficult to remember.

We have developed a new graphical method for applying energy and momentum in a 3D

elastic collision. It will be presented in the first part of the paper (Sec. II.-III.).

The starting point in the development of the new formalism has been a paper by Millet4

in which an exceedingly simple formula was derived for the 1D case (the formula is quoted

below). While an analogously simple formula does not exist for the 3D case (just because

several angles are involved) we found a graphical method that is much simpler than the

traditional one. The method involves three easy steps. It allows to determine the final

speed of the collision partners if the initial velocities are known as well as one of the final

directions. It is difficult to imagine an even easier method for the solution of this relatively

complex problem.

In the second part of the paper (Sec. IV-VI), we apply the method to the Pioneer-

Jupiter encounter. Our result for the final speed of Pioneer 10 agrees reasonably well with

the observed data.

II. ELASTIC COLLISION IN ONE DIMENSION

Before we approach the 3D case it is helpul to review the elastic collision of two bodies in

one dimension. In this section, we essentially replicate the analysis of Millet.4 It will serve

us as a reference for the 3D case.

To fix the notation, let us recapitulate the three phases of a collision:

1. There is an initial state in which a number of bodies move without mutual interaction.

2. During the interaction phase, the bodies approach each other, interact and depart

again.

3. In the final state the distance of the interaction partners is again so large that we can

neglect their interaction.

In this article, we will treat the elastic collision of two bodies. We will use the following

notation (Fig. 1): The indices 1 and 2 denote the first and the second body (with masses
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before the collision:

v1i v2i

after the collision:

v1f v2f

m1
m2

FIG. 1: Collision of two bodies in one dimension

m1 and m2). The indices i and f refer to the initial and final state, respectively. The velocity

of the first body after the collision is denoted by v1f, for example. In the 1D case we have to

specify a convention for the sign of the velocities. In the following, a positive velocity means

that the corresponding body moves in the positive x direction, i. e, to the right in Fig. 1.

If no external forces are acting on the system, momentum conservation tells us that the

center-of-mass velocity

vCM =
1

m1 + m2

(m1v1 + m2v2) (1)

remains unchanged during the collision. In particular vCM is the same in the initial and the

final state, and Eq. 1 holds with indices i or f attached to v1 and v2.

In the calculation below, we will use the lab frame of reference as well as the center-of-

mass frame. Primed quantities refer to the CM frame, whereas unprimed quantities refer

to the lab frame. For example, v denotes the velocity of a body that is measured by an

observer in the lab frame; v′ is the velocity of the same body as measured by an observer in

the CM frame. Both are connected by

v′ = v − vCM. (2)

Let us now analyze the collision using energy and momentum conservation. In the CM

system, momentum conservation implies that the total momentum is zero (insert vCM = 0

into Eq. (1)). This holds for all times, especially in the initial and the final state:

m1v
′

1i = −m2v
′

2i (3)

m1v
′

1f = −m2v
′

2f. (4)

The momenta of the two collision partners have equal magnitude and opposite sign.
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Conservation of energy states that the total kinetic energy is equal in the initial and the

final state:
1

2
m1v

′2
1i +

1

2
m2v

′2
2i =

1

2
m1v

′2
1f +

1

2
m2v

′2
2f. (5)

We insert (3) and (4) to eliminate the variables of body 2. We find

1

2
m1v

′2
1i +

1

2

m2
1

m2

v′2
1i =

1

2
m1v

′2
1f +

1

2

m2
1

m2

v′2
1f. (6)

Factoring out leads to:

1

2

(

m1 +
m2

1

m2

)

v′2
1i =

1

2

(

m1 +
m2

1

m2

)

v′2
1f. (7)

Accordingly, the following relation holds between the velocities of body 2 before and after

the collision:

v′2
1i = v′2

1f or v′

1i = ±v′

1f. (8)

The upper sign can be discarded because it represents a non-collision. Thus, in the CM

system the magnitude of the velocity of body 1 is the same before and after the collision,

only the sign is reversed. Since the same equation holds for body 2 we omit the corresponding

labels from now on. We write for both

v′

f = −v′

i (9)

The transformation to the lab frame is carried out with the help of Eq. (2). We insert v′

f =

vf − vCM and v′

i = vi − vCM to obtain an equation that holds for both bodies independently:

vf = 2 vCM − vi. (10)

This simple equation (given in Ref. [4]) solves the collision problem for the 1D case. We first

calculate the CM velocity with Eq. (1) from the initial conditions. With Eq. (10) we then

obtain the final velocity for each collision partner. Of course, the solution of the 1D elastic

collision problem can be found in any textbook. The particular form of Eq. 10, however, is

quite apt for the generalization to the 3D case.

III. ELASTIC COLLISION IN THREE DIMENSIONS

In this section, we will derive a generalization of Eq. (10) to the three-dimensional case

(Fig. 2). Again, we invoke energy and momentum conservation. Most of the equations look
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v1i

v2i

v1f

v2f

m1

m2

®

®

®

®

FIG. 2: Elastic collision in 3D

similar to those of the previous section. For example, the center-of-mass velocity is given by

a formula that is a direct generalization of Eq. (1):

~vCM =
1

m1 + m2

(m1 ~v1 + m2 ~v2) . (11)

The transformation between CM and lab frame now reads (cf. (2)):

~v′ = ~v − ~vCM. (12)

Energy and momentum conservation equations are direct generalizations of Eqs.(3)–(5)),

too. Momentum conservation reads

m1~v
′

1i = −m2~v
′

2i (13)

m1~v
′

1f = −m2~v
′

2f. (14)

The first equation defines the CM frame, the second gives three equations for the six unknown

final velocity components. Energy conservation gives a fourth equation:

1

2
m1~v

′2
1i +

1

2
m2~v

′2
2i =

1

2
m1~v

′2
1f +

1

2
m2~v

′2
2f. (15)

In contrast to the 1D case the problem is underdetermined by energy and momentum con-

servation because we have only four equations for six unknown variables. Additional input

is needed to solve for the final state. Usually, the final direction (two angles) of one of the

collision partners is given. If angular momentum conservation holds, the whole motion is

confined to a plane and the problem effectively reduces to two dimensions. The graphical

construction below will be easier if we assume this.
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The analog of Eq. (7) is obtained in the same way as in the 1D case:

~v′2
f = ~v′2

i . (16)

Again, this equation holds for both collision partners independently. We use Eq. (12) to

transform Eq. (16) to the lab frame. We get

(~vf − ~vCM)2 = (~vi − ~vCM)2 . (17)

This equation has a remarkably simple form. We will soon find a geometrical interpreta-

tion. Three more equations result from transforming Eq. (14) to the lab frame:

~v2f − ~vCM = −
m1

m2

(~v1f − ~vCM) . (18)

With this equation, we can calculate the final velocity of body 2 if we know that of body 1.

A graphical solution is the easiest way to approach Eq. (17). Mathematically, an equation

of the form r2 = const. defines a sphere in 3D (or a circle in 2D). Our graphical solution is

based on this observation. For the sake of simplicity, we assume the 2D case in the following.

The input data we need are the initial velocities of both bodies and the final direction of

one of them. The magnitude of the final velocity is determined graphically in the following

way:

1. Determine the CM velocity with Eq. (11).

2. Draw a coordinate system and plot the vectors ~vCM and ~v1i (Fig. 3).

3. The difference vector ~v1i−~vCM points from the head of ~vCM to the head of ~v1i (Fig. 4).

The right-hand side of (~v1f − ~vCM)2 = (~v1i − ~vCM)2 therefore defines a circle around

the head of ~vCM that touches the head of ~v1i. Draw this circle

4. Because the right-hand side of Eq. (17) must be equal to the left-hand side, the head

of the unknown vector ~v1f must lie on that circle, too. We assumed that the direction

of ~v1f is known. Thus we can plot this vector and read off its magnitude (Fig. 5). We

now know the final velocity of body 1.

5. Calculate the final velocity of body 2 with Eq. (18). The problem is solved.
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vx

vy

vCM

v1i
®

®

FIG. 3: The initial velocity and the CM velocity are known. The vectors are plotted in a coordinate

system.

vx

vy

vCM

v1i

v v1i S-

®
®

®®

®

direction of v
f

FIG. 4: Draw a circle around the head of ~vCM so that the head of ~v1i lies on the circle.

vx

vy

vCM

v1i

v1f

®
®

®

FIG. 5: The head of ~v1f must lie on this circle, too.
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2a = r + rE aphelion
Sun

Earth

Jupiter

rJ

rE

Pioneer’s orbit

aphelion

FIG. 6: The route of Pioneer 10 to Jupiter (not to scale)

IV. TRADITIONAL TREATMENT OF THE SWINGBY MECHANISM

Traditionally, the swingby maneuvre is not modeled as a collision. Instead, it is treated

either numerically or as a succession of trajectory ”patches” that can be analyzed with ele-

mentary celestial mechanics (hence the name ”patched conic trajectories” for this approach).

In our example, the first patch extends from the earth to the vicinity of Jupiter. In this part

of the trajectory, Jupiter’s gravity is neglected to a good approximation, and the spacecraft

moves along a Kepler ellipse (Fig. 6).

Close to Jupiter, the planet’s gravity takes over. For the few days of the swingby ma-

noeuvre’s duration, the influence of the sun is neglected. The trajectory in this patch is a

Kepler hyperbola in the rest frame of Jupiter. The spacecraft’s position and velocity at the

end of the first patch have to be transformed to that frame. They serve as initial conditions

for the second patch. Fig. 7 shows a plot of the observed Pioneer data in the vicinity of

Jupiter. Pioneer’s trajectory in the Jupiter rest frame is indeed a perfect Kepler hyperbola.

Note that the initial speed and the final speed are the same in this frame.

The third and final patch starts when Jupiter’s gravitation can again be neglected in

comparison with the sun’s. Again, position and velocity have to be transformed from the

Jupiter-centered frame to the heliocentric frame. It turns out that the spacecraft’s velocity is
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y in 10 km
8

x in 10 km
8

Jupiter

Dec. 1, 1973

Dec. 2

Dec. 3

Dec. 4

Dec. 6

Dec. 5

FIG. 7: Pioneer’s encounter with Jupiter as seen from the rest frame of Jupiter. Dots denote the

position of the spacecraft at intervals of 2 hours. Big dots mark Pioneer’s position at 2:00 each

day.

now so large that it travels on a Kepler hyperbola with respect to the sun. As a consequence,

it will leave the solar system.

The problem with the patched conic trajectories approach lies in the words ”It turns

out” in the preceding paragraph. Not much can be learned about the physics of the swingby

mechanism from this approach. Pioneer’s speed in the rest frame of Jupiter is the same

before and after the encounter (i. e. at the end of the second patch). At the beginning of the

third patch, however, its heliocentric velocity is already higher than the solar system escape

velocity. It seems that something crucial happens during the coordinate transformation.

But a mere coordinate transformation cannot transfer energy to the spacecraft. It seems

that we have missed something.

In the following section we will show how Pioneer’s final speed after the encounter with

Jupiter can be determined with the formalism introduced above. It should be mentioned

that the collision analysis in itself should not be considered as a replacement for the patched

conic trajectories approach. The latter yields the full trajectory data including the final

direction of the spacecraft. The collision approach needs the final direction as additional
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y in 10 km
8

x in 10 km
8

Dec. 1, 1973

Dec. 1, 1973

Sun

Dec. 2

Dec. 2

Dec. 3

Dec. 3

Dec. 4

Dec. 5

Dec. 5

FIG. 8: Pioneer’s encounter with Jupiter in a heliocentric system. Dots denote the position of two

bodies at intervals of 2 hours. Big dots mark their position at 2:00 each day.

input. It is shown in Problem 2 how this information can be obtained.

The present approach gives insight into the physics behind the swingby mechanism (for

more details, see Ref. 5). We will see below that it is possible to give a simple interpretation

of the swingby mechanism in terms of familiar everyday phenomena.

V. PIONEER’S SWINGBY AS AN ELASTIC COLLISION

To discuss the collision we need initial data. They are readily available from the JPL

server. We reduce the problem to 2D by assuming that the whole collision takes places in

the ecliptic plane. This is a good approximation.

We will use the heliocentric frame throughout. The trajectory data of Pioneer 10 and

Jupiter in this frame are shown in Fig. 8. Pioneer’s increase in velocity can already be

read off from this diagram: The dots representing the position at equal intervals of time

are spaced more closely in the incoming part of the trajectory (left) than in the outgoing

(right).
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vx

vy

vJ

v1i

v1f

®

®

®

Pioneer out

= 23.0 km/s

ff = 49.6°

vf

vx

vy

vJ

v1i

®

®

Jupiter

= 13.4 km/s

fJ = 50.1°

vf

Pioneer in

= 9.94 km/s

ff = 3.8°

vi

a) b)

FIG. 9: Construction of the final velocity vector of Pioneer 10

We emphasize that the diagram shows the same data as Fig. 7, only the reference frame

has changed. Throughout the process, Jupiter moves with the approximately constant

velocity of 13,44 km/s. Jupiter’s velocity vector encloses an angle φJ = 50.1◦ with the x

axis. To a very good approximation, the center of mass of the Jupiter-Pioneer system lies

in Jupiter’s center. The CM velocity is therefore identical to Jupiter’s velocity.

The initial and the final state must be chosen so that Jupiter’s influence on the spacecraft

is small. For the initial state, we chose (somewhat arbitrarily) Nov. 22, 1973 at 0:00. At

this time, Pioneer’s speed was 9.94 km/s and the angle of its velocity vector with respect to

the x axis was φi = 3.8◦ counterclockwise.

For the final state, we chose Dec. 22, 1973 at 0:00. Pioneer’s velocity vector had an angle

φf = 49.6◦ with respect to the x axis at this time. We will calculate the magnitude of its

velocity in the following.

We must keep in mind, however, that neither the initial nor the final state are well defined.

Because of the sun’s gravity, Pioneer and Jupiter do not move on straight trajectories even

if their mutual gravitational influence can be neglected. In the definition of the initial and

the final state one always has to find a compromise so that the sun’s influence as well as the

collision partner’s interaction can both be considered small.

To apply the graphical formalism of Sec. III, we draw a diagram with the initial velocities

of Pioneer ~v1i and Jupiter ~vCM = ~vJ (Fig. 9). We construct a circle around the head of ~vJ,

that touches the head of ~v1i. With our knowledge of Pioneer’s final direction φf we can

construct its final velocity vector ~v1f. The result of the construction (which is carried out

best on millimeter paper) is a speed of 23.0 km/s. The agreement with the measured value
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vx

vy

vJ

v1i

v1f

®

®

®

FIG. 10: The largest final velocity results from the ”reflection” of the spacecraft, i. e. its deflection

by an angle of 180 degrees

of 22.7 km/s is quite satisfactory. Pioneer has more than doubled its velocity during the

encounter with Jupiter.

The small discrepancy between our prediction and the measured data can be traced to

the gravitational influence of the sun, i. e. to the above-mentioned inability to properly

define a non-interacting initial and final state

VI. PHYSICAL INTERPRETATION OF THE SWINGBY MECHANISM

To understand the physics behind the swingby mechanism more deeply we ask under

which circumstances the velocity gain is largest. The geometrical construction tells us that

the magnitude of ~v1f is largest when the radius of the circle has its maximum possible value.

This happens if the spacecraft’s initial velocity is just opposite to Jupiter’s (Fig. 10). The

swingby effect is largest if the spacecraft is ”reflected” by 180 degrees. Its final velocity is

then 2|~vJ| + |~v1i| (cf. Eq. (10)).

Thus, with the maximally efficient swingby we are back to the physics of 1D elastic

collisions. The problem is the same as with the baseball and the bat. In both cases, a small

body gains speed by an elastic reflection on a large body. In discussing this simple case

it becomes immediately clear why the motion of Jupiter is so important. Without it, the
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Jupiter

impact
parameter b

scattering
angle

2nd focus
of hyperbola

y in 10 km
8

x in 10 km
8

q
q

FIG. 11: The scattering geometry in the jupiter-centric frame (same data points as in Fig. 7).

spacecraft would gain no more speed than a baseball thrown against a wall at rest.

Why didn’t NASA’s engineers choose the most efficient angle for Pioneer’s approach to

Jupiter? The answer can be read off Fig. 6. The earth and Jupiter orbit the sun in the same

direction. To utilize Earth’s orbital velocity of 30 km/s all spacecraft start in this direction,

too (this is another interesting topic in celestial mechanics, see Ref. 5). Hence Pioneer did

approach Jupiter approximately from behind. The actual trajectory chosen is a compromise

that ensures an acceptable velocity gain.

VII. CONCLUSION

We have introduced a simple graphical formalism for treating elastic collisions in two or

three dimensions. We have successfully applied the method to the encounter of Pioneer 10

with Jupiter in 1973. The agreement with the observed data from NASA’s JPL archives is

quite good. By asking under which circumstances the swingby effect is largest we were able

to give a simple physical interpretations of the mechanism.
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VIII. PROBLEMS

1. Pioneer 10 started from earth at r = 0.99 AU with an initial velocity of 39.1 km/s,

moving in the same direction as the earth (Fig. 6). From Earth to Jupiter, the

spacecraft followed a Kepler ellipse in the Sun’s gravitational field. Calculate the

semimajor axis of this ellipse. Determine the maximal distance from the Sun that

Pioneer 10 could have reached without the swingby maneuvre.

Solution: The semimajor axis of Pioneer’s orbit can be determined from its total

energy in the gravitational field of the sun by the relation

Etot = −
GmmS

2a
(19)

(solar mass mS = 1, 99 · 1030 kg). We first calculate the kinetic and potential energy:

Ekin =
1

2
m · (39, 1 km/s)2 = m · 764 · 106 J

kg
(20)

Epot(r = 0, 99 AU) = −
Gm · mS

0, 99 AU
= −m · 894 · 106 J

kg
. (21)

Accordingly, the total energy is

Etot = −m · 130 · 106 J

kg
. (22)

The total energy is smaller than zero, i. e. the spacecraft is bound to the sun and

cannot leave the solar system.

With Eq. (19), we calculate the semimajor axis

a = −
Gm · mS

2Etot

= 3, 41 AU. (23)

From Fig. 6 we read off the relation between the semimajor axis and the aphelion of

Pioneer’s trajectory:

2a = rE + raphelion. (24)

We obtain

raphelion = 2a − rE = 5, 8 AU. (25)

Without the encounter with Jupiter (r = 5.06 AU), the spacecraft would not reach

distances from the sun greater than 5.8 AU.
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2. In the calculation of Pioneer’s final velocity, its final direction had to be known in

advance. Apply your knowledge of Rutherford scattering to determine the ”scattering

angle” from the initial conditions. Use a jupiter-centered frame of reference with initial

velocity v′

1i = 9.02 km/s and impact parameter b = 744500 km.

Solution: The geometry of the problem is shown in Fig. 11. We want to determine

the angle θ between the incoming and the outgoing asymptotes of Pioneer’s Kepler

hyperbola. We need a relation between the initial velocity, the impact parameter,

and the scattering angle. For the 1/r2 force law, this relation can be found in any

derivation of the Rutherford scattering cross section (e. g. Ref. [6]). There are

only two differences between repulsive Coulomb scattering and attractive gravitational

scattering: (1) The role of the hyperbola’s two foci is exchanged, see Fig. 11; (2) The

constant q1q2/(4πǫ0) has to be replaced by Gm1m2. Thus, the desired relation is

cot

(

θ

2

)

=
b · v′2

1i

GmJ

, (26)

where mJ = 1.9 · 1027 kg is Jupiter’s mass. If we insert the values given above we

find that the scattering angle in the jupiter-centered frame is θ = 128.9◦. This can be

transformed to the heliocentric frame by vector addition. The result for the heliocentric

outgoing angle is 49,0◦. The agreement with the measured value 49,6◦ used above is

satisfactory.

3. From the initial conditions given in Problem 1, calculate Pioneer’s velocity on its

arrival at Jupiter (on Nov. 22, 1973, when it distance from the sun was r = 5.0 AU).

Solution: We have already calculated the total energy of Pioneer in the gravitational

field of the sun (−m · 130 · 106J/kg). Thus, the kinetic energy at r = 5.0 AU is given

by

Ekin = Etot − Epot = −m · 130 · 106 J

kg
+

GmmS

5 AU
. (27)

Ekin = m · 47, 6 · 106 J

kg
(28)

so that

v = 9, 76
km

s
. (29)

This can be compared with the measured value 9,94 km/s used above. The discrepancy

is due to the gravitational influence of Jupiter.
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4. Calculate Pioneer’s total energy after its encounter with Jupiter.

Solution: On Dec. 22, 1973, after the swingby, Pioneer’s solar distance was 5,06 AU

whereas its velocity had the above-mentioned value of 22,7 km/s. For the total energy

we obtain

Etot = Ekin + Ekin =
1

2
m (22, 7km/s)2 −

GmmS

5, 06 AE
. (30)

Etot = m · 81, 4 · 106 J

kg
. (31)

Before the encounter with Jupiter, Pioneer’s total energy was negative so that it was

bound to the sun. Its positive sign after the swingby means that Pioneer can now

leave the solar system. At the time of the last contact in 2005, Pioneer 10 was 89.7

AU away from the Sun.
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APPENDIX A: FIGURE CAPTIONS

Fig. 1: Collision of two bodies in one dimension

Fig. 2: Elastic collision in 3D

Fig. 3: The initial velocity and the CM velocity are known. The vectors are plotted in a

coordinate system.
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Fig. 4: Draw a circle around the head of ~vCM so that the head of ~v1i lies on the circle.

Fig. 5: The head of ~v1f must lie on this circle, too.

Fig. 6: The route of Pioneer 10 to Jupiter (not to scale)

Fig. 7: Pioneer’s encounter with Jupiter as seen from the rest frame of Jupiter. Dots

denote the position of the spacecraft at intervals of 2 hours. Big dots mark Pioneer’s position

at 2:00 each day.

Fig. 8: Pioneer’s encounter with Jupiter in a heliocentric system. Dots denote the

position of two bodies at intervals of 2 hours. Big dots mark their position at 2:00 each day.

Fig. 9: Construction of the final velocity vector of Pioneer 10

Fig. 10: The largest final velocity results from the ”reflection” of the spacecraft, i. e. its

deflection by an angle of 180 degrees.

Fig. 11: The scattering geometry in the jupiter-centric frame (same data points as in

Fig. 7).
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