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Abstract

We investigate the problem of estimating the distribution of the individual repro-

duction number governing the COVID-19 pandemic. Under the assumption of a

Negative Binomial distribution, we focus on constructing estimators of the parame-

ters of this distribution using reported infection data and taking into account issues

like under-reporting and the time behavior of the infection and of the reporting

processes. To this end, we extract information from regionally dissaggregated data

reported by German health authorities, in order to estimate not only the mean

but also the variance of the distribution of the individual reproduction number. In

contrast to the mean, the variance also depends on the unknown under-reporting

rate of the pandemic. A bootstrap method to construct confidence intervals for

the parameters of interest is presented and the hypothesis of a Negative Binomial

distribution is empirically examined. The estimates obtained allow not only for a

better understanding of the time-varying behavior of the expected value of the in-

dividual reproduction number but also of its dispersion and for a discussion of the

implications of different policy interventions. Our methodological investigations are

accompanied by an empirical study of the development of the COVID-19 pandemic

in Germany, which shows a strong overdispersion of the individual reproduction

number.

1. Introduction

The individual reproduction number R is commonly used in epidemiology to quantify

the transmission of a disease. R describes the number of secondary infections caused

by a single SARS-CoV-2-positive individual. Of special interest is the expectation



E(R) of the reproduction number, often denoted as R0 and called basic reproduction

number. Notice that the expectation E(R) = R0 is only one parameter of the dis-

tribution of the random variable R. Even though we treat R as a random variable,

the reproduction number also plays an important role in deterministic modeling in

epidemiology which typically is based on ordinary differential equations including the

Kermack-McKendrick epidemic model SIR (Susceptible-Infectious-Removed) and the

SEIR (Susceptible-Exposed-Infectious-Removed) model. For an introduction to the

reproduction number R and especially to the Basic Reproduction Number R0 we refer

to Chowell and Brauer (2009).

Estimators for R0 or R0,t, where the index t takes into account possible changes

over time, on the basis of observed non in-depth case numbers can be found in many

papers in the literature. A fundamental alternative would be to estimate E(R) = R0

from in-depth tracking of infection-chains. Dehning et al. (2020b) discuss a model-free

estimation of the reproduction number R0,t and compare it with the standard tech-

niques applied by the Robert Koch Institute (RKI), which is the German government’s

central scientific institution in the field of biomedicine. Quite important for the various

RKI-estimators is the so-called generation duration or generation time.

We will follow the approach of developing methodology on the basis of non in-depth

reported case numbers but we will not only focus on the expectation but also on the

entire distribution of the reproduction number R. Cori et al. (2013) and also Lloyd-

Smith et al. (2005a) together with the associated supplementary material (Lloyd-Smith

et al. (2005b)) suggested a Negative Binomial distribution to model the stochastic

behavior of R. For COVID-19-pandemic data, the Negative Binomial distribution is

also used in Althouse el al. (2020) and Endo et al. (2020). Of special interest is the

ability of the Negative Binomial distribution to include possible dispersion, which is

rather likely to be present in the COVID-19-pandemic. Dispersion means that the

standard deviation or variance of a distribution may vary independently of the mean.

The latter for example is not possible for the also often used Poisson distribution,

for which variance and mean coincide. We refer to Azmon et al. (2014) for Poisson

modeling when describing methodology to estimate the reproduction number R.

We present estimators of important parameters of the distribution of the individ-

ual reproduction number R for the COVID-19-pandemic on the basis of non in-depth

infection data provided on a daily basis in Germany by the RKI. We argued that it is

important to estimate not only the expectation but also the dispersion or equivalently
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the variance of the individual reproduction number R. We present assumptions under

which we are able to give reasonable estimates of the variance of R which as a conse-

quence allows us to estimate dispersion. To this end it appears to be necessary to rely

on COVID-19-data on district (Landkreis) level in Germany. Furthermore, we present

a bootstrap method to construct confidence intervals for the parameters of interest and

we examine the hypothesis of a Negative Binomial distribution using the aforemen-

tioned infection data. As a result it will be seen that the parameters of the distribution

of R indeed have changed over time and that dispersion (even over-dispersion) is rather

relevant. We will make the implication of this clear.

2. Preliminaries

Cumulative data about newly reported cases, totally infected cases, fatalities as well as

a 7-days incidence rate per 100,000 inhabitants can be found on the website http://

corona.rki.de. The reported cases are based on positive laboratory testing of SARS-

CoV-2 and are denoted as COVID-19-cases irrespective of COVID-19-symptoms. The

data is available separately per local states (Bundesländer), districts (Landkreise),

age-groups and gender, to name only a few. When considering daily COVID-19-cases

it is important to carefully distinguish for individuals the time t at which an SARS-

CoV-2-infection took place, the time at which the case was first reported to the (local)

health authorities (if it was laboratory confirmed at all) and the time at which the

case finally was reported to RKI.

For the investigations in this paper we typically consider times t at which an infection

with SARS-CoV-2 takes place. It is most likely that the difference of the time of

infection of a case, which in the end will be reported, and the time of reporting follows

a distribution over a couple of days. On average, we assume a time shift of τ = 7 days,

which seems to be reasonable.

For this paper the relevant times are the infection time and the time of the first

reporting. We denote by RKIs the number of COVID-19-cases first reported at time

s to the health authorities. Then, roughly speaking the number of infections at time

t, which in the end will be reported, and RKIt+τ are strongly related to each other.

Figure 1 displays the daily data RKIt for the period April 2020 to September 2021

together with a moving average smoothing over 7 days. Averaging over 7 days seems to

be appropriate since a very strong periodic behavior of RKIt over the week is observed.
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Figure 1. Daily numbers of reported COVID-19-cases, denoted by RKIt, in black. A moving average over

seven days of RKIt is given in blue.

3. Methodology

The Negative Binomial distribution with parameters p ∈ (0, 1) and r ∈ N is well-

known in statistics for modeling the number of failures in a sequence of independent

Bernoulli(p)-trials until the r-th success occurs. It has been extended to parameters

p ∈ (0, 1) and r ∈ (0,∞) (we use the abbreviation NB(p, r)) via a consideration of

a classical Poisson-distribution with random parameter λ distributed according to a

specific Gamma-distribution.

The Negative Binomial distribution allows for a more flexible modeling of rare

events. For R ∼ NB(p, r) we have

R0 = E(R) =
r (1− p)

p
and Var(R) =

r (1− p)
p2

. (1)

The Negative Binomial distribution possesses a coefficient of variation CV(R) =

Var(R)/E(R) = 1/p, and allows for modeling the distribution of the reproduction

number R with dispersion. The dispersion parameter κ is defined through

Var(R) = R0 ·
(

1 +
R0

κ

)
, (2)
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which leads for the Negative Binomial distribution to κ = r (cf. Lloyd-Smith et al.

(2005a)). The dispersion parameter κ and the coefficient of variation both are widely

used to quantify the size of the variance given the expectation of a random variable.

We will model the number Rt of secondary infections caused by an individual

COVID-19-case with infection time (day) t via a NB(pt, rt)-distribution. If we fur-

ther denote the number of newly infected cases at time t by Nt, we then are faced

with a total of

Nt∑
i=1

Si,t, (3)

secondary infections in the future. Here S1,t, S2,t, . . . denote i.i.d. random variables

distributed according to NB(pt, rt).

For several reasons not all of these future cases will be reported to the German

health authorities and subsequently will not show up in the RKI-statistics of newly

laboratory-confirmed COVID-19-cases. One major, but not the only reason for this

under-reporting is that a substantial number of SARS-CoV-2-infections are asymp-

tomatic. The studies Buitrago-Garcia al. (2020) and Oran and Topol (2020) report

that percentages of asymptomatic cases vary between 20% to 45%. These values co-

incide with results from a study in the community of Kupferzell (Germany), where a

percentage of 24.5% of asymptomatic cases has been observed, cf. Santos-Hövener et

al. (2020).

Although it seems difficult to assess the exact rate of under-reporting, this rate is of

course a relevant quantity when investigating the development of the pandemic. Some

studies state rates of not reported cases up to 80%. See for example Streeck et al.

(2020) and Santos-Hövener et al. (2020). Rahmandad et al. (2020), in a study across

86 nations, found out that under-reporting varies substantially over countries, where

for Germany, the estimated ratio of actual to reported cases is about 6 to 7.

We denote the proportion of COVID-19-cases reported to the German health author-

ities by p0,t, and allow this rate to vary (slowly) with time. A value of p0,t ≈ 0.2 seems

realistic in the light of the aforementioned studies.

From a number of Nt newly infected individuals at time t we therefore will see within

the statistics of RKI only a binomial thinned selection of Nt, which we denote by N ′t .

According to our assumption of a reporting rate of p0,t and because of a not small
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number of cases it is reasonable to assume that, approximately,

N ′t
Nt
≈ p0,t. (4)

It is worth mentioning that the number of reported cases N ′t out of infections happened

at time t do not show up within the RKI-statistics neither at time t nor at a single

time point in the future. Rather, occurrence in the RKI-statistics will spread over a

span of days.

This further means that from the total number
∑Nt

i=1 Si,t of secondary infections

caused by Nt primary infections we only observe
∑Nt

i=1 S̃i,t laboratory-confirmed cases

with the statistics of RKI, where S̃i,t possesses a Binomial-distribution with parameters

Si,t and p0,t. Equivalently, the number of reported SARS-CoV-2 secondary infections

out of a cohort of Nt primary infected individuals can be written as

Nt∑
i=1

Si,t∑
j=1

Zi,j , (5)

where (Zi,j , i, j ∈ N) is a family of i.i.d. Bernoulli(p0,t)-distributed random variables.

Success, i.e. Zi,j = 1, means that a secondary infected individual gets a positive

COVID-19-test at some day in the future.

Before further elaborating on this point let us take a look at the distribution

of the total numbers of secondary infections
∑Nt

i=1 Si,t and reported secondary in-

fections
∑Nt

i=1 S̃i,t. Since it is known that the Negative Binomial distribution is

additive, we immediately obtain, assuming independence of the single cases, that∑Nt
i=1 Si,t ∼ NB(pt, Nt · rt). Moreover, S̃i,t is a Binomial-thinning of Si,t. The prop-

erty that Binomial-thinning changes the parameter but not the family of Poisson-

distributions carries over to the family of Negative Binomial distributions. In fact, the

following holds true: If X ∼ NB(p, r) with parameters p ∈ (0, 1) and r > 0 and if

Z1, Z2, . . . are i.i.d. Bernoulli(p0) variables, then

Y :=

X∑
j=1

Zj ∼ NB(q, r) with q =
p

p+ p0 − p0 · p
.

This implies that we end up with

S̃i,t ∼ NB(qt, rt), i = 1, 2, . . . , (6)
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with

qt =
pt

p0,t + pt − p0,t · pt
. (7)

The parameter qt depends on the percentage p0,t of SARS-CoV-2-infections reported

to the health authorities. Furthermore,

Nt∑
i=1

S̃i,t ∼ NB(qt, Nt · rt). (8)

So far we focused on time points t at which SARS-CoV-2-infections take place. As

already mentioned, these time points t should not be confused with the time points at

which SARS-CoV-2-infections are first reported to the health authorities (recall that

we denoted the number of COVID-19-cases first reported at time point t to the health

authorities by RKIt). We argued that there is a (random) time shift between these

two time points with a likely mean of τ = 7.

To keep it simple and still take time shifts as well as random fluctuations of reporting

delays over a span of days into account, we make the following two assumptions

6∑
s=0

N ′t−s ≈
6∑
s=0

RKIt+τ−s (9)

and

6∑
s=0

N ′t−s ≈
6∑
s=0

Nt−4−s∑
i=1

S̃i,t−4−s. (10)

The first assumption means that newly infected cases, which are of a type that will

be reported in the future, summed up over a week approximately will occur in the

RKI-statistics also within a week but shifted by τ days to the future, while the second

assumption is a relaxation of N ′t ≈
∑Nt−4

i=1 S̃i,t−4. The latter assumption would mean

that secondary infections occur with a fixed time delay of 4 days to the primary

infection. Instead of such a strict assumption, (10) means that the two quantities

are roughly the same if they are summed up over a week. Here the number 4 can be

viewed as generation time of the virus.
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4. Estimation of Parameters

Based on the considerations of the previous section it follows that the smoothed esti-

mate of the mean of the reproduction number published on a daily basis by RKI, and

denoted by R̂7
0,t fulfills

R̂7
0,t :=

∑6
s=0 RKIt−s∑6
s=0 RKIt−4−s

≈
∑6

s=0N
′
i,t−τ−s∑6

s=0N
′
t−4−τ−s

≈
∑6

s=0

∑Nt−4−τ−s
i=1 S̃i,t−4−τ−s∑6
s=0N

′
t−4−τ−s

, (11)

cf. (9) and (10). It is important to note that R̂7
0,t reflects the reproduction behavior

approximately 14 days ago. A plot of R̂7
0,t together with a moving average over 7-days

is given in Figure 2.
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Figure 2. Estimated mean R̂7
0,t of the reprodution number (black line) with a moving average of order 7

(blue line).

From (8) we have that the distribution of the numerator
∑6

s=0

∑Nt−4−τ−s
i=1 S̃i,t−4−τ−s,

given the numbers N ′t−4−τ−s, s = 0, . . . , 6, approximately is (we have qt−4−τ−s ≈

qt−τ−7 and rt−4−τ−s ≈ rt−τ−7, s = 0, . . . , 6)

NB(qt−τ−7, rt−τ−7 ·
6∑
s=0

Nt−τ−4−s), (12)
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with (conditional on
∑6

s=0Nt−τ−4−s) expectation

6∑
s=0

Nt−τ−4−s ·
rt−τ−7 · (1− qt−τ−7)

qt−τ−7
. (13)

Using the further approximation from (4) this leads to the following value that is

estimated by R̂7
0,t∑6

s=0Nt−4−τ−s∑6
s=0N

′
t−4−τ−s

· rt−τ−7 (1− qt−τ−7)

qt−τ−7
=

1

p0,t−τ−7
· rt−τ−7 (1− qt−τ−7)

qt−τ−7
. (14)

Fortunately, we obtain by simple algebra and using (7), that the expectation R0,t−τ−7

of the reproduction number Rt−τ−7 equals

E(Rt−τ−7) =
1

p0,t−τ−7
· rt−τ−7 (1− qt−τ−7)

qt−τ−7
=
rt−τ−7 (1− pt−τ−7)

pt−τ−7
. (15)

In order to be able to estimate both parameters rt and pt of a Negative Binomial

fit to the distribution of the reproduction number Rt we further need an estimator

of Var(Rt). For this we need somehow replicates of realizations of Rt, which we will

obtain from reported COVID-19-cases on district level from Germany. In total, Ger-

many is divided into about 401 districts with population numbers ranging from 34, 193

to 3, 669, 491. For each district RKI provides daily COVID-19-cases along the same

guidelines as for Germany as a whole. As before we denote the number of newly in-

fected (not necessarily reported!) COVID-19-cases by Nt,`, where t counts the day

(time) and ` = 1, . . . , L = 401 denotes the number of the district. The total num-

ber of secondary infections caused by Nt,` primary infected individuals then follows

a NB(pt, Nt,` · rt)-distribution. Following the same arguments as in Section 3 we ob-

tain that the total number of reported SARS-CoV-2- secondary infections out of a

number of Nt,` primary infections in district `, which we denote by N ′t,`, is distributed

according to NB(qt, Nt,` · rt), cf. (12) and (11).

In order to relate the number of daily first reported cases RKIt,` within district ` with

the total number of secondary infections N ′t,`, for which the reporting is spread over

some of days, we assume in accordance with (9) and (10) for each district ` = 1, 2, . . . , L

6∑
s=0

N ′t−s,` ≈
6∑
s=0

RKIt+τ−s,`, (16)
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and

6∑
s=0

N ′t−s,` ≈
6∑
s=0

Nt−4−s,`∑
i=1

S̃i,t−4−s. (17)

Our main focus, when turning to reported COVID-19-cases on district level, is

to obtain an estimator of the variance Var(Rt−τ−7) = rt−τ−7 ·
(
1 − pt−τ−7

)
/p2
t−τ−7.

Because of the approximation of the distribution of the numerator of R̂7
0,t,`, cf. (11), by

a NB(qt−τ−7, rt−τ−7 ·
∑6

s=0Nt−τ−4−s,`)-distribution together with the approximation∑6
s=N

′
t−τ−4−s∑6

s=0Nt−τ−4−s
≈ p0,t−τ−7, (18)

cf. (4) and also (14), we obtain for given
∑6

s=0Nt−τ−4−s =
∑6

s=0 RKIt−4−s,`/p0,t−τ−7,

i.e., the denominator is considered fix, that

Var(R̂7
0,t,`) ≈

1∑6
s=0 RKIt−4−s,` p0,t−τ−7

rt−τ−7(1− qt−τ−7)/q2
t−τ−7. (19)

This means, the variance is heterogeneous among the districts with a factor

1/
∑6

s=0 RKIt−4−s,`. Taking this into account leads to the estimator (20), which is an

estimator for Var(S̃i,t−τ−7)/p0,t−τ−7, i.e., the variance of the number of reported SARS-

CoV-2-secondary infection cases from a single infected individual scaled by 1/p0,t−τ−7.

̂
Var(S̃t−τ−7) :=

1

L

L∑
`=1

6∑
s=0

RKIt−4−s,`

(
R̂7

0,t,` − R̂7
0,t

)2
. (20)

Since the distribution of S̃i,t is NB(qt, rt) we obtain

1

p0,t
·Var(S̃i,t) =

rt · (1− qt)
p0,tq2

t

=
rt · (1− pt)

p2
t

· (p0,t + pt − p0,tpt)

= Var(Rt) · (p0,t + pt − p0,tpt), (21)

that is, for pt > 0,

Var(Rt) =
1

(p0,t + pt − p0,tpt)
· 1

p0,t
Var(S̃i,t). (22)

As it is seen, and in contrast to the expectation (cf. (15)), the variance of the reproduc-

tion number based on COVID-19-cases reported to the health authorities depends on
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the unknown reporting rate p0,t. Since the reporting rate p0,t cannot be estimated from

reported data we only can calculate variance estimators for a variety of assumed report-

ing rates p0,t (see Figure 3). Based on estimators ÊRt−14 := R̂7
0,t, cf. (11), with τ = 7,

̂
Var(S̃t−14) as given in (20) and because of (22) together with explicit expressions of

expectation and variance of the Negative Binomial distribution NB(pt−14, rt−14) as-

sumed for Rt−14, we finally are led to the following estimators p̂t−14 and r̂t−14 of the

parameters of this distribution for any assumed and fixed value of the reporting rate

p0,t−14 and the choice of τ = 7:

p̂t−14 =
R̂7

0,t · p0,t−14

̂
Var(S̃t−14)− R̂7

0,t · (1− p0,t−14)
and r̂t−14 =

R̂7
0,t · p̂t−14

1− p̂t−14
. (23)
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Figure 3. The estimates of the variances Var(S̃t−τ−7)/p0,t−τ−7 (in blue) and Var(Rt−τ−7) for reporting

rates p0 = 0.2 (black solid line), p0 = 0.35 (black dashed line) and p0 = 0.5 (black dotted line).

5. Bootstrap Confidence Intervals

It is important to construct confidence intervals for the unknown mean R0,t. According

to our previous discussion, the numerator of the estimator R̂7
0,t approximately satisfies
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for τ = 7

6∑
s=0

RKIt−s ∼ NB
(
qt−14, rt−14 ·

6∑
s=0

RKIt−s−4/p0,t−14

)
; (24)

see also the discussion before and after equation (18) for the same property for ob-

servations obtained at the district level. Recall that this distribution depends on the

unknown under-reporting rate p0,t−14. Based on expression (24) the following para-

metric bootstrap procedure is proposed for constructing a confidence interval for the

mean R0,t−14 of the individual reproduction number.

Step 1: For p0,t−14 given and estimates q̂t−14 and r̂t−14, we generate for t =

15, 16, . . . , n, pseudo random variables (
∑6

s=0RKIt−s)
∗ distributed as

( 6∑
s=0

RKIt−s
)∗ ∼ NB(q̂t−14, r̂t−14 ·

( 6∑
s=0

RKIt−s−4

)∗/
p0,t−14

)
, (25)

using the starting values

( 6∑
s=0

RKIt−s−4

)∗
=

6∑
s=0

RKIt−s−4,

for t = 15, 16, 17 and 18.

Step 2: Calculate for t = 15, 16, . . . , n the pseudo estimator

R̂∗t =

(∑6
s=0RKIt−s

)∗(∑6
s=0RKIt−s−4

)∗ .
Step 3: Repeat Step 1 and Step 2 a large number of times, say B times, and

denote by

R̂∗t,1, R̂
∗
t,2, . . . , R̂

∗
t,B

the pseudo-random variables obtained for t ∈ {15, 16, . . . , n}.

Step 4: For a desired 1 − α confidence level, let Q1 = [B ∗ α/2] and Q2 =

[B ∗ (1− α/2)]. A (1− α)100% confidence interval for R0,t is then given by

[
R̂∗t,(Q1), R̂

∗
t,(Q2)

]
,

where R̂∗t,(1), R̂
∗
t,(2), . . . , R̂

∗
t,(B) denotes the ordered values of the random sample

R∗t,i, i = 1, 2, . . . , B, generated in Step 3.
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Figure 4 shows the 7-days moving average estimate of R0,t constructed using R̂7
0,t

(see also Figure 2), together with the corresponding 95% pointwise confidence intervals

constructed using the bootstrap algorithm proposed in this section.
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Figure 4. 7-days moving average estimates of R0,t together with 95% pointwise confidence intervals for two

different reporting rates p0 = 0.2 (solid) and p0 = 0.5 (dotted) which can hardly be distinguished.

6. Validation of The Negative Binomial Hypothesis

We first investigate the suitability of the assumed Negative Binomial distribution

for describing the random behavior of the individual reproduction number. Toward

this end and as for estimating the variance, we focus on reported COVID-19-cases

on district level, i.e., on the observations RKIt,`. This allows for getting replicates

of the random variable of interest and, therefore, for testing the hypothesis that the

individual reproduction number follows a Negative Binomial distribution. Recall that

in our discussion in Section 3, it was assumed that the sum of reported cases over the

time points t, t− 1, . . . , t− 6 in district `, that is,
∑6

s=0RKIt−s,`, satisfies (τ = 7),

6∑
s=0

RKIt−s,` ∼ NB(qt−14, rt−14 ·
6∑
s=0

Nt−11−s,`).
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Assuming that p0,t remains essentially constant in the range of τ days, we get using

(4) and (9) that

6∑
s=0

Nt−11−s,` ≈ p0,t−14

6∑
s=0

N ′t−11−s,` ≈ p0,t−14

6∑
s=0

RKIt−4−s,`.

That is, in terms of the observed RKI data, the assumption we have to test translates

to

6∑
s=0

RKIt−s,` ∼ NB
(
qt−14,

1

p0,t−14
· rt−14 ·

6∑
s=0

RKIt−4−s,`
)
. (26)

In order to select from the existing data appropriate samples for testing the above

assumption, we proceed as follows. We first select all districts for which the average

of reported cases at time points t − 4, t − 5, . . . , t − 11 is approximately the same.

Practically, this means that we consider districts for which

1

7

6∑
s=0

RKIt−4−s,` ∈ [15, 25]. (27)

We have experienced that chosen a number of average daily infections at district

level outside the above interval, leads to the selection of a relatively small number of

districts, that is to a small sample size. Let Lt,S be the total number of districts at

time point t satisfying condition (27) and let {1, 2, . . . , Lt,S} be the corresponding set

of districts. From the total number of time points t available, we further only consider

those time points, for which Lt,S ≥ 75. This ensures that a sufficiently large number of

districts is available for testing the hypothesis of interest. After applying this selection

procedure to the RKIt,` data, we end up with a total of T = 45 data points t for

which the corresponding condition (27) and Lt,S ≥ 75 is satisfied.

The problem of testing the goodness-of-fit of a Negative Binomial distribution

NB(p, r) when both parameters p and r are unknown, has been considered by some

authors in the literature; see Meintanis (2005) and Best et al. (2009). Meintanis (2005)

proposed a test based on the comparison of the empirical probability generating func-

tion with that of the Negative Binomial distribution with estimated parameters. Best

et al. (2009) considered tests based on the comparison of third and fourth order mo-

ments. In the following we focus on the test proposed by Meintanis (2005) and we also

report results for the test proposed by Best et al. (2009).

We use the test statistic proposed by Meintanis (2005) with suggested parameter
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a = 5. To obtain critical values for this test, a parametric bootstrap procedure is used.

More specifically, i.i.d. random samples of length Lt,S are generated from a NB(q̂t, r̂t)

distribution, where

q̂t =
r̂t

r̂t + Y Lt,S

and r̂t =
L−1
t,S

∑Lt,S
j=1 Y

2
t,j

S2
Lt,S
− Y Lt,S

.

The distribution of the test statistic under the null is then estimated using the dis-

tribution of the same test statistic calculated using the bootstrap pseudo random

sample.

Applying the above test to the RKI data sets selected according to the described

procedure, the null hypothesis of a Negative Binomial distribution has been rejected

at the 5% level in only 17 out of the 182 different data sets considered. Qualitatively

the same result is obtained, if one uses the test proposed by Best et al. (2009). Ap-

plying this test leads to a rejection of the the null hypothesis at the 5% level, in only

3 out of the 182 data sets selected. To summarize, our testing procedures find, there-

fore, no evidence against the assumption that the random behavior of the individual

reproduction number R is governed by a Negative Binomial distribution.

7. Empirical Results

We present the estimated parameters of the Negative Binomial distribution obtained

for Germany based on the RKI data set using the method developed and the time

period April 1, 2020 to September 26, 2021. As mentioned in Section 4, the parameter

estimates depend on the unknown reporting rate p0,t. We present results for three

possible reporting rates, i.e., p0,t ∈ {0.2, 0.35, 0.5}. The estimated parameters pt and

rt are given in Figures 5 and 6 respectively. Note that the dispersion parameter for the

Negative Binomial distribution coincides with the parameter rt (cf. Lloyd-Smith et al.

(2005a)). Therefore, Figure 6 is also an illustration of the behavior of the dispersion

parameter κt over time.

The parameter estimates can be translated into probabilities that an individual case

causes a given number of secondary infections over its entire infectious period. We

present in Figure 7 the probability that an individual causes no infections, in Figure 8

the probability that an individual causes one to five infections, and in Figure 9 the

probability that an individual causes 20 or more infections.

Note that over the entire period non-pharmaceutical measures were in place such
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as mandatory wearing of face masks in public areas, detected cases and contacts were

quarantined, etc. This also can be seen in the estimates of the parameter R0. Over this

time period, the average of R0 is 1.017, and consequently, far less than the reproduction

rate without any measures, which is estimated as 3.32 by Alimohamadi et al. (2020)

in a meta-study. Over the entire time period a strong overdispersion can be observed

irrespective of the reporting rate. Smaller reporting rates lead in general to smaller

parameter values for rt. Furthermore, over both summer periods larger parameter

values for rt can be observed than in the fall periods. The overdispersion can be well

displayed using probabilities. During the summer period 2020 the probability that

an individual cases causes no infection is given by 60% − 80% and it rises in the

fall period to 80%− 90%. A similar behavior can be observed for 2021. Additionally,

the probability that an individual case causes 20 or more infections almost doubles

from summer to fall and peaks in October 2020 with values about 1.5% − 2%. In

contrast, the probability that an individual case causes one to five infections almost

halves from summer to fall 2020 with values in summer of about 10%− 20%. For the

summer and early fall 2021 the situation looks a bit different. This may be due to the

vaccination (which was absent in 2020) and as a consequence to a clear reduction in

social distancing measures and to an increasing holiday travel behavior.

Endo et al. (2020) estimated the overdispersion parameter rt of the Negative Bino-

mial distribution as 0.1 with a 95% confidence interval from 0.04 to 0.2. Note however,

that their considered time period is January and February of 2020. In that time period

non-pharmaceutical measures such as obligatory face masks in public areas were not

yet in place or less strict than in the time period considered here. Since in our con-

sidered time period non-pharmaceutical measures were less strict in Germany during

the summer 2020, it seems most reasonable to compare the results obtained in the

summer period, June 1, 2020 to October 31, 2020, with the results obtain by Endo et

al. (2020). In the summer period, rt takes values in the range of 0.025 to 0.22 and for

a reporting rate of 0.35, we obtain values in the range of 0.044 to 0.157 with a mean

value of 0.095. Hence, the obtained values coincide well with the values obtained in

Endo et al. (2020).
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Figure 5. The estimated parameter pt for p0 = 0.2 (black solid line), p0 = 0.35 (black dashed line), p0 = 0.5

(black dotted line).

Apr 01
2020

Jun 01
2020

Aug 01
2020

Oct 01
2020

Dec 01
2020

Feb 01
2021

Apr 01
2021

Jun 01
2021

Aug 01
2021

Sep 26
2021

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Figure 6. The estimated parameter rt (which coincides with the dispersion parameter κt) for p0 = 0.2 (black

solid line), p0 = 0.35 (black dashed line), p0 = 0.5 (black dotted line).
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Figure 7. The probability that an individual causes no secondary infection for p0 = 0.2 (black solid line),

p0 = 0.35 (black dashed line), p0 = 0.5 (black dotted line)..
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Figure 8. The probability that an individual causes between 1 and 5 secondary infections for p0 = 0.2 (black

solid line), p0 = 0.35 (black dashed line), p0 = 0.5 (black dotted line)..
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Figure 9. The probability that an individual causes 20 or more secondary infections for p0 = 0.2 (black solid

line), p0 = 0.35 (black dashed line), p0 = 0.5 (black dotted line)..

8. Appendix

Lemma 1. Let X ∼ NB(p, r) with parameters p ∈ (0, 1) and r > 0. If Z1, Z2, . . . are

i.i.d. Bernoulli(p0) variables, then

Y :=

X∑
j=1

Zj ∼ NB(q, r) with q =
p

p+ p0 − p0 · p
.

Proof: Notice first that for X = n given, the distribution of Y |X = n is

Binomial(n, p0). Furthermore, if X ∼ NB(p, r) then X ∼ Poisson(λ) with λ ∼

Gamma
(
r, p/(1− p)

)
; see (??). From these we get for k ∈ N ∪ {0},

P (Y = k) =

∞∑
n=k

P (Y = k|X = n) · P (X = n)

=

∞∑
n=k

 n

k

 pko(1− p0)n−k
∫ ∞

0

e−λλn

n!
· fr, p

1−p
(λ)dλ

=

∫ ∞
0

(p0 · λ)ke−λ

k!

∞∑
s=0

(1− p0)sλs

s!
· fr, p

1−p
(λ)dλ
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=

∫ ∞
0

(p0 · λ)ke−po·λ

k!
· fr, p

1−p
(λ)dλ

=

∫ ∞
0

λ̃ke−λ̃

k!
· 1

p0
fr, p

1−p

( λ̃
p0

)
dλ̃,

where the last equality follows using the substitution λ̃ = po · λ. Since

1

p0
fr, p

1−p

( λ̃
p0

)
=

1

Γ(r)

( p

(1− p)p0

)r
λ̃r−1e

−λ̃ p

(1−p)p0

= fr, q

1−q

(
λ̃
)
,

where q = p/(p+ p0 − p0 · p), we get

P (Y = k) =

∫ ∞
0

λ̃ke−λ̃

k!
· fr, q

1−q
(λ̃)dλ̃,

which is the probability function of the NB(q, r) distribution.

�
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