
The HallPoly
Package

Version 1.0

March 2018

Alexander Cant
Bettina Eick

Alexander Cant Email: a.cant@tu-braunschweig.de

Bettina Eick Email: beick@tu-braunschweig.de

Address: AG Algebra und Diskrete Mathematik
Institut Computational Mathematics
Universitätsplatz 2
38106 Braunschweig
(Germany)

mailto://a.cant@tu-braunschweig.de
mailto://beick@tu-braunschweig.de

The HallPoly Package 2

Copyright
© 2017 by Alexander Cant and Bettina Eick

The HallPoly package is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the License, or (at
your option) any later version.

http://www.fsf.org/licenses/gpl.html
http://www.fsf.org/licenses/gpl.html

Contents

1 Introduction 4

2 Main function 5
2.1 Functions concerning the presentation . 5
2.2 General tools . 6
2.3 Computing Hall-polynomials . 6
2.4 Methods for storing things . 7
2.5 Runtime test . 8

References 9

Index 10

3

Chapter 1

Introduction

Let G be a finitely generated torsion free nilpotent group (T-group for short). Choose g1,g2, . . . ,gn ∈G
such that the subgroups Gi := 〈gi, . . . ,gn〉 form a central series for G with infinite cyclic factors. n is
unique and is called the Hirsch-length of G. (g1, . . . ,gn) is called a T-basis for G. For every h∈G there
exist unique e1, . . . ,en ∈ Z with h = ge1

1 · · ·gen
n ; this is called the normal form of h (w.r.t. g1, . . . ,gn).

Hence there are functions Fi:Zn×Zn→ Z and Ki:Zn×Z→ Z for 1≤ i≤ n with

(ga1
1 · · ·g

an
n) · (ga1

1 · · ·g
an
n) = gF1(a,b)

1 · · ·gFn(a,b)
n

and
(ga1

1 · · ·g
an
n)x = gK1(a,x)

1 · · ·gKn(a,x)
n

for all a = (a1, . . . ,an),b = (b1, . . . ,bn) ∈ Zn and x ∈ Z. Philip Hall showed in [Hal57] that the func-
tions Fi and Ki can be described as rational polynomials in 2n resp. n+1 indeterminates for 1≤ i≤ n.
Hence the functions Fi and Ki are called Hall-polynomials. In particular the polynomials Fi are called
multiplication polynomials and the polynomials Ki are called power polynomials.

The purpose of the HallPoly Package is to compute Hall-polynomials for arbitrary T-groups of
arbitrary Hirsch-length. To do so, the T-groups need to be uniformly presented. Assume G is a T-
group and (g1, . . . ,gn) a T-basis for G. Then there is a unique t = (ti, j,k|1 ≤ i < j < k ≤ n) ∈ Z(

n
3) so

that
g jgi = gig jg

ti, j, j+1
j+1 · · ·g

ti, j,n
n

for all 1≤ i < j < n. One can show that G has the presentation

G(t) := 〈g1, . . . ,gn | g jgi = gig jg
ti, j, j+1
j+1 · · ·g

ti, j,n
n (1≤ i < j ≤ n)〉.

Hence it is possible to describe any T-group G of Hirsch-length n by
(n

3

)
parameters ti, j,k ∈ Z.

Vice versa any group defined by a presentation of the form G(t) for t ∈ Z(
n
3) is finitely generated

and nilpotent with a Hirsch-length less or equal n. The group is torsion free (and therefore a T-group)
iff it has Hirsch-length n.

The presentation G(t) with t ∈ Z(
n
3) is called consistent, if the group defined by G(t) has Hirsch-

length n. The previous arguments imply that each T-group can be described via a consistent presenta-
tion. Hence we consider only consistent presentations.

4

Chapter 2

Main function

In this chapter we describe the main function of the HallPoly package.

2.1 Functions concerning the presentation

2.1.1 GroupByVector

. GroupByVector(n, t) (function)

This function returns the group of Hirsch-length n with presentation G(t). t∈Z(
n
3) has to describe

a consistent presentation. t needs to be an array so that t[i][j][k] = ti, j,k.

2.1.2 VectorByGroupPcp

. VectorByGroupPcp(G) (function)

This function returns parameters t∈ Z(
n
3) (where n is the Hirsch-length of G) so that G has the

presentation G(t). G has to be a T-group given by generators that form a T-basis.

2.1.3 VectorByGroupCS

. VectorByGroupCS(G) (function)

This function returns parameters t∈ Z(
n
3) (where n is the Hirsch-length of G) so that G has the

presentation G(t). G has to be a T-group.

2.1.4 HallRecByVector

. HallRecByVector(t) (function)

This function returns a record containing the Hall polynomials for the group G(t), where t ∈ Z(
n
3).

t needs to be an array so that t[i][j][k] = ti, j,k ∈ Z. The parameterised Hall polynomials for the
Hirsch lengths up to n have to be known.

5

The HallPoly Package 6

2.2 General tools

2.2.1 SolveRec

. SolveRec(g, v) (function)

This function returns the unique rational polynomial f (v) that satifies f (0) = 0 and f (v+ 1) =
f (v)+g(v) for every positive integer v. v is an indeterminate and g contains the coefficients of g(v)
(i.e. g(v) = ∑

m
i=0g[i+1]vi).

Example
gap> v := Indeterminate(Rationals, "v");;
gap> g := [1,1];;
gap> SolveRec(g, v);
1/2*v^2+1/2*v

2.2.2 PolyDecomp

. PolyDecomp(f) (function)

This function returns the degree and the number of monomials of f , where f is a polynomial in
the variables A[1],...,A[n],B[1],...,B[n],x with parameters T[i][j][k] .

The degree is defined as the maximal degree of a monomial in f and the degree of a monomial is
the sum of the exponents of its indeterminates.

2.3 Computing Hall-polynomials

2.3.1 HallConstruction

. HallConstruction(n, gb) (function)

This calls the algorithm that computes new parameterized Hall-polynomials for Hirsch-length n .
Parameterized Hall-polynomials up to Hirsch-length n-1 have to be stored in the record HallRec .
The result is stored in HallRec . gb is a boolean that specifies, whether Groebner bases should be
used for reducing the computed polynomials.

Example
gap> HallConstruction(5,true);
- Step 5: compute mult-polynomial

compute r[i][j] for 1 by 2
compute r[i][j] for 1 by 3
compute r[i][j] for 1 by 4
compute r[i][j] for 1 by 5
compute r[i][j] for 2 by 3
compute r[i][j] for 2 by 4
compute r[i][j] for 2 by 5
compute r[i][j] for 3 by 4
compute r[i][j] for 3 by 5
compute r[i][j] for 4 by 5
starting symbolic collection
got poly with 69 summands

- Step 5: reduce mult-polynomial via inherit

The HallPoly Package 7

mult poly has 44 summands
- Step 5: compute new consistency relations
get Groebner in HallConsistency
... done
- Step 5: reduce mult polynomial via consistency

mult poly has 44 summands
- Step 5: compute power polynomial

extract terms
solve recursion

- Step 5: reduce power polynomial
power poly has 84 summands

- Step 5: done

2.3.2 HallMult

. HallMult(t, a, b) (function)

If t is a vector of parameters (either with a consistent presentation or indeterminates) of length n
and a and b are vectors of length n (either integer values or indeterminates), then this function returns
the multiplication polynomials for that case.

The parameterised Hall-polynomials for Hirsch length n have to be known.

2.3.3 HallPower

. HallPower(t, a, x) (function)

If t is a vector of parameters (either with a consistent presentation or indeterminates) of length
n and a is a vector of length n (either integer values or indeterminates) and x is an integer or an
indeterminate, then this function returns the power polynomials for that case.

The parameterised Hall-polynomials for Hirsch length n have to be known.

2.4 Methods for storing things

2.4.1 SaveHallPolynomials

. SaveHallPolynomials(n) (function)

This function stores the multiplication and power polynomials plus the consistency relations for
Hirsch-length n (stored in HallRec[n]) in the file hallpoly/lib/hrln.gi . If the file already exists
or the Hall-polynomials for Hirsch-length n haven’t been computed yet, an error message is returned.

Example
gap> SaveHallPolynomials(6);
true
gap> SaveHallPolynomials(8);
There are no Hall-polynomials to store.
false

The HallPoly Package 8

2.4.2 SaveParameters

. SaveParameters(t, file) (function)

This function stores the parameters t in a file named file in the directory hallpoly/lib . t has
to be an array of size n×n×n.

Example
gap> t := GenT(6);;
gap> SaveParameters(t,"test");
true

2.4.3 CheckFileExists

. CheckFileExists(n) (function)

This function returns, whether the file for the Hall-polynomials of Hirsch-length n in
hallpoly/lib already exists.

Example
gap> CheckFileExists(6);
true

2.5 Runtime test

2.5.1 RuntimeTestHallColl

. RuntimeTestHallColl(a, b) (function)

This function compares the runtime of evaluating Hall polynomials and the standard collection
algorithm. To do so, the function computes a random subgroups in the group of 6× 6 unitriangular
matrices over Z with Hirsch length ≤ 7 and b random products in each subgroup.

Returns the overall runtimes in milliseconds.
Example

gap> RuntimeTestHallColl(2,4);
Looking for subgroup 1...
Found a subgroup of Hirsch length 7.
Hall polynomials: 0ms, Collection: 12400ms
Hall polynomials: 4ms, Collection: 2992ms
Hall polynomials: 4ms, Collection: 93384ms
Hall polynomials: 4ms, Collection: 608ms

Looking for subgroup 2...
Found a subgroup of Hirsch length 6.
Hall polynomials: 0ms, Collection: 36ms
Hall polynomials: 0ms, Collection: 8ms
Hall polynomials: 0ms, Collection: 100ms
Hall polynomials: 0ms, Collection: 36ms

Overall runtime: Hall polynomials: 0:00:00.012, Collection: 0:01:49.564
[12, 109564]

References

[Hal57] Philip Hall. The Edmonton Notes on Nilpotent Groups. Queen Mary College, London, 1957.
4

9

Index

CheckFileExists, 8

GroupByVector, 5

HallConstruction, 6
HallMult, 7
HallPower, 7
HallRecByVector, 5

PolyDecomp, 6

RuntimeTestHallColl, 8

SaveHallPolynomials, 7
SaveParameters, 8
SolveRec, 6

VectorByGroupCS, 5
VectorByGroupPcp, 5

10

	Introduction
	Main function
	 Functions concerning the presentation
	 General tools
	 Computing Hall-polynomials
	 Methods for storing things
	 Runtime test

	References
	Index

