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1 Convex sets

We introduce the basic notion of convexity of sets. We will develop
everything in the euclidean space Rd, but most of what we will be
doing, will also work in a general real and separable Hilbert space
X, i.e. a real vector space that is equipped with an inner product
and has a orthonormal basis.

Definition 1.1. A set C ⊂ Rd is convex, if for all x, y ∈ C and
λ ∈ [0, 1] it holds thatλx + (1− λ)y ∈ C. The term λx + (1− λ)y
is called the convex combination.

More general: For x1, . . . , xn ∈ Rd and λ1, . . . , λn ≥ 0 with
∑n

i=1 λi = 1 we call x = ∑n
i=1 λixi a convex combination.

x

y
λx + (1 − λ)y

It holds: A set is convex if and only if it
contains all convex combinations of its
points.Definition 1.2. The convex hull conv(S) of a subset S ⊂ Rd is the

set of all convex combinations of points in S.
Another way to say this is: The convex
hull is the smallest convex set that con-
tains S.

x1
x2

x4

x3

x5
x6

x7

S = {x1, . . . , x7}

Example 1.3. For two convex sets C1, C2 ⊂ Rd it holds that the
Minkowski sum

C1 + C2 := {x = x1 + x2 | x1 ∈ C1, x2 ∈ C2}

is again convex. �
It’s fairly straightforward to prove the following (andone should

do so as an exercise):

Proposition 1.4. The following sets are convex:

1. αC = {αx | x ∈ C}, for convex C ∈ Rd and α ∈ R,

2. AC ⊂ Rm, for convex C ∈ Rd and a matrix A ∈ Rm×d,

3. C1 × C2 ⊂ Rm+d for convex C1 ∈ Rm and convex C2 ∈ Rd,

4. �i∈I Ci for convex Ci and any index set I,

5. the closure C and the interior C◦ for convex C.
We will denote the closure of C also by
cl(C) and the interior also by int(C).

Proof. Let us prove the second point: If x, y are in AC then there
are u, v, such that x = Au and y = Av. For any λ ∈ [0, 1] it holds
that λu + (1 − λ)v ∈ C, and hence λx + (1 − λ)y = λAu + (1 −
λ)Av = A(λu + (1 − λ)v) is in AC.

The proofs of the remaining assertions are straightforward
and left as exercise.

Definition 1.5. A set S ⊂ Rd is called affine if for all x, y ∈ S and
λ ∈ R it holds thatλx + (1 − λ)y ∈ S.

Note that λx + (1 − λ)y = y +
λ(x − y), i.e. the point λx + (1 − λ)y
is reached by starting from y and going
λ times the vector from y to x in the
direction of x.

Of course, linear subspaces are also affine spaces and for every
non-empty affine set, there is a unique subspace L and some vector
a such that S = a + L. It’s also clear that affine sets are convex.

A point x is an affine combination of x1, . . . , xn if there exists λi
with ∑n

i=1 λi = 1 and x = ∑n
i=1 λixi.
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Definition 1.6. The affine hull aff(S) of a set S is the set of all affine
combinations of elements of S.

Alternatively, we could also define the affine hull of S as the
smallest affine set which contains S.

An affine space enherits a topology from the surrounding
space Rd and hence, we have closure and interior with respect
this topology for subsets of affine spaces. This gives rise to the
following notion:

Definition 1.7. The relative interior of some S ⊂ Rd, denoted by
ri(S), is the interior of S relative to the affine set aff(S), i.e.

ri(C) = {x ∈ C | ∃� > 0 : B�(x) ∩ aff(C) ⊂ C}.

The set C \ ri(C) is called relative boundary of C.
You also see relint(S) for the relative
interior. Note that there is no notion for
relative closure as the closure is always
within the affine hull.

Proposition 1.8. 1. For convex C �= ∅ it holds that ri(C) is also
convex and it holds that aff(ri(C)) = aff(C).

2. For convex C, invertible A ∈ Rd×d and any b ∈ Rd it holds that
A ri(C) + b = ri(AC + b) and for all A ∈ Rm×d it holds that
A(ri(C)) = ri(AC).

3. For convex C we have x ∈ ri(C) if and only if for every y ∈ aff(C)
there exists � > 0 such that x ± �(y − x) ∈ C,

4. For convex C1, C2 it holds C1 = C2 if and only if ri(C1) = ri(C2),

5. For convex C1, C2 it holds ri(C1 + C2) = ri(C1) + ri(C2).

We don’t give a proof of this proposition, but note that point
2. is helpful to prove other statements about the relative interior:
If aff(C) is an m-dimensional affine space, we can, without loss
of generality, assume that aff(C) lies in the subspace V = {x |
xm+1 = · · · = xn = 0} and since this is a just a copy of Rm, we
can assume that C is fulldimensional, i.e. aff(C) is the full space.

Note that even if C1 ⊂ C2, it is generally not true, that ri(C1) is
contained in ri(C2)! This may be seen, for example, with C2 being
a (closed) square in R2 and C1 being one of its sides.

Definition 1.9. A set of n + 1 points x0, . . . , xn ∈ Rd are called
affinely independent if the affine hullaff({x0, . . . , xn}) is an n-dimensional
affine space.

Since aff{x0, . . . , xn} = V + x0 whereV is the subspace spanned
by the vectors x1 − x0, . . . , xn − x0,we see that the vectors x0, . . . , xn
are affinely independent if and only if the vectors x1 − x0, . . . , xn −
x0 are linearly independent.

Proposition 1.10. If x0, . . . , xn are affinely independent, each x ∈
aff{x0, . . . , xn} can be represented uniquely as an affine combination
x = ∑n

0=1 λixi and these λi are called barycentric coordinates of x with
respect to the points x0, . . . , xn.
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Proof. If M = aff{x0, . . . , xn} = x0 + V withV = span{x1 −
x0, . . . , xn − x0}, we can express each y ∈ V uniquely as y =

∑n
i=1 λi(xi − x0) and since each x ∈ M is of the form x0 + y with

y ∈ V, we express each x ∈ M uniquely as x = ∑n
i=1 λi(xi − x0) +

x0, i.e. as an affine combination x = ∑n
i=0 λixi with ∑n

i=0 λi =
1.

If we have affinely independent points x0, . . . , xn their convex
hull is called a simplex. Of special importance is the probability
simplex (also called standard simplex) which is the convex hull of
the standard basis vectors ei, i.e.

Δd := conv(e1, . . . , ed)
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2 Hyperplanes and cones

For each x0, p ∈ Rd with p �= 0 the hyperplane through x0 with
normal vector p can be written with α = �x0, p� as

Hp,α := {x ∈ Rd | �p, x� = α} = {x | �p, x − x0� = 0}.

Hyperplanes are affine sets and the orthogonal projection of some
x onto Hp,α is

x̂ = x − �p,x�−α

�p�2
2

p.

Moreover, there are the associated half-spaces

H+
p,α := {x ∈ Rd | �p, x� ≥ α}, H−

p,α := {x ∈ Rd | �p, x� ≤ α}.

We will show (with the help of separation theorems) that a closed
and convex set equals the intersection of all half-spaces that con-
tain C.

H+
p,α

H−
p,α

Hp,α
p

A set C that is the intersection of finitely many half-spaces is
called polyhedral set, in this case we can write

C = {x | Ax ≤ b, Bx = d}

for some A ∈ Rn×d, b ∈ Rn, B ∈ Rm×d, c ∈ Rm.
Related to hyperplanes are affine functionals which are of the

form

f (x) = �p, x�+ α

for some p ∈ Rd, α ∈ R. A hyperplane in Rd+1 is of the form

Hp,α = {(x�, xd+1) ∈ Rd+1 | �p�, x��+ pd+1xd+1 = α}.

A “vertical” hyperplane is one with pd+1 but for the other (i.e. for
pd+1 �= 0 we have

xd+1 = �− p�
pd+1

, x��+ α
pd+1

,

i.e., the hyperplane Hp,α ⊂ Rd+1 is the graph of the affine function
f : Rd → R, f (x�) = �− p�

pd+1
, x��+ α

pd+1
.

Definition 2.1. A set K ⊂ Rd is called a cone, is x ∈ K and λ ≥ 0
implies λx ∈ K.

Sometimes cones are defined with
just λ > 0. In this case, one may have
0 /∈ K for a cone K.

convex cone non-convex cone

Proposition 2.2. A cone K is convex if and only if K + K ⊂ K.

Proof. “⇒”: If K is convex and x, y ∈ K we have (x + y)/2 ∈ K
and hence x + y ∈ K.

“⇐”: Let K +K ⊂ K hold and let x, y ∈ K, since K is a cone, we
have λx, (1−λ)x ∈ K for any λ ≥ 0 andhence,λx+(1−λ)y ∈ K
by K + K ⊂ K.
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Example 2.3. 1. Every linear subspace is a convex cone, more
precisely, a cone K is a linear subspace if and only if K = −K.

2. The halfspaces H+
p,0 = {x | �p, x� ≥ 0} are convex cones.

3. An important convex cone is the non-negative orthant K =
Rd

≥0{x | x1, . . . , xn ≥ 0}. We also write x ≥ 0 is every component
is non-negative.

4. The set {Ay | y ≥ 0} is a convex cone for A ∈ Rd×m and
cones of this form are called finitely generated.

5. The set {x | ATx ≤ 0} with A ∈ Rd×m is a convex cone and
cones of this type are called polyhedral cones.

6. The set

Ld+1 = {(x�, xd+1) ∈ Rd+1 | �x��2 ≤ xd+1}

is a convex cone called second order cone (or Lorentz-cone or,
due to its shape, ice-cream cone).

The Lorentz cone L3:

x1

x2

x3

7. The set of symmetric positive semi-definitematrices Sym+
d =

{M ∈ Rd×d | M � 0} is a convex cone. For d = 2 symmetric
matrices are of the form

M =

�
x1 x2
x2 x3

�

and such a matrix is positive semi-definite if x1 ≥ 0 and
x1x3 ≥ x2

2. Using the change of variables x = x1 − x3, y =
2x2, z = x1 + x3 one can see that M is positiv semi-definite
if and only if (x, y, z) ∈ L3.

�

Definition 2.4. For a non-empty set S one defines the polar cone
by

S∗ := {p ∈ Rd | ∀x ∈ S : �p, x� ≤ 0} =
�

x∈S

H−
x,0.

Consequently, S∗ is always closed and convex. Since for all
x ∈ S and p ∈ S∗ we always have

�p,x�
�p�2�x�2

≤ 0,

and the left hand side defines the cosine of the angle between x
and p, we see that this angle is always larger or equal to π/2.

One can see that (K∗)∗ = conv K for any set K and hence, for
closed convex cones K it holds that (K∗)∗ = K.
Example 2.5. 1. The polar cone of K = {0} is K∗ = Rd.

2. If K is a linear subspace, one has K∗ = K⊥.
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3. For the non-negative orthantRd
≥0 the polar cone is (Rd

≥0)
∗ =

Rd
≤0, i.e. the non-positive orthant.

4. For some p ∈ Rd and K = H−
p,0 = {x | �p, x� ≤ 0} it holds

that K∗ = {λp | λ ≥ 0}.
5. The polar cone of the finitely generated cone K = {Ay |

y ≥ 0} for some A ∈ Rd×m is the polyhedral cone K∗ =
{p | AT p ≤ 0}.

�
Definition 2.6. For some set S ⊂ Rd and x0 ∈ S we define the
tangetial cone of S in x0 by

TS(x0) := {v ∈ Rd | ∃xn ∈ S, xn → x0, λn � 0 : v = lim
n→∞

(xn − x0)/λn}

and the normalized directions in TS(x0) are the limits

xn − x0

�xn − x0�2
→ v

�v�2
.

If C is convex, one has

TC(x0) = {t(x − x0) | x ∈ C, t ≥ 0}

which shows that TC(x0) is closed.

Definition 2.7. For a convex C and x0 ∈ C we define the normal
cone of C at x0 as

NC(x0) := {p | ∀x ∈ C : �p, x − x0� ≤ 0}.

By definition, the normal cone is always closed.

Theorem 2.8. For a convex set C and x0 ∈ C it holds that

(TC(x0))
∗ = NC(x0).

Proof. Let p ∈ TC(x0)∗. Then it holds that �p, v� ≤ 0 for all v ∈
TC(x0), i.e. �p, x − x0� ≤ 0.

Conversely, lez p ∈ NC(x0). We have to show that �p, v� ≤ 0
for any v ∈ TC(x0). Since we can write v = limn→∞(xn − x0)/λn
with xn → x0, xn ∈ C and λn � 0, we have �p, xn − x0� ≤ 0 and
hence �p, v� ≤ 0 as well.

The following theorem would better fit in the next section,
however, we still have some space here, so we state and prove it
now:

Theorem 2.9 (Projection theorem). Let C ⊂ Rd be a nonempty,
closed, convex set. Then, for any x0 ∈ Rd, there exists a unique x̂0 ∈ C,
called orthogonal projection of x0 onto C, and denoted by PCx0 := x̂0,
such that

�x0 − x̂0�2 = inf
x∈C

�x0 − x�2
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and this element fulfills
C

PC(x0)

x0
�x − PC(x)�

∀x ∈ C : �x0 − x̂0, x − x̂0� ≤ 0. (1)

Conversely, if y ∈ C fulfills the variational inequality

∀x ∈ C : �x0 − y, x − y� ≤ 0, (2)

then y = PCx0.

Proof. The function f (x) = �x − x0�2 is continuous and since
C is closed, f takes its infimum in C (in fact, in the compact set
C ∩ Br(x0) for some large r). By Weierstraß’ theorem, the infimum
is attained. This shows existence of a projection.

Now let x̂0 be an orthogonal projection of x0 onto C. By convex-
ity of C, we have x̂0 + λ(x − x̂0) ∈ C for every x ∈ C and λ ∈ [0, 1].
Since f is minimal at x̂0, the same holds for x �→ �x − x0�2

2 which
means

0 ≤ �x̂0 + λ(x − x̂0)�2
2 − �x̂0 − x0�2

2

= λ2�x − x̂0�2
2 − 2λ�x̂0 − x0, x̂0 − x�.

For λ > 0 we can rearrange to

�x̂0 − x0, x̂0 − x� ≤ λ
2 �x − x̂0�2

2

and with λ → 0 we have shown that (1) holds.
Conversely, assume that the variational inequality (2) holds for

some y. Then, by Cauchy-Schwarz, it holds for all x ∈ C that

0 ≥ �y − x0, y − x� = �y − x0, y − x0 + x0 − x�
= �y − x0�2

2 + �y − x0, x0 − x�
≥ �y − x0�2

2 − �y − x0�2�x − x0�2.

Dividing by �y − x0�2 we obtain �y − x0�2 ≤ �x − x0�2 for all
x ∈ C and this say that y is the orthogonal projection of x0 onto
C.

Finally, we show uniqueness: Assume that x̂0 and x̃0 are both
orthogonal projection of x0 onto C. Since x̂0, x̃0 ∈ C we can plug
them into their variational inequalities and get

�x0 − x̂0, x̃0 − x̂0� ≤ 0, �x0 − x̃0, x̂0 − x̃0� ≤ 0.

Adding both inequalities we get �x̂0 − x̃0�2
2 ≤ 0 which means

x̂0 = x̃0.

Example 2.10. We project onto balls in the p-norms for p = 1, 2, ∞:

1. First consider p = ∞ and the respective norm ball of radius
λ > 0 around 0 is

B∞
λ (0) := {x | max(|x1|, . . . , |xd|) ≤ λ}.
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The projection of some x onto this ball is minimizing f (x −

1

1
y) = �x − y�2 over all y ∈ B∞

λ (0), i.e. over all y with |yi| ≤ λ.
This can be done componentwise and leads to

(PB∞
λ (0)x)i =

�
xi, if |xi| ≤ λ

λ sign(xi), if |xi| > λ

which can bewritten consisely by PB∞
λ (0)x = min(max(x,−λ), λ)

where the minimum and maximum applied component-
wise.

2. For p = 2 we simply need to shrink x if it is outside of the
ball, i.e.

PB2
λ(0)

x =

�
x, if �x�2 ≤ λ

λ x
�x�2

, if �x�2 > λ.
= max(1, λ

�x�2
)x

1

1

3. The case p = 1 is more complicated and there is no explicit
formula. However, one can show the following: We define
the soft-shrinkage (or soft-thresholding) function

1

1

Sλ(x) = max(|x|− λ, 0) sign(x)

and denote by π a permutation of {1, . . . , d} which sorts
the entries of x in decreasing order, i.e. |xπ(1)| ≥ |xπ(2)| ≥
· · · ≥ |xπ(d)| ≥ 0. Then, if m is the largest index such that
|xπ(m)| > 0 and |xπ(1)|+···+|xπ(m)|−λ

m ≤ |xπ(m)|, one has

PB1
λ(0)

x =

�
x, if �x�1 ≤ λ

Sµ(x), if �x�1 > λ.

�
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3 Projection and separation

Theorem 3.1. Let K ⊂ Rd be a non-empty, closed and convex cone.
Then every element in x0 can be uniquely decomposed as

x0 = PKx0 + PK∗x0

and it holds that PKx0⊥PK∗x0.

Proof. By the Projection Theorem (Theorem 2.9) one has for every
x ∈ K

�x0 − PKx0, x − PKx0� ≤ 0. (*)

For x = 0 we have �x0 − PKx0, PKx0� ≥ 0 and for x = 2PKx0 ∈ K
one has �x0 − PKx0, PKx0� ≤ 0 which implies that we have

�x0 − PKx0, PKx0� = 0. (**)

Thus, by (*) we have for all x ∈ K

�x0 − PKx0, x� ≤ 0

and this means that x0 − PKx0 ∈ K∗ by the definition of the polar
cone. Moreover, since for all x ∈ K∗

�x0 − (x0 − PKx0), x − (x0 − Pkx0)� = �PKx0, x − x0 + PKx0�
= �PKx0, x�+ �PKx0, PKx0 − x0� ≤ 0

we have (again by the Projection Theorem) that x0 − PKx0 = PK∗x0.
The orthogonality follows from (**).

Since the polar cone of a subspace V
is the orthogonal complement V⊥ we
obtain:

Corollary. Let V be a non-empty sub-
space of Rd. Then the orthogonal projec-
tion of x0 onto V is characterized by

∀x ∈ V : �x0 − PV x0, x� = 0

and, moreover, x0 = PV x0 + PV⊥ x0.Now we come to the notion of separation:

Definition 3.2. Let C1, C2 be two sets. We say that a hyperplane
Hp,α

1. separates C1 and C2 if for all x1 ∈ C and x2 ∈ C2 it holds that

�p, x1� ≤ α ≤ �p, x2�.
In terms of halfspaces: C1 ⊂ H−

p,α and
C2 ∈ H+

p,α.
2. strictly separates C1 and C2 if for all x1 ∈ C and x2 ∈ C2 it

holds that

�p, x1� < α < �p, x2�.
In terms of halfspaces: C1 ⊂ int(H−

p,α)

and C2 ⊂ int(H+
p,α).

3. properly separates C1 and C2 if it separates the sets and there
exist xi ∈ Ci, i = 1, 2 such that

�p, x1� < �p, x2�.
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Theorem 3.3. If C is a non-empty, closed and convex set and x0 /∈ C,
then we can strictly separate C from {x0}, i.e. there exists p and � > 0
such that

sup
x∈C

�p, x� ≤ �p, x0� − �.

Proof. By the Projection Theorem (Theorem 2.9) we have for all
x ∈ C that

�PCx0 − x0, PCx0 − x� ≤ 0,

from which we deduce by adding and subtracting x0 in the right
argument that

�PCx0 − x0�2
2 ≤ �x0 − PCx0, x0 − x�

for all x ∈ C. But since x0 /∈ C, we have �PCx0 − x0�2
2 ≥ � > 0 so

we can take p = x0 − PCx0.

Corollary 3.4. For a closed and convex set C ist holds that C equals the
intersection of all halfspaces that include C.

The case ofC = ∅ is clear. ThatC is a subset of said intersection
is clear. And if x /∈ C we can find a hyperplane that separates
C from x and hence, there is a corresponding halfspace that
contains C, but not x and hence, x is not in said intersection.

Theorem 3.5 (Strong separation). Let C1, C2 be non-empty, convex
and disjoint and let C1 be closed and C2 be compact. Then there exists
p ∈ Rd and α ∈ R such that Hp,α strictly separates C1 and C2, i.e. for
all x1 ∈ C1, x2 ∈ C2 it holds that

�p, x1� < α < �p, x2�.

Proof. We consider theMinkowski sumC := C1 +(−C2) = {x1 −
x2 | x1 ∈ C1, x2 ∈ C2} which is also non-empty, closed and convex.
Also 0 /∈ C since C1 and C2 are disjoint. Hence, we can consider
x̂ = PC0 ∈ C. Since this is a point in C = C1 − C2 we can write it
as x̂ = x̂1 − x̂2 with xi ∈ Ci, i = 1, 2. Now we set

x∗ := x̂2+x̂1
2 , p := x̂2−x̂1

2 , α := �p, x∗�.

Note that p �= 0. By the Projection Theorem, we get for all x1 ∈ C1,
x2 ∈ C2 that

�0 − (x̂1 − x̂2), x1 − x2 − (x̂1 − x̂2)� ≤ 0

from which we deduce (using x∗ − x̂1 = (x̂2 − x̂1)/2 and x∗ −
x̂2 = (x̂1 − x̂2)/2)

�x∗ − x̂1, x1 − x̂1�+ �x∗ − x̂2, x2 − x̂2� ≤ 0.
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Plugging in x1 = x̂1 and x2 = x̂2, respectively, we get for all xi ∈ Ci
that

�x∗ − x̂i, xi − x̂i� ≤ 0.

This means that x̂iis the orthogonal projection of x∗ onto Ci. Fi-
nally, since x∗ − x̂1 = p we get

�p, x1� ≤ �p, x̂1� = �p, x∗�+ �p, x̂1 − x∗� = α − �p�2
2 < α.

Similarly, (using x∗ − x̂2 = −p) one shows that �p, x2� > α.

We recall the following fact from analysis:

Proposition 3.6. If (Sx)x is a familiy of compact subsets of a metric
space such that the intersection of every finity subfamily of the Sx is non-
empty, then �x Sx �= ∅.

Proposition 3.7. Let C be a non-empty convex set and x0 /∈ C◦. Then
there exists a non-zero p such that for all x ∈ C it holds that

�p, x� ≤ �p, x0�.

Proof. For every x ∈ C we define

Fx := {p | �p�2 = 1, �p, x� ≤ �p, x0�}

and observe that each Fx is closed and since Fx is subset of the com-
pact set {�p�2 = 1}, it is compact as well. Now we show that every
intersection of finitely many Fx is non-empty: For x1, . . . , xn ∈ C
we define

M := conv(x1, . . . , xn).

Since C is convex, we have M ⊂ C and hence, x0 /∈ M. Since M
is non-empty, convex and closed, we can invoke the Projection
Theorem to get that for all x ∈ M it holds that

�x0 − PMx0, x − PMx0� ≤ 0

from which we deduce

�x0 − PMx0�2
2 ≤ �x0 − PMx0, x0 − x�.

Now we set p = (x0 − PMx0)/�x0 − PMx0� and get �p, x� ≤
�p, x0� for all x ∈ M and especially �p, xi� ≤ �p, x0� for i =
1, . . . , n. This shows p ∈ �n

i=1 Fxi . By the previous proposition,
we conclude that

�
x∈C Fx is non-empty as well, which shows the

assertion.

Theorem 3.8 (Separation Theorem). Any two non-empty closed, con-
vex and disjoint sets C1 and C2 can be separated by a hyperplane.
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Proof. We consider the Minkowski sum C = C1 + (−C2) which is
non-empty, closed and convex with 0 /∈ C. By Proposition 3.7 we
can separate 0 from C and this hyperplane also separates C1 and
C2.

We will also use the following slight generalization which even
characterizes proper separation:

Theorem 3.9 (Proper separation theorem). Two non-empty, convex
sets C1 and C2 can be properly separated if and only ri C1 and ri C2 are
disjoint.

Proof. “⇒”: Suppose that Hp,α separates C1 and C2 properly, i.e.
for all xi ∈ Ci we have �p, x1� ≤ α ≤ �p, x2� and there exist
x̄i ∈ Ci such that �p, x̄1� < �p, x̄2�. We aim to show that for
all xi ∈ ri C we have that �p, x1� < �p, x2� as well (which
then implies that ri C1 and ri C2 are disjoint).
To do so, assume that there are xi ∈ ri Ci such that �p, x1� =
�p, x2�. By Proposition 1.8 we know that there exists � > 0
such that for i = 1, 2 we have

yi := xi − �(x̄i − xi) = (1 + �)xi − �x̄i ∈ Ci.

Thus,

�p, y1� = �p, (1 + �)x1 − �x̄1�
= �p, (1 + �)x2� − ��p, x̄1�
> �p, (1 + �)x2� − ��p, x̄2�
= �p, y2�.

This contradicts the separation property of Hp,α.

“⇐”: Now let ri(C1) ∩ ri(C2) = ∅, i.e. 0 /∈ ri(C1) − ri(C2) =
ri(C1 − C2). We construct a properly separating hyperplane
Hp,α.
Remembering the remark after Proposition 1.8, we assume
without loss of generality, that aff(C1 − C2) = Rd. Then
ri(C1 − C2) = int(C1 − C2) and by Proposition 3.7 there
exists p �= 0 such that for all x1 − x2 ∈ int(C1 − C2)

�p, x1 − x2� ≥ 0.

We conclude that

{x ∈ Rd | �p, x� ≥ 0} ⊃ int(C1 − C2).

Since the set on the left is closed, we also get

{x ∈ Rd | �p, x� ≥ 0} ⊃ cl(C1 − C2).

Thus, we even have

�p, x1 − x2� ≥ 0
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for all x1, x2 with x1 − x2 ∈ C1 − C2. Thus, we can sepa-
rate C1 and C2 with this p and α := supx2∈C2

�p, x2�. Finally,
for x1 − x2 ∈ int(C1 − C2) we have the strict inequality
�p, x1 − x2� > 0.

For a non-empty convex set C one calls a halfspace supporting, if
it contains C and has a point in the closure of C in its boundary. A
supporting hyperplane, is one which is the boundary of a supporting
halfspace. Our above results show that for every x0 ∈ cl(C) \
int(C), there exists a supporting hyperplane for C which contains
x0 (namely, one which separates x0 from int(C)).
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4 Convex functions

When working with convex functions, it will be convenient to
use the extended real numbers R̄ = [−∞, ∞]. We will use the
following conventions:

For −∞ < a ≤ ∞: a + ∞ = ∞ + a = ∞,
For −∞ ≤ a < ∞ : a − ∞ = −∞ + a = −∞,
For 0 < a ≤ ∞: a∞ = ∞a = ∞, a(−∞) = (−∞)a = −∞,
For −∞ ≤ a < 0: a∞ = ∞a = −∞, a(−∞) = (−∞)a = ∞,

0∞ = ∞0 = 0 = 0(−∞) = (−∞)0,
−(−∞) = ∞,

inf ∅ = ∞,
sup ∅ = −∞.

The expressions ∞ − ∞ and −∞ + ∞ will be left undefined inten-
tionally.

We will use the notion of indicator function of a set S which is
iS : Rd → R̄ defined by

iS(x) :=

�
0, if x ∈ S
∞, if x /∈ S.

Indicator functions are helpful to for-
mulate constrained minimization prob-
lems minx∈S f (x) as (formally) un-
constrained minimization problems
minx∈Rd f (x) + iS(x).

Definition 4.1. A function f : Rd → R̄ is proper, if f (x) > −∞
for all x and there exists x0 such that f (x0) < ∞. The (effective)
domain of f is

dom f := {x | f (x) < ∞}.

We say that f is lower semicontinuous (lsc) at x0 if

f (x0) ≤ lim inf
x→x0

f (x)

and f is called lsc if it is lsc at every point.

Equivalent formulation of lower semi-
continuity are

• f is lsc at x0 if for every λ with
λ < f (x0) there exists � > 0
such that f (x) ≥ λ for all x ∈
B�(x0).

• f is lsc at x0 if f (x0) ≤
limk→∞ f (xk) whenever xk →
x0 and lim f (xk) exists.

Intuitively, a function is lsc, if it onlymay
jump down in the limit.

It is a simple observation that an indicator function iS is lower
semicontinuous if and only if S is closed.
Example 4.2. Consider fi : R → R̄ given by

f1 = i]1,1], f2 = i[−1,1]

f3(x) =

�
0, if x = 0
1, else.

f4(x) =

�
1
x , if x > 0
∞, else.

Then: f1 is not lsc while f2, f3 and f4 are. �

f
epi f

Definition 4.3. The epigraph of a function f : Rd → R̄ is

epi f := {(x, α) ∈ Rd × R | f (x) ≤ α}.

The level sets of f for level α ∈ R are

levα f := {x ∈ Rd | f (x) ≤ α}
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Theorem 4.4. The following conditions for f : Rd → R are equivalent:

i) f is lsc,

ii) epi f is closed,

iii) for all α ∈ R, levα f is closed.

Proof. i) =⇒ ii): Let f be lsc and consider a sequence (xn, αn) →
(x, α) with (xn, αn) ∈ epi f , i.e. f (xn) ≤ αn. Since f is lsc,
we have f (x) ≤ lim inf f (xn) ≤ lim αn = α and this shows
(x, α) ∈ epi f .

ii) =⇒ iii): Let epi f be closed and α ∈ R. If xn converges to x and
fulfilles xn ∈ levα f , we also have lim(xn, α) = (x, α) and
(xn, α) ∈ epi f . Since epi f is closed, the have (x, α) ∈ epi f
which shows f (x) ≤ α, and hence, x ∈ levα f which shows
the closedness.

iii) =⇒ i): Let levα f be closed for all α and let x0 ∈ Rd. If f (x0) =
−∞ holds, f is obviously lsc at x0. Otherwise, let α < f (x0)
which means that x0 /∈ levα f . Since levα f is closed, there
is � > 0 such that levα f ∩ B�(x0) = ∅. Thus, f (x) > α for
all x ∈ B�(x0) and hence, f is lsc at x0.

Proposition 4.5. If f , g, fi : Rd → R̄ are lsc, A ∈ Rd×m and α > 0,
then the following functions are also lsc:

i) f + g (if it’s defined), α f

ii) f ◦ A

iii) inf( f , g)

iv) supi fi for arbitrarily many fi.
It’s not true that the infimum of in-
finitely many lsc fi is again lsc. Can you
think of an example?Proof. The items i) and ii) follow directly from the definition. For

iii) note that (x, α) ∈ epi(inf( f , g)) if and only if f (x) ≤ α or
g(x) ≤ α. Hence, epi(inf( f , g)) = epi f ∪ epi g. And since the
union of two closed sets is closed, the assertion follows.

For item iv) note that epi(supi fi) is the intersection of all the
sets epi( fi) and since the intersection of closed sets is closed set,
we are done.

Since we characterized lower semi-continuity of a function
by closedness of the epigraph, we can associate to every function
f : Rd → R̄ which is not a lsc another lsc function f̄ via closing
the epigraph, i.e. f̄ is characterized by

epi( f̄ ) = epi( f ).

This function is called the lower semi-continuous hull of f .
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Taking special care of the case when f (x) = −∞ can occur, we
define the closure of f by

cl( f ) :=

�
f̄ , if f (x) > −∞ for all x
−∞, if f (x) = −∞ for some x.

We call a function closed, if cl f = f and for functions which do
not take the value −∞, closed means the same as lsc and hence,
we have

(cl f )(x0) = lim inf
x→x0

(cl f )(x) = lim inf
x→x0

f (x) ≤ f (x0).

f
epi f

cl( f )
epi cl( f ) = cl(epi f )

Intuitively, the closure of a function moves the function values
to the lowest possible values at points of discontinuity.
Example 4.6. For the function

f (x) = i]a,b[(x) =

�
0, a < x < b
∞, else,

the closure (and also the lsc hull) is

cl f = f̄ = i[a,b].

�

Definition 4.7. A function f : Rd → R̄ is called

• convex, if for all x, y ∈ dom( f ), λ ∈ [0, 1] it holds that

f (λx + (1 − λ)y) ≤ λ f (x) + (1 − λ) f (y).

• strictly convex, if it is convex and for x �= y and λ ∈ ]0, 1[ it
holds that

f (λx + (1 − λ)y) < λ f (x) + (1 − λ) f (y).

• uniformly convex, if there exists a strictly increasing function
ϕ with ϕ(0) = 0 such that for all x, y ∈ dom( f ), λ ∈ [0, 1]
it holds that

f (λx + (1 − λ)y) ≤ λ f (x) + (1 − λ) f (y)− λ(1 − λ)ϕ(�x − y�2).

• strongly convex with constant σ > 0, if for all x, y ∈ dom( f ),
λ ∈ [0, 1] it holds that

f (λx + (1 − λ)y) ≤ λ f (x) + (1 − λ) f (y)− σ
2 λ(1 − λ)�x − y�2

2.
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Put differently: A function is strongly
convex (with modulus) σ, if it is uni-
formly convex with respect to ϕ(t) =
σ
2 t2.
The constant of strong convexity is also
called modulus of strong convexity.

One can show that a function f is strongly convexwith constant
σ if and only if the function x �→ f (x)− σ

2�x�2
2 is convex.

It’s clear that

strongly convex =⇒ strictly convex =⇒ convex

but the reverse implications do not hold: f (x) = i[a,b] is convex
but not strictly so, f (x) = x4 is stricly convex, but not strongly so.
It’s also clear that dom( f ) is a convex set for any convex function
f .

Finally, we call a function f concave if − f is convex.
By induction one can deduce from the defining in the inequal-

ity:

Lemma 4.8 (Jensen’s inequality). A function f : Rd → R̄ is convex
if and only if for all xi ∈ dom( f ) and λi ∈ [0, 1] with ∑n

i=1 λi = 1 it
holds that

f (
n

∑
i=1

λixi) ≤
n

∑
i=1

λi f (xi).

Lemma 4.9. If a convex function f has a finite value at some point
x0 ∈ ri(dom( f )), then it is proper (i.e. it does not assume the value−∞
anywhere).

Proof. For a contradiction, assume that x1 ∈ dom( f ) exists with
f (x1) = −∞. Since x0 ∈ ri(dom( f )), there exists x2 ∈ ri(dom( f ))
and λ ∈ [0, 1] such that x0 = λx1 + (1 − λ)x2. But, by convexity
we would get

f (x0) ≤ λ f (x1) + (1 − λ) f (x2) = −∞

which contradicts f (x0) finite.

Example 4.10. 1. Any affine function is convex as well as concave
and only affine functions are both at the same time.

2. Any norm f (x) = �x� is convex, but no norm is strictly
convex since for y = 0 and x �= 0 and λ ∈ [0, 1] we have

�λx + (1 − λ)y� = λ�x�+ (1 − λ)�y�.

3. Indicator functions iC are convex exactly for convex sets C.
�
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5 Characterization of convex functions

Fordifferentiable functions, convexity can be describedwithderiva-
tives:

Theorem 5.1. If f : Rd → R is differentiable, the following conditions
are equivalent:

i) f is convex,

ii) the gradient ∇ f : Rd → Rd is monotone, i.e. for all x, y ∈ Rd

A function g : Rd → Rd is called
monotone if for all x, y it holds that
�g(x)− g(y), x − y� ≥ 0. Can you
see, why this is called “monotonicity”?
(Hint: consider d = 1.)�∇ f (x)−∇ f (y), x − y� ≥ 0,

iii) for all x, y ∈ Rd it holds that The equivalence of i) and iii) is quite
remarkable: Besides the definition of
convex function from above by “func-
tion lies below it’s secants” we have the
equivalent description from below by
“function lies above it’s tangents”. This
is comparable to the duality of the de-
scriptions of convex sets from the inside
(via convex combinations) and the out-
side (by separating hyperplanes).

f (y) ≥ f (x) + �∇ f (x), y − x�.

If f is twice differentiable, then f is convex if and only if the Hessian
∇2 f (x) is positive semi-definite for every x.

Strict convexity is characterized by strict inequalities for x �= y in i)
and ii). Positive definiteness in the case of twice differentiability is sufficient
but not necessary for strict convexity.

The function f (x) = x4 is strictly con-
vex, but the second derivative vanishes
(i.e., is not positive definite) at x = 0.Proof. We first show i) ⇐⇒ iii) ⇐⇒ ii):

i) =⇒ iii): Forλ ∈ ]0, 1]we rearrange f (λy+(1−λ)x) ≤ λ f (y)+
(1 − λ) f (x) to

f (x+λ(y−x))− f (x)
λ ≤ f (y)− f (x).

For λ → 0 the left hand side converges to the directional
derivative of f in x in the direction of y − x which equals
�∇ f (x), y − x� since f is differentiable.

iii) =⇒ i): Set xλ = λx + (1 − λ)y and note that x − xλ = (1 −
λ)(x − y) and y − xλ = −λ(x − y). We get the inequalities

f (x) ≥ f (xλ) + �∇ f (xλ), x − xλ� = f (xλ) + (1 − λ)�∇ f (xλ), x − y�
f (y) ≥ f (xλ) + �∇ f (xλ), y − xλ� = f (xλ)− λ�∇ f (xλ), x − y�.

Multiplying the first inequality with λ and the second with
(1 − λ) and adding the inequality shows the assertion.

iii) =⇒ ii): We add f (y) ≥ f (x) + �∇ f (x), y − x� and f (x) ≥
f (y)+ �∇ f (y), x − y� and get 0 ≥ �∇ f (x)−∇ f (y), y − x�
which shows the assertion.
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ii) =⇒ iii): Since for h(λ) = f (y + λ(x − y)) we have h�(λ) =
�∇ f (y + λ(x − y)), x − y� and the fundamental theorem of
calculus gives

f (x)− f (y) = h(1)− h(0) =
� 1

0
h�(λ)dλ

=
� 1

0
�∇ f (y + λ(x − y)), x − y�dλ.

Subtracting �∇ f (x), x − y� from both sides, we get

f (x)− f (y)− �∇ f (x), x − y� =
� 1

0
�∇ f (y + λ(x − y))−∇ f (x), x − y�dλ.

The right hand side is non-negative (since y + λ(x − y)−
x = (1 − λ)(y − x) and ∇ f is monotone), by assumption
and this shows i).

The claim on strict convexity follows by inspection of the above
arguments in this case.

For twice differentiable functions we show the equivalence of
positive semidefinite Hessian and ii): Set xτ = x + τs for τ > 0
and with ii) we get (using d

dλ �∇ f (x + λs), s� = �∇2 f (x + λs)s, s�)

0 ≤ 1
τ2 �∇ f (xτ)− f (x), xτ − x�

= 1
τ �∇ f (xτ)− f (x), s� = 1

τ

� τ

0
�∇2 f (x + λs)s, s�dλ

and τ → 0 shows that ∇2 f (x) � 0. Conversely, if ∇2 f (x) � 0 we
can write (using the fundamental theorem of calculus twice)

f (y) = f (x) + �∇ f (x), y − x�+
� 1

0

� τ

0
�∇2 f (x + λ(y − x))(y − x), y − x�dλdτ

≥ f (x) + �∇ f (x), y − x�

which implies convexity of f .

Example 5.2. 1. The function f (x) = 1
2 �Ax, x�+ �a, x�+ b is

convex as soon as the matrix A is positive semidefinite and
it is strictly convex of A is positive definite (since∇2 f (x) =
A). Moreover, one can even show strong convexity of f for
positive definite A (what is the modulus?).

2. The “log-sum-exp” function is

logsumexp(x) = log(
d

∑
i=1

exp(xi)).

We abbreviate h(x) = ∑d
i=1 exp(xi) and get

∂i logsumexp(x) = exp(xi)
h(x)
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and

∂j∂i logsumexp(x) =





exp(xi)h(x)−exp(2xi)
h(x)2 , i = j

− exp(xi+xj)

h(x)2 , i �= j.

Thus, we can compute for z ∈ Rd:

�∇2 logsumexp(x)z, z� = 1
h(x)2

�
h(x)

d

∑
i=1

exp(xi)z2
i −

d

∑
i,j=1

exp(xi + xj)zizj

�

= 1
h(x)2

� d

∑
i,j=1

exp(xi + xj)z2
i −

d

∑
i,j=1

exp(xi + xj)zizj

�

= 1
h(x)2

�
1
2

d

∑
i,j=1

exp(xi + xj)z2
i +

1
2

d

∑
i,j=1

exp(xi + xj)z2
j

−
d

∑
i,j=1

exp(xi + xj)zizj

�

= 1
h(x)2

� d

∑
i,j=1

exp(xi + xj) (
1
2 z2

i +
1
2 z2

j − zizj)� �� �
=

1
2 (zi−zj)2≥0

�
≥ 0

which shows convexity of logsumexp.
�

If a function f is convex, its level set levα f are all convex (if
f (x), f (y) ≤ α, then f (λx + (1− λ)y) ≤ λ f (x) + (1− λ) f (x) ≤
α). The converse is not true (consider something like f (x) =
log(1 + x2) on the real line, for example). Convexity of the epi- Functions with convex level sets some-

times are called quasi-convex.graph, though, does characterize convexity of the function:

Proposition 5.3. A function f : Rd → R̄ is convex if and only if epi f
is a convex set.

Proof. The case f ≡ ∞ is clear since in this case epi f = ∅. So
consider dom( f ) �= ∅.

⇒: Let f be convex and (x, a), (y, b) ∈ epi( f ), i.e. f (x) ≤ a,
f (y) ≤ b. Hence, for λ ∈ [0, 1]: f (λx + (1 − λ)y) ≤ λ f (x) +
(1 − λ) f (y) ≤ λa + (1 − λ)b. But this means that λ [ x

a ] + (1 −
λ)
� y

b

�
∈ epi( f ). Beware: Sometimes I write tuples as

(x, a) and sometimes they will be [ x
a ]

depending on the typographic circum-
stances.

⇐: Let epi( f ) be convex and x, y ∈ dom( f ) with f (x), f (y) �=
−∞. Since (x, f (x)), (y, f (y)) ∈ epi( f ), we have for λ ∈ [0, 1]

λ(x, f (x)) + (1 − λ)(y, f (y)) = (λx + (1 − λ)y, λ f (x) + (1 − λ) f (y)) ∈ epi( f )

and this means that f (λx + (1 − λ)y) ≤ λ f (x) + (1 − λ) f (y).
If f (x) = −∞, then we use (x,−N) instead of (x, f (x)) and let
N → −∞.

We apply the separation of points from convex sets with hy-
perplanes to the epigraph and obtain:
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Proposition 5.4. If f : Rd → R̄ is a convex and proper, then there
exists p ∈ Rd and α ∈ R such that for all x it holds that

f (x) ≥ �p, x�+ α.

Proof. Since cl f ≤ f we only need to consider the case where f is
closed.

If x /∈ dom( f ), the inequality is valid for any p and α. Now
fix x0 ∈ dom( f ) and β such that f (x0) > β, i.e. (x0, β) /∈ epi( f ).
Since epi( f ) is closed and convex, we can use Theorem 3.5 to
separate the compact singleton {(x0, β)} from epi( f ). This means,
that there exists ( p̄,−b) ∈ Rd+1 \ {0} and � > 0 such that for all
x ∈ dom( f ) it holds that

� p̄, x� − b f (x) ≤ � p̄, x0� − bβ − �. (*)

For x = x0 we get

b( f (x0)− β) ≥ � > 0

and since f (x0) − β > 0 we obtain b > 0 as well. Hence, with
p = p̄/b we get, by dividing (*) by b,

f (x) ≥ �p, x� − �p, x0�+ β

and we proved the claim with α = −�p, x0�+ β.

The following corollary is a simple exercise.

Corollary 5.5. If f : Rd → R̄ is convex, it holds for all x0 ∈ Rd

cl f (x0) = sup{�p, x0�+ α | p ∈ Rd, α ∈ R with f (x) ≥ �p, x�+ α ∀x ∈ Rd}.

Convexity if preserved under several operations.

Proposition 5.6. 1. f1 + f2 is convex if f1 and f2 are convex.

2. α f is convex if f is convex and α ≥ 0.

3. f ◦ A is convex if f is convex and A is linear.

4. ϕ ◦ f is convex if f is convex and ϕ : R̄ → R̄ is convex and
increasing (with ϕ(∞) = ∞ and ϕ(−∞) = −∞).

5. supi∈ I fi is convex if all the fi are.

All proofs are straightforward calculations.
Example 5.7. ByProposition 5.6 5. we see that f (x) = max(x1, . . . , xd)
is convex. �
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6 Continuity of convex functions and minimiz-
ers

Surprisingly, the notion of convexity implies a certain continuity.
We start with a lemma:

Lemma 6.1. Let f : Rd → R̄ be proper and convex and suppose that it
is locally bounded at x0, i.e. there exists δ > 0 and m, M ∈ R such that
for x ∈ B2δ(x0) it holds that

m ≤ f (x) ≤ M.

Then f is Lipschitz continuous on Bδ(x0) with Lipschitz constant at most
(M − m)/δ.

Proof. The proof is a bit technical: Let x1, x2 ∈ Bδ(x0), x1 �= x2
and set

y :=
�
1 + δ

�x1−x2�2

�
x2 − δ

�x1−x2�2
x1 = x2 + δ x1−x2

�x1−x2�2
.

It holds that �y − x2�2 ≤ δ, i.e. y ∈ B2δ(x0). By rearranging to

x2 = �x1−x2�2
δ+�x1−x2�2

y + δ
δ+�x1−x2�2

x1

we see that x2 is a convex combination of x1 and y.
Since f is convex we get,

f (x2) ≤ �x1−x2�2
δ+�x1−x2�2

f (y) + δ
δ+�x1−x2�2

f (x1)

which leads to

f (x2)− f (x1) ≤ �x1−x2�2
δ+�x1−x2�2

( f (y)− f (x1))

≤ M−m
δ �x1 − x2�2.

Since we can swap the roles of x1 and x2 this shows the desired
Lipschitz continuity.

Theorem6.2. Let f : Rd → R̄ be proper and convex. Then f is Lipschitz
continuous on any compact subset C of ri(dom( f )).

Proof. 1. (Restriction to fulldimensional case.) LetC ⊂ ri(dom( f )).
Since C is a subset of the affine hull of the relative interior,
we can restrict f to this affine set and hence, we may assume
that ri(dom( f )) = int(dom( f )).

2. (Locally Lipschitz.) Let x0 ∈ C and since x0 ∈ int(dom( f )),
there exist v1, . . . , vr ∈ dom( f ) and δ > 0 such that

B2δ(x0) ⊂ S := conv(v1, . . . , vr) ⊂ dom( f ).

Hence, any v ∈ B2δ(x0) can be written as v = ∑r
i=1 αivi,

∑i αi = 1, αi ≥ 0 and convexity of f gives

f (v) ≤
r

∑
i=1

αi f (vi) ≤ max
i

f (vi) =: M.
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This shows that f is bounded from above on B2δ(x0).
By Proposition 5.4 we know that there are p ∈ Rd and α ∈ R

such that

f (x) ≥ �p, x�+ α.

Hence, f is bounded from below on B2δ(x0) since the right
hand side is so.
Thus, we can apply Lemma 6.1 and obtain that f is Lipschitz
continuous on Bδ(x0).

3. (Lipschitz on full C) The previous step shows that for any
x0 ∈ C there exists δ(x0) > 0 and L(x0, δ) ≥ 0 such that for
all x, y ∈ Bδ(x0) it holds that

| f (x)− f (y)| ≤ L(x0, δ)�x − y�2.

The balls Bδ(x0)(x0) cover the compact setC and hence, there
are x1, . . . , xK such thatC is coveredby Bδ(x1)(x1), . . . , Bδ(xK)(xK).
Hence f is Lipschitz continuous on C with constant L =
maxk(L(xk, δ(xk))).

Corollary 6.3. If f : Rd → R̄ is proper and convex, then it is contin-
uos on ri(dom( f )) relative to aff(dom( f )). If f is additionally finite
everywhere, then it is continuous on Rd.

Now we start our treatment of minimization problems

min
x∈Rd

f (x).

A ridiculously large class of pratically relevant problems can be
written in this form (note that we can treat constraint problems
just by setting f = g + iC) and we will see some examples later in
the lecture.

In addition to the usual definitions of local and global minima
of functions, we will also need the set of minimizers which we will
denote by

argmin f := {x̂ ∈ dom( f ) | f (x̂) = inf
x

f (x)}.

Similarly we have argmax f := argmin(− f ).
Now we are interested in conditions on f which ensure the

follwing properties

i) f attains its minimum, i.e. argmin f �= ∅,

ii) every local minimizer of f is a global minimizer,

iii) the global minimizer is unique.
Mere convexity does not even ensure
existence of minimizers, even in the
proper case as f (x) = exp(x) shows.
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Definition 6.4. A function f : Rd → R̄ is called level-bounded or
coercive if all level sets levα f are bounded.

Another way to put this: f is coercive if and only if f (x) → ∞
whenever �x�2 → ∞.

⇐: Assume that f (x) → ∞ whenever �x�2 → ∞. If x ∈
levα f , then f (x) ≤ α. Thus, there can’t be an unbounded
sequence in levα f since this would contradict that f (x) ≤ α
for all x ∈ levα f .
⇒: We prove the contraposition: Assume that there exists
�xn� → ∞ with f (xn) ≤ C. But then levC f is not bounded,
since xn ∈ levC f .

Theorem 6.5. Let f : Rd → R̄ be proper.
i) If f is lsc and coercive, then argmin f is non-empty and compact.

ii) If f is convex, then every local minimizer is also global and the set
argmin f is convex (but possibly empty).

iii) If f is strictly convex, then argmin f contains at most one point.
In other words: lsc and coercivity en-
sure existence of minimizers, convexity
excluded non-global minimizers and,
strict convexity ensures uniqueness of
minimizers.

Proof. i) Since f is proper, we have that ᾱ := inf f < ∞. Hence,
there is a sequence xn such that f (xn) → ᾱ. Since f is coercive,
the sequence xn is bounded, and hence, it has a convergent
subsequence xnk with limit x̄. Since f is lsc, this limit fulfills
f (x̄) ≤ lim infk f (xnk) = ᾱ and this shows x̄ ∈ argmin f .
Moreover argmin f = levᾱ f and since all level sets are closed
(by lsc) and bounded (by coercivity), argmin f is compact.

ii) Let x̄ be a local minimizer of f , i.e. there exists δ > 0 such that
f (x̄) ≤ f (x) for all x ∈ Bδ(x̄). Now let y ∈ Rd and choose
λ ∈ ]0, δ/�x̄ − y�2[ with λ < 1. Then λy + (1 − λ)x̄ ∈ Bδ(x̄)
and by convexity of f we get

f (x̄) ≤ f (λy + (1 − λ)x̄) ≤ λ f (y) + (1 − λ) f (x̄).

This implies f (x̄) ≤ f (y) and hence, x̄ is a global minimizer.
If x̄, x∗ are global miminizers, i.e. f (x̄) = f (x∗) = ᾱ, then for
every λ ∈ [0, 1]

f (λx̄ + (1 − λ)x∗) ≤ λ f (x̄) + (1 − λ) f (x∗) = ᾱ,

i.e. λx̄ + (1 − λ)x∗ is also a global minimizers and hence, the
set of global minimizers ist convex.

iii) If f is strictly convex, assume that x̄ and x∗ are two different
global minimizers. But then

f ((x̄ + x∗)/2) < 1
2 ( f (x̄) + f (x∗))

and hence, (x̄ + x∗)/2 would be below the global minimum
which is impossible.
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7 Inf-projection and inf-convolution

Definition 7.1. For a function ϕ : Rd × Rm → R̄ we define the
epigraphical projection or inf-projection as

v(u) = inf
x∈Rd

ϕ(x, u).

This function is called epigraphical pro-
jection, since the epigraph of v arises
as the projection of the epigraph of ϕ.Theorem 7.2. If ϕ : Rd × Rm → R̄ is convex, the its epigraphical

projection v is also convex. In particular, it holds for any convex set
C ⊂ Rm+1 that v(u) := inf{α ∈ R | (α, u) ∈ C} is convex.

Proof. For (x1, u1), (x2, u2) ∈ dom ϕ and λ ∈ [0, 1] we have by
convexity of ϕ and the definition of v that

λϕ(x1, u1) + (1 − λ)ϕ(x2, u2) ≥ ϕ(λx1 + (1 − λ)x2, λu1 + (1 − λ)u2)

≥ v(λu1 + (1 − λ)u2).

Taking the infimum over x1 and x2 on the left hand side gives

λv(u1) + (1 − λ)v(u2) ≥v(λu1 + (1 − λ)u2)

which proves the first claim. For the further claim, apply the first
part to ϕ(α, u) = α + iC(α, u).

Unfortunately, epigraphical projections are not always as nice
as one would want them to be:
Example 7.3. Let f : R → R be convex and set

ϕ(x, u) =

�
f (x), exp(x) ≤ u
∞, else.

This is a proper, convex function, and also lsc if f is lsc. But for
f (x) = x we get that

v(u) = inf
x∈R

ϕ(x, u) =

�
∞, u ≤ 0
−∞, u > 0

,

i.e. v is neither proper nor lsc. �

Definition 7.4. For two functions f1, f2 : Rd → R̄ we define the
inf-convolution (also called infimal convolution or epi-addition) as

( f1 � f2)(u) := inf
x+y=u

f1(x) + f2(y) = inf
x

f1(x) + f2(u − x)

If the infimum is attained whenever it is finite, we call the inf-
convolution exact.
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You may compare this definition to the
standard convolution of two functions
f1 ∗ f2(u) =

�
f1(x) f2(u − x)dx

and note that the integral (“generalized
sum”) has been replaces by an infimum
(“generalized minimum”) and the mul-
tiplication has been replaced by an ad-
dition.

Since different infima commute, we get for more than two
functions

f1 � ( f2 � f3)(u) = inf
x+y=u

f1(x) + ( f2 � f3)(y)

= inf
x+y=u

�
f1(x) + inf

z+v=y
f2(z) + f3(v)

�

= inf
x+y=u
z+v=y

f1(x) + f2(z) + f3(v)

= inf
x+z+v=u

f1(x) + f2(z) + f3(v)

(and we see that inf-convolutions are associative.
Example 7.5. 1. For two sets S1 andS2 we get for the inf-convolution

of their indicator functions

(iS1 � iS2)(u) = inf
x+y=u

iS1(x) + iS2(y) = iS1+S2(u).

2. If we take f1(x) = �x� (for some norm) and f2 = iC the
indicator function of a convex set C, we get as their inf-
convolution

( f1 � f2)(u) = inf
x∈C

�u − x� = d(u, C),

i.e., the distance function for the set C (with respect to the
norm �·�)

�

Theorem 7.6. Let f1/2 : Rd → R̄ be proper. Then it holds

epi f1 + epi f2 ⊂ epi( f1 � f2)

and equality holds if and only if the inf-convolution is exact. Moreover, if
f1 and f2 are convex, then so is f1 � f2.

Proof. First, lets show the inclusion: Let (x, α) ∈ epi f1 + epi f2, i.e.
there exist (αi, xi) ∈ epi fi (i = 1, 2) with x = x1 + x2, α = α1 + α2
and f1(x1) + f2(x2) ≤ α1 + α2 = α. Hence

( f1 � f2)(x) = inf
y1+y2=x

f1(y1) + f2(y2) ≤ f1(x1) + f2(x2) ≤ α

and this shows that (x, α) ∈ epi( f1 � f2).
Now let’s show that there is equality precisely in the case of

exactness: Let (x, α) ∈ epi( f1 � f2), i.e. ( f1 � f2)(x) ≤ α. By ex-
actness, there are x1, x2 with x = x1 + x2 and ( f1 � f2)(x) =
f1(x1) + f2(x2) ≤ α. Hence

(x, α) = (x1, f1(x1)) + (x2, α − f1(x1)� �� �
≥ f2(x2)

) ∈ epi f1 + epi f2.
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For the converse implication, let f = f1 � f2 be finite at x, i.e.
(x, f (x)) ∈ epi( f1 � f2) = epi f1 + epi f2. Then, there exist (xi, αi) ∈
epi fi (i = 1, 2) with (x, f (x)) = (x1, α1) + (x2, α2) and thus,
f (x) = α1 + α2 ≥ f1(x1) + f2(x2). However, since we also have
f (x) ≤ f1(x1)+ f2(x2) by the definition of the inf-convolution,we
have equality and see that the infimum is attained at x = x1 + x2.

Finally, let f1, f2 be convex. By Proposition 5.3, we know that
epi f1 + epi f2 is a convex set. It remains to note that

( f1 � f2)(x) = inf{α ∈ R | (x, α) ∈ epi f1 + epi f2}

and Theorem 7.2 on inf-projections shows that this is convex func-
tion.

Inf-convolutions are also not always as nice as we would like
them to be:
Example 7.7. 1. The functions f1(x) = px (p ∈ R) and f2(x) =

exp(x) are proper, convex, and continuous. Their inf-convolution
is

( f1 � f2)(u) =





p(u − log(p))p + p, if p > 0,
0, if p = 0,
−∞, if p < 0.

Hence, for p < 0, the inf-convolution is not proper. More-
over, for p = 0

epi f1 = R × [0, ∞[, epi f2 = {(x, α) | exp(x) ≤ α}, epi( f1 � f2) = R × [0, ∞[

and hence, epi f1 + epi f2 ⊂ epi( f1 � f2) with strict inclu-
sion.

2. Consider

C1 := {(x, y) | y ≥ exp(x)}, C2 := {(x, y) | y ≥ exp(−x)}

which are both non-empty, closed, convex sets in R2 and
hence, their indicator functions iC1 and iC2 are proper, convex
and lsc. The Minkowski sum of C1 and C2 is

C1 + C2 = R × ]0, ∞[

which is not closed and hence, their inf-convolution iC1 �
iC2 = iC1+C2 is not lsc.

�
Interestingly, inf-convolutions are used in image processing.

Here we do inf-convolution for arbitrary (bounded) functions and
do not assume any convexity.
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Example 7.8 (Morphological operations). A function f : Rd → R is
considered as a gray scale image, i.e. f (x) denotes the gray value
of the image at location x. More precisely, one would deal with
function f : A → [0, 1] where A is the image domain (e.g. a two-
dimensional domain such as a rectangle) and the value f (x) = 0
stands for the color black at position x while f (x) = 1 stands for
white.

Let B ⊂ Rd be compact with B = −B. For a function f : Rd →
R we define the erosion of f with structure element B as

�B f (x) = inf
y∈B

f (x + y) = ( f � iB)(x)

and there is corresponding dilation defined as δB f (x) = supy∈B f (x+
y). If f represents an image, the erosion shrinks the bright areas
in the image, while the dilation expands them.

The operation

OB f = δ−B(�B f )(x)

is called opening of f and

CB f = �−B(δB f )(x)

is called closing of f and �
Here is an example of an image which is degraded by white

spots on dark backgroud. The structure element is a circle (can you
guess its radius?). The opening of the image eliminates the white
spots but keeps the main structure (the letters) almost unchanged.

origrinal eroded opened

Another example is the elimination of an uneven background:
To that end one calculates an image which does not contain any
of the foreground structure (in this example, all dark structures
should be eliminated) by a closing with a large structure element
and then subtracts this background image from the original:

original background corrected
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8 Proximal mappings and Moreau-Yoshida reg-
ularization

Definition 8.1. For a proper, convex and lsc function f : Rd → R̄

and λ > 0 we define the proximal mapping proxλ f : Rd → Rd by

proxλ f (x) := argmin
y∈Rd

1
2�x − y�2

2 + λ f (y).

TheMoreau envelope (also calledMoreau-Yoshida regularization) λ f is
λ f (x) := min

y∈Rd

1
2λ�x − y�2

2 + f (y) =
�

1
2λ�·�2

2 � f
�
(y).

Note that we could have defined the
proximal mapping differently by tak-
ing the argmin of 1

2λ�x − y�2
2 + f (y),

i.e. the proximal mapping maps x to
the point where the minimum in the
Moreau envelope is assumed.

A direct consequence of the defintion is that
λ f (x) = 1

2λ�x − proxλ f (x)�2
2 + f (proxλ f (x)).

Since the inf convolution of convex functions is convex, the
Moreau envelope is convex, but we still need to show that both the
Moreau envelope and the proximal mapping are well defined (for
the first we need to show that a minimizer always exist and this
will, in turn, show that the minimium for the Moreau envelope is
actually assumed).
Theorem 8.2. For f : Rd → R̄ proper, convex and lsc and λ > 0 it
holds that:

1. For every x there is exists a unique minimizer x̂ = proxλ f (x) of
1
2�x − y�2

2 + λ f (y).

2. This x̂ is characterized by the variational inequality
∀y ∈ Rd : �x − x̂, y − x̂�+ λ( f (x̂)− f (y)) ≤ 0.

3. Some x∗ is a minimizer of f if and only if x∗ is a fixed point of
proxλ f for any λ > 0, i.e. x∗ = proxλ f (x∗).

4. The Moreau envelope λ f is differentiable with gradient
∇(λ f )(x) = 1

λ (x − proxλ f (x)).

5. It holds that
argmin

x
f (x) = argmin

x

λ f (x).

Proof. 1. The objective in the definition of the proximal map-
ping is strictly convex and hence, has at most one mini-
mizer. Let us now show existence of a minimizer: By Propo-
sition 5.4 there exists an affine lower bound for f , i.e. we have
f (y) ≥ �p, y�+ α for some p and α. Hence, we have

gx(y) := 1
2�y − x�2

2 + λ f (y) ≥ 1
2�y − x�2

2 + λ�p, y�+ λα

= 1
2�y − x + λp�2

2 + λ�p, x� − λ2

2 �p�2 + λα.

Hence, the function on the left is coercive and since it also
lsc, we see by Theorem 6.5, that minimizers exist. We could also have observed that gx

is strongly convex and use an exercise
from Sheet 4 to deduce coercivity.
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2. If x̂ = proxλ f (x), then for every µ ∈ [0, 1] and y

gx(x̂) ≤ gx(x̂ + µ(y − x̂))

which we rearrange to

0 ≥ λ
�

f (x̂)− f (x̂ + µ(y − x̂))
�
+ 1

2

�
�x̂ − x�2

2 − �x̂ − x + µ(y − x̂)�2
2
�

≥ λ
�

f (x̂)− f (x̂ + µ(y − x̂))
�
+ 1

2

�
− µ2�y − x̂�2

2 − 2µ�x̂ − x, y − x̂�
�

By convexity of f we get

0 ≥ λµ
�

f (x̂)− f (y)
�
+ µ�x̂ − x, x̂ − y� − µ2

2 �x̂ − y�2
2

Dividing by µ and letting µ → 0 shows the claim.
Conversely, let the variational inequality be fulfilled. This
means that for all y ∈ Rd

λ f (x̂) + 1
2�x̂ − x�2

2 ≤ λ f (y)− �x̂ − x, x̂ − y�+ 1
2�x̂ − x�2

2

≤ λ f (y) + 1
2�x̂ − y�2

2 − �x̂ − x, x̂ − y�+ 1
2�x̂ − x�2

2

= λ f (y) + 1
2�y − x�2

2

and this shows x̂ = proxλ f (x).

3. If x̂ is a minimizer of f , then f (x̂) ≤ f (x) for all x and hence
λ f (x̂) + 1

2�x̂ − x̂�2
2 ≤ λ f (x) + 1

2�x − x̂�2
2 which shows that

x̂ = proxλ f (x̂).

Conversely, if x̂ = proxλ f (x̂), we get, by 2., that for all y

�x̂ − x̂, y − x̂�+ λ
�

f (x̂)− f (y)
�
≤ 0

and this shows f (x̂) ≤ f (y) for all y.

4. For x0 ∈ Rd define x̂0 := proxλ f (x0) and z := x0−x̂0
λ . To

show that λ f is differentiable at x0 with (λ f )�(x0) = z we
need to show that

r(u) := λ f (x0 + u)−λ f (x0)− �z, u� = o(�u�2).

By the definition of the prox and the Moreau envelope, we
have

λ f (x0) = f (x̂0) +
1

2λ�x̂0 − x0�2
2

λ f (x0 + u) = min
x

�
f (x) + 1

2λ�x − x0 − u�2
2

�

≤ f (x̂0) +
1

2λ�x̂0 − x0 − u�2
2.

It follows (plugging in z)

r(u) ≤ 1
2λ�x̂0 − x0 − u�2

2 − 1
2λ�x̂0 − x0�2

2 − 1
λ �x0 − x̂0, u� = 1

2λ�u�2
2.
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Using the convexity of r, we get

0 = r(0) = r( 1
2 u + 1

2 (−u)) ≤ 1
2 (r(u) + r(−u))

and this shows

r(u) ≥ −r(−u) ≥ − 1
2λ�−u�2

2

and in total we get |r(u)| ≤ 1
2λ�u�2

2 which proves the claim.

5. We know by 3. that x̂ is a minimizer of f if and only if x̂ =
proxλ f (x̂) and by 4. this is equivalent to ∇(λ f )(x̂) = 0, i.e.
exactly when x̂ is a minimizer of λ f .

Example 8.3 (Prox of indicators are projections). Let f (y) = iC(y)
for some non-empty, convex and closed C. Then (note that λiC =
iC)

proxiC(x) = argmin
y∈Rd

1
2�x − y�2

2 + λiC(y) = argmin
y∈C

�x − y� = PC(x),

i.e. proxλ f (x) is the orthogonal projection of x onto C (indepently
of λ > 0).

The Moreau envelope is
λiC(x) = 1

2λ�x − PC(x)�2
2 = 1

2λ d(x, C)2.

�

λ = 1, 1
2 , 1

4 , 1
8

Example 8.4 (Prox of |·| is soft shrinkage). Now consider f (x) = |x|.
To calculate x̂ := argminy

1
2 (x − y)2 + λ|y| we first observe that

if x ≥ 0, then x̂ ≥ 0 and also proxλ f (−x) = −proxλ f (x). Hence,
we only consider x > 0 and have

x̂ = argmin
y≥0

1
2 (x − y)2 + λy.

We note that the unconstrained minimizer is x − λ, and if 0 ≤
x ≤ λ, then the minimizer is 0. In total, we get that

proxλ|·|(x) =





x − λ, if x > λ,
0, if |x| ≤ λ,
x + λ, if x < −λ,

= max(|x|− λ, 0) sign(x) =: Sλ(x).

This function is known as the soft thresholding or soft shrinkage
function.

y �→ 1
2 (y − x)2 + |y|, x = 0.75, 1, 1.25, 1.5, 1.75

Prox: Sλ(x) = prox|·|(x) Moreau envelope: 1 |·|

To calculate the Moreau envelope of |·| we just plug in and get
λ f (x) = 1

2λ (x − Sλ(x))2 + |Sλ(x)|

=

�
|x|− λ

2 , if |x| > λ
1

2λ x2, if |x| ≤ λ.

This function is called Huber function.
�
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Lemma 8.5 (Calculus for proximal mappings). For proper, convex
and lsc functions f and λ > 0 it holds that:

i) If g(x) = f (x) + α for α ∈ R, then proxλg = proxλ f .

ii) If g(x) = τ f (µx) forτ > 0,µ ∈ R, thenproxλg(x) = 1
µ proxλµ2τ f (µx).

iii) If g(x) = f (x + x0) + �p, x�, for x0, p ∈ Rd, then proxλg(x) =
proxλ f (x + x0 + λp)− x0.

iv) If g(x) = f (Qx) for orthonormal Q ∈ Rd×d, then proxλg(x) =
QT proxλ f (Qx).

v) If h(x, y) = f (x)+ g(y) for proper, convex and lsc g, thenproxλh(x, y) =
(proxλ f (x),proxλg(y)

.

Proof. The first three items are straightforward implications from
the definition by appropriate substitutions. For item iv) we write

proxλg(x) = argmin
y

1
2�x − y�2

2 + λ f (Qy)

and use that QT is onto by assumption. Hence, we can substutite
y = QTz, minimize over z, but keep in mind that we are interested
in the minimizer. Hence, we have, using QQT = I

proxλg(x) = QT argmin
z

1
2�x − QTz�2

2 + λ f (z)

= QT argmin
z

1
2�Qx − z�2

2 + λ f (z)

where we used that �Qu�2 = �u�2 since Q is orthonormal. For
item v) just observe that the minimization can be carried out
independently over x and y.
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9 Subgradients

If you’ve found it surprising that convex functions automatically
have some continuity property, you may find it even more surpris-
ing, that they also have some inbuild differentiability.

We recall the notion of directional derivative: For f : Rd → R,
x0, v ∈ Rd we denote by

D f (x0, v) := lim
h�0

f (x0+hv)− f (x0)
h

the one-sided directional derivative (whenever the limit exists). Recall that in the case of differentiable f ,
it holds thatD f (x0, v) = �∇ f (x0), v�,
but that directional differentiability in
all directions does not imply differen-
tiability.

Definition 9.1. A function f : Rd → R̄ is positively homogeneous
(of degree 1) if

λ > 0 =⇒ f (λx) = λ f (x).
Positive homogeneity of degree p
would mean f (λx) = λp f (x), but we
will not need this notion.

Norms and semi-norms are obvious examples of positive ho-
mogeneous functions as well a linear functions.

Theorem 9.2. Let f : Rd → R̄ be convex, x0 ∈ dom( f ), v ∈ Rd.
Then, the limit in the definition of the directional derivative exists in R̄

and it holds

D f (x0, v) = inf
h>0

f (x0+hv)− f (x0)
h .

Moreover, the function D f (x0, ·) is convex and positvely homogeneous
and for any v it holds that

D f (x0, v) ≤ f (x0 + v)− f (x0)

and if f (x0 − v) �= −∞ it also holds that

f (x0)− f (x0 − v) ≤ D f (x0, v).

In particular, D f (x0, v) is finite for all v if x0 ∈ int dom( f ).

Proof. The proof relies on the following monotonicity property of
the difference quotient: For 0 < h1 < h2 it holds that

f (x0+h1v)− f (x0)
h1

≤ f (x0+h2v)− f (x0)
h2

.

To see this first note that if x0 + h2v /∈ dom f , the inequality
is always fulfilled. Hence, we assume that x0 + h2v ∈ dom f .
By convexity of f we get

f (x0 + h1v)− f (x0) = f
� h1

h2
(x0 + h2v) + (1 − h1

h2
)x0

�
− f (x0)

≤ h1
h2

f (x0 + h2v) + (1 − h1
h2
) f (x0)− f (x0)

= h1
h2

�
f (x0 + h2v)− f (x0)),

and this shows the desired monotonicity.
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The monotonicity implies that the limit in the definition of
the directional derivative is actually and infimum and, moreover,
D f (x0, v) ≤ f (x0 + v)− f (x0) follows by taking h = 1.

To show the lower inequality, let v be such that f (x0 − v) >
−∞. If f (x0 − v) = ∞ or D f (x0, v) = ∞, there is nothing to
prove. Hence, assume that both quantities are finite. Since ∞ >
D f (x0, v) = limh→0( f (x0 + hv) − f (x0))/h, there is an h̄ > 0
such that f (x0+hv)− f (x0)

h is finite for all h ∈ ]0, h̄]. Hence, x0 −
v, x0 + hv ∈ dom f for these h and we get, again using convexity,

f (x0) = f
�

1
1+h (x0 + hv) + h

1+h (x0 − v)
�

≤ 1
1+h f (x0 + hv) + h

1+h f (x0 − v).

We rearrange to

f (x0)− f (x0 − v) ≤ f (x0+hv)− f (x0)
h

and the claim follows for h � 0.
Nowwe show thatD f (x0, ·) is convex: For v1, v2 ∈ dom D f (x0, ·)

we have (for small enough h and λ ∈ [0, 1])

f (x0 + h(λv1 + (1 − λ)v2))− f (x0) = f (λ(x0 + hv1) + (1 − λ)(x0 + hv2))− λ f (x0)− (1 − λ) f (x0)

≤ λ( f (x0 + hv1)− f (x0)) + (1 − λ)( f (x0 + hv2)− f (x0))

Dividing by h > 0 and h � 0 shows the desired convexity.
To show that D f (x0, ·) is positively homogeneous, we observe

for λ > 0

D f (x0, λv) = lim
h�0

f (x0+λhv)− f (x0)
h

= lim
h̄�0

λ
f (x0+h̄v)− f (x0)

h̄ (h̄ = λh)

= λD f (x0, v)

as desired.
Finally, we show that D f (x0, v) is finite for x0 ∈ int dom f and

all v: For every v there is λ > 0 such that x0 ± λv ∈ int dom f and
thus

1
λ ( f (x0)− f (x0 − λv)) ≤ 1

λ D f (x0, λv)
� �� �

=D f (x0,v)

≤ 1
λ ( f (x0 + λv)− f (x0))

and the claim follows since the leftmost and rightmost expressions
are finite.

Now recall that by Theorem 5.1 we know that a differentiable
and convex f fulfills that for every x0 it holds that

∀x : f (x) ≥ f (x0) + �∇ f (x0), x − x0�.
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Definition 9.3. Let f : Rd → R̄ be convex and x0 ∈ dom f . Then
p ∈ Rd is a subgradient of f at x0 if

∀x ∈ Rd : f (x) ≥ f (x0) + �p, x − x0�.
The set of all subgradients of f at x0 is denoted by ∂ f (x0) and
called subdifferential of f at x0.

If x0 /∈ dom f we set ∂ f (x0) = ∅. Furthermore we denote

dom ∂ f = {x | ∂ f (x) �= ∅}
and f is called subdifferentiable at x0 if x0 ∈ dom ∂ f .

A direct consequence of the definition is that ∂ f (x0) is always
closed and convex.

If pn ∈ ∂ f (x) with pn → p, then f (y) ≥ f (x) + �pn, y − x�
for all y and passing to the limit pn → p shows that p ∈
∂ f (x). If p, q ∈ ∂ f (x), then f (y) = λ f (y) + (1 − λ) f (y) ≥
λ f (x) + λ�p, x − y�+ (1 − λ) f (x) + (1 − λ)�q, y − x� =
f (x) + �λp + (1 − λ)q, y − x�, i.e. λp + (1 − λ)q ∈ ∂ f (x).

Graphically, some p is a subgradient of f at x0 if the function
x �→ f (x0) + �p, x − x0� is a supporting affine lower bound which
is exact at x0.

The nice thing about subgradient is, that they even exist where
a convex function has a kink, and in this case there is more than
one of them:
Example 9.4 (Subgradients of the absolute value). The function
f (x) = |x| on R fulfills

∂ f (x) =





{1}, if x > 0,
[−1, 1], if x = 0,
{−1}, if x < 0,

which can be seen by direct inspection. �
Proposition 9.5 (The subdifferential and directional derivatives).
Let f : Rd → R̄ be convex and f (x0) ∈ R. Then it holds that

∂ f (x0) = {p ∈ Rd | ∀v ∈ Rd : �p, v� ≤ D f (x0, v)}. (*)

Proof. Denote the set on the right hand side of (*) by M.

∂ f (x0) ⊂ M: Let p ∈ ∂ f (x0) and set x = x0 + hv for h > 0. Then,
by definition of the subdifferential:

f (x0 + hv)− f (x0) ≥ �p, hv�
and division by h and h � 0 shows p ∈ M.

∂ f (x0) ⊃ M: Now let p ∈ M. Theorem 9.2 shows that for all
v ∈ Rd.

�p, v� ≤ D f (x0, v) ≤ f (x0 + v)− f (x0)

and the claim follows if we set x = x0 + v
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Subgradients have some properties similar to gradients:

Proposition 9.6. Let f : Rd → R̄ be convex. Then it holds:

i) ∂ϕ(x) = ∂ f (x + x0) for ϕ(x) := f (x + x0).

ii) ∂ϕ(x) = λ∂ f (λx) for ϕ(x) := f (λx).

iii) ∂ϕ(x) = λ∂ f (x) for ϕ(x) := λ f (x).

These are straightforward consequences of the definition and
one should do the proofs as exercises.

Proposition 9.7. A convex function f : Rd → R̄ is differentiable at x0
if a only if f is continuous at x0 and ∂ f (x0) only has one element and
in this case we have ∂ f (x0) = {∇ f (x0)}.
Proof. Let f be differentiable at x0. By the previous lemma we
have that p ∈ ∂ f (x0) fulfills �p, v� ≤ �∇ f (x0), v� for all v which
implies p = ∇ f (x0).

To show the converse, we assume without loss of generality
that x0 = 0 and ∂ f (0) = {w}. We define the convex function
Fv(t) = f (tv). Similarly to Proposition 9.6 ii) we see that ∂Fv(0) =
{�w, v�} which implies for t > 0

0 ≤ Fv(t)−Fv(0)
t − �w, v�.

On the other hand, for � > 0 there exists t� such that Fv(t�) <
Fv(0) + t��w, v�+ t�� (note that �w, v�+ � /∈ ∂Fv(0)). Convexity
of Fv shows that for every t ∈ [0, t�] it holds that

Fv(t) ≤ t
t�

Fv(t�) +
t�−t

t�
Fv(0)

≤ F(0) + t�w, v�+ t�,

and hence,
Fv(t)−Fv(0)

t − �w, v� ≤ �.

Since � > 0 was arbitrary, it follows that

lim
t�0

Fv(t)−Fv(0)
t = �w, v�

which proves differentiablity of f and ∇ f (0) = w.

Example 9.8. 1. We begin with the very simple example f (x) =
|x| on the real line. In one dimension, we can charactarize
the subdifferential completely by left- and right-derivatives,
since these are the directional derivatives D f (x,−1) and
D f (x, 1), respectively. For the absolute value we get

∂ f (x) =





{−1}, if x < 0
[−1, 1], if x = 0
{1}, if x > 0.
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2. Now consider the function

f (x) =

�
∞, if x < 0 or x > 1
−√

x, if 0 ≤ x ≤ 1.

We get

∂ f (x) =





∅, if x ≤ 0,
{− 1

2
√

x}, if 0 < x < 1,

[− 1
2 , ∞[, if x = 1,

∅, if x > 1.

Note that the subdifferential ∂ f (x0) can be empty or un-
bounded if x0 /∈ int dom f . The next theorem shows that
none of this can happen in the interior of the domain.

�
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10 Subdifferential calculus

Proper and convex functions always a subgradients in the interior
of their domain.

Theorem 10.1. If f : Rd → R̄ be proper and convex. Then it holds that
∂ f (x0) is non-empty and bounded if x0 ∈ int dom f .

There is sharper result, namely that the
subdifferential ∂ f (x0) is non-empty
and bounded if and only if x0 ∈
ri dom f , but we will not prove this
here.

Proof. If x0 ∈ int dom f , then f is locally Lipschitz-continuous at
x0 (Lemma 6.1), hence, there is δ > 0 such that | f (x)− f (x0)| < 1
for |x − x0| < δ. In particular, for some p ∈ ∂ f (x0) and all x with
�x�2 < 1 we have

1 > f (x0 + δx)− f (x0) ≥ �p, δx�.

Hence, �p, x� ≤ 1/δ, and taking the supremum over all x with
�x�2 < 1 shows �p�2 ≤ 1/δ.

To show that ∂ f (x0) is non-empty, note that int(epi f ) is not
empty (since it contains an open set of the form Bδ(x0)× ] f (x0), ∞[).
Moreover (x0, f (x0)) is not in int(epi f ) and hence we can, by
Proposition 3.7, find (p0, t) ∈ Rd × R for fulfills (p0, t) �= (0, 0)
and

�p0, x�+ ts ≤ λ if x ∈ dom f , f (x) ≤ s and �p0, x0�+ t f (x0) ≥ λ.

With x = x0 and s = f (x0) we see that λ = �p0, x0� + t f (x0).
Moreover, we see that t < 0, since t > 0 would lead to a contradic-
tion by sending t → ∞ and t = 0 would imply �p0, x − x0� ≤ 0
for all x ∈ Bδ(x0) and this would imply p0 = 0 which would
contradict (p0, t) �= 0. With p = −p0/t we get

f (x0) + �p, x − x0� ≤ f (x0)

for all x ∈ dom f and this shows p ∈ ∂ f (x0).

Derivatives can be used to find local minima of functions. For
convex functions, this is accomplished by subgradients. However,
due to convexity, the first order condition is necessary and suffi-
cient.

Theorem 10.2 (Fermat’s rule). Let f : Rd → R̄ be proper and convex.
Then it holds that x̂ is a global minimizer of f if and only if 0 ∈ ∂ f (x̂).

Proof. Let x̂ be a global minimizer. Hence, we have for all x

f (x) ≥ f (x̂)
= f (x̂) + �0, x − x̂�

and this shows 0 ∈ ∂ f (x̂). Conversely, if 0 ∈ ∂ f (x̂), then the above
subgradient inequality holds for all x and hence, x̂ is a global
minimizer.
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We close this secton with another important example:
Example 10.3. Let C be convex and non-empty. Then the subdiffer-
ential of the indicator function of C is given by

∂iC(x0) =

�
{p ∈ Rd | ∀x ∈ C : �p, x − x0� ≤ 0}, if x0 ∈ C
∅, if x0 /∈ C

First, we observe, that for x0 ∈ int C, it holds that ∂iC(x0) = {0}
(as the function is locally constant there). If x ∈ ∂C, then there is
geometricmeaning of the subgradients: A vector p is a subgradient,
if the angle between p and the line from x0 to any point x ∈ C is
larger than 90°. We have seen this property already and indeed it
holds that the subgradient of the indicator is in fact the normal
cone, i.e.

C

∂iC(x) = NC(x).

�
However, the situation is a bit more subtle for the sum-rule

and the concatenation with general linear operators:

Theorem 10.4. i) Let f , g : Rd → R̄ be proper and convex. Then it
holds for every x that

∂ f (x) + ∂g(x) ⊂ ∂( f + g)(x).

Equality holds if there exists some x̄ such that x̄ ∈ dom( f ) ∩
dom(g) and f is continuous at x̄. Note that the point x̄ is totally unre-

lated to the x in the assertion and that
only one of the two functions need to
be continuous at x̄.

ii) Let f : Rd → R̄ be proper and convex and A ∈ Rd×n. Then
ϕ(x) := f (Ax) satisfies

AT∂ f (Ax) ⊂ ∂ϕ(x)

for all x and equality holds if there exists x̄ such that f is continuous
and finite at Ax̄.

Proof. i) We start with the inclusion: Let p ∈ ∂ f (x) + ∂g(x), i.e.
we have p = q + r with p ∈ ∂ f (x), r ∈ ∂g(x). Hence, we have
for all y that

f (y) ≥ f (x) + �q, y − x�
g(y) ≥ g(x) + �r, y − x�

and adding these inequalities shows that p = q + r ∈ ∂( f +
g)(x).
Now assume that f is continuous at some x̄with x̄ ∈ dom( f )∩
dom(g) and it remains to show that ∂( f + g)(x) ⊂ ∂ f (x) +
∂g(x). If f (x) = ∞ or g(x) = ∞, then the inclusion is clear,
since then ∂( f + g)(x) = ∅.
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Hence, let x ∈ dom( f )∩dom(g). We have to prove that every
p ∈ ∂( f + g)(x) can be decomposed into p = q + r with
q ∈ ∂ f (x) and r ∈ ∂g(x). The subgradient inequality for
p ∈ ∂( f + g)(x) is

f (y) + g(y) ≥ f (x) + g(x) + �p, y − x�
for all y. We rewrite this as

F(y) := f (y)− f (x)− �p, y − x� ≥ g(x)− g(y) =: G(y)
(*)

and consider the sets

C1 := {(y, α) ∈ Rd × R | α ≥ F(y)} = {(y, α) ∈ dom( f )× R | α ≥ F(y)}
C2 := {(y, α) ∈ Rd × R | G(y) ≥ α} = {(y, α) ∈ dom(g)× R | G(y) ≥ α}.

Since F(x) = G(x) = 0, both sets are non-empty and since f
and g are convex (hence F is convex and G is concave), both
sets are convex. By (*), the sets C1 and C2 only share bound-
ary points. Hence, by the proper separation theorem (Theo-
rem 3.9), there exists a nonzero (q, a) such that

�
�

q
a

�
,
�

y2
α2

�
� ≤ �

�
q
a

�
,
�

y1
α1

�
�

for (yi, αi) ∈ Ci, i = 1, 2.
We aim to show a > 0: Since (x, α1) ∈ C1 for α1 ≥ 0 and
(x, α2) ∈ C2 for α2 ≤ 0, we have that aα2 ≤ aα1. Hence, a ≥ 0.
Now we show that a > 0, i.e. we only need to show that a �= 0.
If a = 0 would hold, than we would have

�q, y2� ≤ �q, y1�, for y1 ∈ dom F = dom f , y2 ∈ dom(−G) = dom g
�q, x̄� ≤ �q, y1� for y1 ∈ dom F = dom f .

In particular, the continuity of f would imply that for y1 =
x̄ ± Δx ∈ dom( f ) (which holds for all Δx small enough), that
0 ≤ �q,±Δx� for all these Δx and this would imply q = 0
which contradicts (q, a) �= 0.
Thus a > 0 andwe can assume a = 1without loss of generality.
We have for (y, F(y)) ∈ C1 and (y, G(y)) ∈ C2 that whenever
y is in dom( f ) or dom(g), respectively, that

�q, y�+ F(y) ≥ b �q, y�+ G(y) ≤ b.

With y = x ∈ dom( f ) ∩ dom(g), we get the equality �q, x� =
b and we get

∀y ∈ dom( f ) : f (y)− f (x)− �p, y − x�+ �q, y� ≥ �q, x�
which means

∀y ∈ dom( f ) : f (y) ≥ f (x) + �p − q, y − x�.
We conclude p − q ∈ ∂ f (x) and similarly, we get q ∈ ∂g(x)
which proves the claim.
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ii) For the inclusion let q = AT p with p ∈ ∂ f (Ax) we have for
all y that

ϕ(x) + �q, y − x� = f (Ax) + �AT p, y − x�
= f (Ax) + �p, Ay − Ax� ≤ f (Ay) = ϕ(y)

and this shows that q ∈ ∂ϕ(x).
For the equality, assume that q ∈ ∂ϕ(x), i.e. for all y

f (Ax) + �q, y − x� ≤ f (Ay).

We aim to squeeze a seperating hyperplane into this inequality.
We define

C1 = epi f , C2 = {(Ay, f (Ax) + �q, y − x�) ∈ Rd × R | y ∈ Rd}.

We note that int(C1) is not empty and that int(C1) ∩ C2 = ∅.
Hence, by Theorem 3.9 we can find some 0 �= (q0, α0) ∈
Rd × R such that

�q0, ȳ�+ α0α ≤ λ ∀ȳ ∈ dom f , α ≥ f (ȳ)

�q0, Ay�+ α0( f (Ax) + �q, y − x�) ≥ λ, ∀y ∈ Rd.

Again α0 > 0 can not occur (α → ∞ would lead to a con-
tradiction) and α0 �= 0 follows from the continuity of f at
Ax̄.

If α0 = 0, then �q0, ȳ� ≤ �q0, Ay� for all ȳ ∈ dom f and
y ∈ Rd. Hence we can choose y = x ± Δx and ȳ =
A(x ± Δx) and would get q0 = 0 as well, contradicting
(q0, α0) �= 0.

If we set ȳ = Ax, α = f (ȳ) and y = x we conclude λ =
�q0, Ax�+ α0 f (Ax). By the second inequality above we get

�q0, Ay − Ax�+ α0�q, y − x� ≥ 0 ∀y ∈ Rd

and hence q = − 1
α0

ATq0. Setting p = − 1
α0

q0 we get from the
first inequality above, by rearranging and dividing by α0 < 0,
that

�p, z − Ax�+ f (Ax) ≤ f (z), ∀z ∈ dom f

and this means that p ∈ ∂ f (Ax). Hence, ∂ϕ(x) ⊂ AT∂ f (Ax).
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11 Applications of subgradients

Example 11.1. Let’s consider counterexamples to show that the sum-
rule rule and the chain rule for linear maps are indeed not always
true:

1. Let f = i[0,∞[ and

g(x) =

�
−√−x, x ≤ 0
∞, x > 0.

The subdifferentials are

∂ f (x) =





∅, x < 0
]−∞, 0], x = 0
{0}, x > 0

, ∂g(x) =

�
{ 1

2
√−x}, x < 0

∅, x ≥ 0.

Thus, the sumof the subdifferentials is always empty: ∂ f (x)+
∂g(x) = ∅ for all x.
The sum of f and g, however, is

( f + g)(x) = i{0}(x)

and hence, the subdifferential of the sum is

∂( f + g)(x) =

�
∅, x �= 0,
R, x = 0,

which is much larger.

2. For the chain rule for linear maps there is a very simple
counterexample: Consider

f (x) =

�
∞, if x < 0,
−√

x, if x ≥ 0,

with ∂ f (0) = ∅ and A = 0 (the 1 × 1 zero-matrix). Then
ϕ(x) = f (Ax) ≡ f (0) = 0, i.e. ∂ϕ(0) = {0}. Hence

∂ϕ(0) = {0} � ∅ = A∂ f (A0).

�
Here is a positive result:

Corollary 11.2. Let f : Rd → R̄ be proper, lsc, and convex and let
C ⊂ Rd be non-empty, closed, and convex such thatdom f ∩ int C �= ∅.
Then it holds

x̂ ∈ argmin
x∈C

f (x) ⇐⇒





1. x̂ ∈ C

2. 0 ∈ ∂ f (x̂) + NC(x̂)
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The condition that dom f ∩ int C �= ∅ ensures that the sub-
gradient sum-rule is fulfilled for f + iC and NC(x̂) = ∂iC(x̂)
proves the claim.

Here are two reformulations of the optimality conditions: x̂
solves minx∈C f (x) if and only if x̂ ∈ C and one of the following
conditions holds

A. ∃p ∈ ∂ f (x̂)∀x ∈ C : �p, x − x̂� ≥ 0,

B. ∃p ∈ ∂ f (x̂)∀γ > 0 : x̂ = PC(x̂ − γp).

Condition A.: It holds that 0 ∈ ∂ f (x̂) + NC(x̂) if and only if
there ist p ∈ ∂ f (x̂) and −p ∈ NC(x̂). Writing out the latter
condition gives the assertion.
Condition B: The Projection Theorem (Theorem 2.9) we can
characterize x̂ = PC(x̂ − γp) by

∀x ∈ C : �x̂ − γp − x̂, x − x̂� ≤ 0

and this is equivalent to

∀x ∈ C : �p, x − x̂� ≥ 0.

The above results allow us to obtain very simple algorithms in
several situations.
Example 11.3 (Non-negative least squares). We consider a least
squares problem min 1

2�Ax − b�2
2 and want to find only non-

negative solutions. i.e. we add the constraint x ≥ 0. We can do
this by adding an indicator function of the non-negative orthant
C = Rd

≥0, i.e. we consider

min
x

1
2�Ax − b�2

2 + iRd
≥0
(x).

We use the projection characterization (item B. above): Projecting
onto the non-negative orthant is just clipping away the negative
entries, i.e we take the positive part of the vector:

PRd
≥0
(x) = max(x, 0) =: x+.

Moreover, the function f (x) = 1
2�Ax − b�2

2 is convex and differ-
entiable, hence ∂ f (x) = {AT(Ax − b)} and thus, solutions are
characterized by

x̂ = (x̂ − γAT(Ax̂ − b))+

for any γ > 0. It turns out that for suitable γ (namely 0 < γ <
2/�AT A�) the corresponding fixed point iteration

xk+1 = (xk − γAT(Axk − b))+

converges to a solution (we will prove this later). �
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A little bit more general:
Example 11.4 (Projected subgradient method). Let f : Rd → R̄ be
proper, convex and lsc and let C be non-empty, closed and convex
and consider the general convexly constrained convex optimiza-
tion problem minx∈C f (x)

Condition B. now reads as: For some p̂ ∈ ∂ f (x̂) it holds that

x̂ = PC(x̂ − γ p̂)

which we can turn into a fixed-point iteration

Choose pk ∈ ∂ f (xk),

Set xk+1 = PC(xk − γpk).

Let us analyze this method a little bit: If x∗ denotes any solution
of the problem, then PC(x∗) = x∗ and since PC is Lipschitz con-
tinuous with constant 1 (we will show this later) we get

�xk+1 − x∗�2
2 = �PC(xk − γpk)− PC(x∗)�2

2

≤ �xk − γpk − x∗�2
2

= �xk − x∗�2
2 − 2γ�pk, xk − x∗�+ γ2�pk�2

2

≤ �xk − x∗�2
2 − 2γ( f (xk)− f (x∗)) + γ2�pk�2

2

where the last step uses the subgradient inequality f (x∗) ≥ f (xk)+
�pk, x∗ − xk�. Since f (xk)− f (x∗) ≥ 0 (x∗ is a minimizer) we see
that a step with a small enough stepsize γ should reduce the dis-
tance to any minimizer. Of course, we can also use a stepsize γk
that changes with each iteration, leading to an estimate

�xk+1 − x∗�2
2 ≤ �xk − x∗�2

2 − 2γk( f (xk)− f (x∗)) + γ2
k�pk�2

2

We can rearrange this to

γk( f (xk)− f (x∗)) ≤ 1
2 γ2

k�pk�2
2 +

1
2�xk − x∗�2

2 − 1
2�xk+1 − x∗�2

2.

Now we sum up these inequalities for k = 0, . . . , N and get

N

∑
k=0

γk( f (xk)− f (x∗)) ≤ 1
2

N

∑
k=0

γ2
k�pk�2

2 +
1
2�x0 − x∗�2

2 − 1
2�xN+1 − x∗�2

2

≤ 1
2

N

∑
k=0

γ2
k�pk�2

2 + �x0 − x∗�2
2.

To get a convergent method, we assume that the norms of the
subgradients are bounded, i.e. for all k we have �pk�2 ≤ L for some
L > 0. Furthermorewe denote f ∗ := f (x∗), f N

best := mink=0,...,N f (xk)

and D2 = 1
2�x0 − x∗�2

2. Then we get

� N

∑
k=0

γk

�
( f N

best − f ∗) ≤ L2

2

N

∑
k=0

γ2
k + D2.
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Finally, this leads to

( f N
best − f ∗) ≤ D2 + L2

2 ∑N
k=0 γ2

k

∑N
k=0 γk

.

This shows: The best function value converges towards the mini-
mal one, if we assume that the stepsizes γk fulfill

∑N
k=0 γ2

k

∑N
k=0 γk

N→∞−→ 0.

This can be accomplished, for example, if∑∞
k=0 γ2

k converges, while
∑∞

k=1 γk diverges which is the case, for example, forγk = 1/(k+ 1).
However, other stepsizes also make sense, e.g. one can consider
γk = 1/

√
k + 1. More precisely, we get the estimates (by compari-

son with the respective integrals)

We use that for a function f
that decreases on an inter-
val [K − 1, N + 1] it holds that� N+1

K f (x)dx ≤ ∑N
k=K f (k) ≤

� N
K−1 f (x)dx.

log(N + 2) =
� N+1

0

1
x + 1

dx ≤
N

∑
k=0

1
k + 1

≤ 1 +
� N

0

1
x + 1

dx = 1 + log(N + 1)

2
√

N + 2 − 2 =
� N+1

0

1√
x + 1

dx ≤
N

∑
k=0

1√
k + 1

≤ 1 +
� N

0

1√
x + 1

dx = 2
√

N + 1 − 1

N

∑
k=0

1
(k + 1)2 ≤ 1 +

� N

0

1
(x + 1)2 dx = 2 − 1

N + 1
.

Hence, we get for the stepsize γk = 1/(k + 1) that

( f N
best − f ∗) ≤ D2 + L2

2 (2 − 1
N+1 )

log(N + 2)
.

and for the stepsize γk = 1/
√

k + 1 that

( f N
best − f ∗) ≤ D2 + L2

2 (1 + log(N + 1))

2
√

N + 2 − 2
.

If one wants to achieve the best result with a fixed number N
of iterations, one can proceed differently: Here one would like to
minimize the ratio

R(γ) =
D2 + L2

2 ∑N
k=0 γ2

k

∑N
k=0 γk

over all variables γk. We can take the gradient with respect to the
vector γ = (γ1, γ2, . . . , γN) and get

∇R(γ) =
L2γ ∑N

k=0 γk − (D2 + L2

2 ∑N
k=0 γ2

k)1�
∑N

k=0 γk

�2
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where 1 denotes the vector of all ones. Setting this to zero we
observe that γ should be a constant vector, i.e. γ = h1 for some h.
Plugging this in, we need to solve

L2(N + 1)h2 = L2

2 (N + 1)h2 + D2

leading to the constant stepsize

γk ≡
√

2D
L
√

N + 1
.

This gives us the guarantee that

f N
best − f ∗ ≤ 2D2 1√

N+1
.

In conclusion we get the following:

stepsize γk
1

k+1
1√
k+1

√
2D

L
√

N+1

estimate f N
best − f ∗ L2

2
D2+2− 1

N+1
log(N+2)

L2

2
D2+1+log(N+1)

2
√

N+2−2
2D2√
N+1

So, theoretically, the option with fixed step-size has the best worst-
case guarantee, but note that further iterations will not improve
this any more, and moreover, an estimate on �x0 − x∗�2 is needed.
In practice, the stepsize 1/(k + 1) often leads to best results, but
the choice of step-sizes for subgradient methods is a delicate issue.

Here is an example for the problem of least absolute deviations
(LAD) which is

min
x∈Rn

�Ax − b�1,

i.e. one minimizes the sum of the absolute deviations and not the
sum of the squares. This approach is useful if b containes additive
noise which follows a Laplace distribution. Since the 1-norm is
convex, lsc and everywhere continous, we can apply the chain rule
from Theorem 10.4. Since the subgradient of the 1-norm is obtain
from the known subgradient of the absolute value by applying this
component-wise, we obtain

∂�x�1 = Sign(x)

with the so-called multivalued sign function which acts componen-
twise as

Sign(xi) =





{−1}, xi < 0
[−1, 1], xi = 0
{1}, xi > 0.

By the chain rule and Lemma 9.6 we get as subgradient of f (x) =
�Ax − b�1

∂ f (x) = AT Sign(Ax − b).
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Hence, the subgradient method for the LAD problem can be im-
plemented by choosing the ordinary sign-function

xk+1 = xk − γk AT sign(Axk − b).
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12 Proximal algorithms

Lemma 12.1. The proximal mapping proxλ f for a convex and lsc func-
tion and any λ > 0 is Lipschitz continuous with constant 1, i.e. it holds

�proxλ f (x)− proxλ f (y)�2 ≤ �x − y�2.

Proof. We use the variational inequality from Theorem 8.2 for
x̂ = proxλ f (x) and ŷ = proxλ f (y) and plug in ŷ and x̂ is the
other inequality to get

�x − x̂, ŷ − x̂�+ λ( f (x̂)− f (ŷ)) ≤ 0
�y − ŷ, x̂ − ŷ�+ λ( f (ŷ)− f (x̂)) ≤ 0.

Adding these inequalities gives

0 ≥ �x − x̂, ŷ − x̂�+ �y − ŷ, x̂ − ŷ�
= �x − y − (x̂ − ŷ), ŷ − x̂�
= �x − y, ŷ − x̂�+ �ŷ − x̂�2

2.

By Cauchy-Schwarz, we get

�ŷ − x̂�2
2 ≤ �x − y�2�ŷ − x̂�2

which shows the claim.

We start with a simple algorithm to solve an unconstrained
minimization problem minx f (x) (the algorithm is, in this very
simple form, not practically useful, but will be good to know, since
it can be used as a building block for furthermethods). Themethod
is called the proximal point method and simply iterates

xk+1 = proxtk f (xk)

for some sequence tk > 0 of stepsizes.

Lemma 12.2. The sequence (xk) from the proximal point method fulfills

f (xk+1) ≤ f (xk)− 1
tk
�xk+1 − xk�2

2.

Proof. From the variational inequality (Theorem 8.2) we get with
x = y = xk and x̂ = xk+1 that

tk+1( f (xk+1)− f (xk)) + �xk − xk+1, xk − xk+1� ≤ 0

from which the claim follows.

This can be used to show convergence of the method:

Theorem 12.3. Let f be proper, convex and lsc and let f ∗ = f (x∗) =
minx f (x). Then it holds that the sequence (xk) generated by the proximal
point method fulfills

�xk+1 − x∗�2 ≤ �xk − x∗�2 and

f (xN+1)− f ∗ ≤ �x0−x∗�2
2

2 ∑N
k=0 tk

.
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Proof. Again by the variational inequality from Theorem 8.2 (now
with x = xk, x̂ = xk+1 and y = x∗

f (xk+1) ≤ f ∗ − 1
tk
�xk − xk+1, x∗ − xk+1�

= f ∗ + 1
tk

�
�xk − xk+1, xk − x∗� − �xk − xk+1�2

2

�

where we inserted −xk + xk to get to the second equality. Now we
use �a, b� = 1

2 (�a�2
2 + �b�2

2 − �a − b�2
2) with a = xk − xk+1 and

b = xk − x∗ to get

f (xk+1) ≤ f ∗ + 1
2tk

�
�xk − xk+1�2

2 + �xk − x∗�2
2 − �xk+1 − x∗�2

2 − 2�xk − xk+1�2
2

�

≤ f ∗ + 1
2tk

�
�xk − x∗�2

2 − �xk+1 − x∗�2
2

�
.

Since f ∗ ≤ f (xk+1) we get, on the one hand, �xk+1 − x∗�2 ≤
�xk − x∗�2 and, on the other hand, summing up the estimates
from k = 0, . . . , N we get

2
N

∑
k=0

tk( f (xk+1)− f ∗)) ≤ �x0 − x∗�2
2.

Since we already know that f (xk+1)− f ∗ ≥ f (xN+1)− f ∗ we get

2
� N

∑
k=0

tk

�
( f (xN+1)− f ∗) ≤ �x0 − x∗�2

2

as claimed.

Hence, we see that larger stepsizes are better, but one should
emphasize that the proximal point method is merely a theoretical
algorithm, as each step needs the evaluation of the proximal map
for the objective and this may be no simpler than the original
problem. In fact in can be simpler, since the ob-

jective in the minimization problem for
the prox is strongly convex even if f is
just convex.

Now we come to a more practical algorithm and this relies on
a very fruitful idea: If the objective function in our optimization
problem is the sum of two convex function, i.e.

min
x∈Rd

f (x) + g(x)

we may try to treat both terms differently, depending on their
properties. Methods that are derived from splitting the objective
additively into different parts go under the name splitting methods.
Two different properties that will be useful are the following:

• L-smoothness: g : Rd → R is convex and differentiable and,
moreover, that the gradient∇g is Lipschitz-continuous with
constant L, i.e. �∇g(y)−∇g(x)�2 ≤ L�y − x�2.
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• proximability: f is of the form that proxλ f is simple to eval-
uate. This is the case, for example for the 1-norm �x�1 or
indicator functions iC of convex sets if the projection onto
these sets is simple (e.g. positivity constraints, hyperplanes,
balls).

We have just seen in Lemma 12.2 that the proximalmap reduces
the objective (for this part) and the next lemma shows that one can
also get a guaranteed descent of the objective by doing gradient
steps for L-smooth functions:

Lemma 12.4. If g : Rd → R is L-smooth, then it holds that

g(y)− g(x)− �∇g(x), y − x� ≤ L
2 �x − y�2

2.

Proof. By the fundamental theorem of calculus we get

g(y)− g(x)− �∇g(x), y − x� =
� 1

0
�∇g(x + τ(y − x))−∇g(x), y − x�dτ

≤
� 1

0
�∇g(x + τ(y − x))−∇g(x)�2�y − x�2dτ

≤
� 1

0
L�τ(y − x)�2�y − x�2dτ

≤ L
2 �x − y�2

2.

This allows to guarantee a reduction the value of g(x) by mak-
ing a gradient step x+ = x − λ∇g(x): We use the above lemma
with y = x+ and the fact that x+ − x = −λ∇g(x) to get

g(x+) ≤ g(x) + �∇g(x), x+ − x�+ L
2 �x+ − x�2

2

= g(x)− λ�∇g(x)�2
2 +

Lλ2

2 �∇g(x)�2
2

= g(x)− λ(1 − L
2 λ)�∇g(x)�2

2.

Hence, we get a guaranteed descent if both λ > 0 and 1 − L
2 λ > 0,

i.e. if 0 < λ < 2/L.
How can we use these two ingredients to come up with a

method that can mininize the objective f + g? One idea is, to
replace the differentiable part of the objective by a simpler up-
per bound at some current iterate xk: Inspired by Lemma 12.4 we
define xk+1 by

xk+1 = argmin
x

�
f (x) + g(xk) + �∇g(xk), x − xk�+ 1

2λ�x − xk�2
2

�
.

We can drop the terms in the objective which do not depend on x
and multiply by λ to get

xk+1 = argmin
x

�
λ f (x) + �λ∇g(xk), x − xk�+ 1

2λ�x − xk�2
2

�
.
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We complete the square to see that

�λ∇g(xk), x − xk�+ 1
2λ�x − xk�2

2

= 1
2�λ∇g(xk)�2 + �λ∇g(xk), x − xk�+ 1

2λ�x− xk�2
2 − 1

2�λ∇g(xk)�2

= 1
2�x − (xk − λ∇g(xk))�2

2 − 1
2�λ∇g(xk)�2

2.

Again dropping terms that do not affect the minimizer, we finally
get that

xk+1 = argmin
x

λ f (x) + 1
2�x − (xk − λ∇g(xk))�2

2

= proxλ f (xk − λ∇g(xk)).

This method does a gradient step for the smooth part and a proxi-
mal step for the proximable part.
Example 12.5 (Regularized least squares for inverse problems). One
example for which the proximal gradient method gained popu-
larity is the case of regularized least squares problems: For some
A ∈ Rm×n and b ∈ Rm one can consider the least squares problem
minx

1
2�Ax − b�2

2. This is used in many contexts, e.g. in statistics
for regression but also in the context of signal processing or in-
verse problems where some quantity of interest x† ∈ Rn can only
bemeasured indirectly, namely one can only observe bδ = Ax† + η
where A is a (known) linear map which models the measurement
process, and η is an unknow error (e.g. due to measurement noise
or modelling errors). Since bδ is also affected by noise, it is point-
less to solve Ax = bδ exactly and a least squares approach seems
more reasonable. In addition it may also happen than n > m, i.e.
we do not have enoughmeasurements to reconstruct x† even from
a noise-free bδ. More precisely, the minimizers of the least squares
problem are characterized by the equation AT Ax = ATbδ, but
since AT A does not have full rank, there are still multiple solu-
tions, but due to noise, none of these seems to be reasonable. In
this case one uses prior knowledge on the unknown solution, and
this is done by specifying a regularization functional R : Rn → R̄

which gives small values R(x) to “reasonable” x and large values
R(x) for “undesired” x. The regularization functional is also called
penalty function since is penalizes undesired vectors. Together, we
end with the regularized least squares problem

min
x

1
2�Ax − bδ�2

2 + αR(x)

where α is a positive regularization parameter that can emphasize
the regularization (large α) or tone it down (small α).

If R is convex, lsc and proximable, one can use the proximal
gradient method to solve this minimization problem: We take
g(x) = 1

2�Ax − bδ�2
2 and f (x) = αR(x) and since ∇g(x) =

AT(Ax − bδ) is Lipschitz continuous with constant L = �AT A�
one iterates

xk+1 = proxλαR(xk − λAT(Axk − bδ))
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with some λ ∈ ]0, 2/�AT A�[.
�
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13 Convex conjugation

There is an important notion of duality for convex functions,
namely, the one of convex conjugation (and this duality is related
to the characterization of closed, convex set as intersection of half-
spaces). In Corollary 5.5 we have already seen that a closed convex
function is equal to the supremum of all affine functions that are
below said function. This leads to the following definition:

Definition 13.1. For a function f : Rd → R̄ we define the (Fenchel)
conjugate f ∗ : Rd → R̄ as

f ∗(p) = sup
x

�
�p, x� − f (x)

�

Moreover, the biconjugate is

f ∗∗(x) = sup
p

�
�p, x� − f ∗(p)

�
.

If f is proper, then f ∗ is the pointwise supremum of affine
functions and hence, it is always convex and lower semicontinuous
(even when f has none of these properties).

We consider a few one-dimensional examples:
Example 13.2. 1. Let f (x) = αx2 for α > 0. Then the conjugate

is

f ∗(p) = sup
x
[px − αx2].

To calculate the supremum we take the derivative with re-
spect to x, set it to zero and plug it in:

p − 2αx = 0 =⇒ x = p
2α

=⇒ sup
x
[px − αx2] = p p

2α − α
p2

4α2 = 1
4α p2,

hence,

f ∗(p) = 1
4α p2.

Similarly, one observes that f ∗∗(x) = f (x). (Note that f ∗ = f
for α = 1

2 , i.e. for f (x) = x2/2.)

2. Let f (x) = exp(x). We consider different cases:

• If p < 0, then px − exp(x), is unbounded from above
and we get f ∗(p) = ∞.

• If p = 0, then − exp has the supremum 0 (which is not
attained) and we have f ∗(0) = 0.
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• If p > 0, then px − exp(x) is bounded from above and
we calculate as in the previous example

p − exp(x) = 0 =⇒ x = log(p)
=⇒ sup

x
[px − exp(x)] = p log(p)− p.

Hence, the conjugate is

f ∗(p) =





∞, if p < 0
0, if p = 0
p log(p)− p, if p > 0.

Onemay verify in a similarway that f ∗∗(x) = exp(x) =
f (x).

3. For f (x) = |x| we have f ∗(x) = supx px − |x| and we see
by direct inspection that

f ∗(x) =





∞, if p > −1
0, if −1 ≤ p ≤ 1
∞, if p > 1

i.e. f ∗(x) = i[−1,1](x). Again, we get f ∗∗(x) = |x| = f (x).

4. For a non-convex example, consider

f (x) =

�
∞, if |x| > 1
1 − x2, if |x| ≤ 1.

In this case one has f ∗(x) = |x| and by the previous example,
f ∗∗(x) = i[−1,1](x) �= f (x). However, f ∗∗ = cl f .

�
We will see later that the observed behavior f ∗∗ = f for convex

and lsc functions and f ∗∗ = cl f qre true in general.

Lemma 13.3. Let f , g : Rd → R̄. Then:

i) If f ≥ g, then f ∗ ≤ g∗.

ii) For all p, x where f (x) or f ∗(p) are finite we have Fenchel’s inequal-
ity

f (x) + f ∗(p) ≥ �x, p�.

iii) It holds Fenchel’s equality The equivalence p ∈ ∂ f (x) ⇐⇒ x ∈
∂ f ∗(p) is called subgradient inversion
theorem.p ∈ ∂ f (x) ⇐⇒ f (x) + f ∗(p) = �p, x� ⇐⇒ x ∈ ∂ f ∗(x).

iv) It holds f ∗∗ ≤ f .
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Proof. i) If f ≥ g, then

g∗(p) = sup
x
[�p, x� − g(x)]

≥ sup
x
[�p, x� − f (x)] = f ∗(p).

ii) Follows directly from the definition of the conjugate by re-
placing the supremum by any value of the argument.

iii) By rearranging the subgradient inequality, we have p ∈ ∂ f (x)
if and only if for all y it holds �x, p� − f (x) ≥ �p, y� − f (y).
Taking the supremum over all y shows �x, p� − f (x) ≥ f ∗(p)
and by Fenchel’s inequality, we get equality. Since this argu-
ment works both ways, the claim is proven.

iv) We consider

f ∗∗(x) = sup
p
[�p, x� − f ∗(p)]

and use ii) to estimate the term in the supremum by f (x)
(which is then idependent from p).

Lemma 13.4. Let f : Rd → R̄. Then it holds:
i) If f is not proper, then f ∗ ≡ ∞ or ≡ −∞.

ii) If f is proper, then f ∗ > −∞.

iii) If f is proper and convex, then f ∗ is proper and moreover we have
(cl f )∗ = f ∗ and f ∗∗ = cl f .

Proof. i) For non-proper f we have two cases. In the first case
there is x0 such that f (x0) = −∞. But then there is no affine
function below f andhence f ∗ ≡ ∞. In the second case f ≡ ∞,
end then f ∗ ≡ −∞.

ii) Now let f be proper. If we had f ∗(p0) = −∞ for some p0, then
we would have for every x that −∞ ≥ �p0, x� − f (x), but this
implies f (x) ≥ ∞ for all x.

iii) • We show that f ∗ is proper: By Proposition 5.4, we know
that there exist p0 ∈ Rd and α ∈ R such that f (x) ≥
�p0, x�+ α for all x, and hence f ∗(p0) ≤ −α.

• Since f is proper, we have to show ( f̄ )∗ = f ∗ and by
Lemma 13.3 i) we deduce from f̄ ≤ f the inequality
( f̄ )∗ ≥ f ∗. For the lsc envelope we have by the Fenchel
inequality that

f̄ (x0) = lim inf
x→x0

f (x) ≥ lim inf
x→x0

[�p, x� − f ∗(p)] = �p, x0� − f ∗(p).

This leads to f ∗(p) ≥ �p, x0� − f̄ (x0) and taking the
supremum over all x0 shows f ∗ ≥ ( f̄ )∗.

The statement f ∗∗ = cl f follows from the next theorem.
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The theorem says that f = f ∗∗ if and only if f is convex
and lsc, and hence f ∗∗( f ∗)∗ = ((cl f )∗)∗ = cl f since cl f
is convex and lsc.

Theorem 13.5 (Fenchel-Moreau). A proper function f : Rd → Rd is
convex and lsc if and only if f = f ∗∗

Proof. Since any conjugate is always convex and lsc, the reverse
implication is clear.

Now let f be proper, convex and lsc. We already know that f ∗

is proper, convex and lsc as well and that f ∗∗ ≤ f . Now we show
the following claim:

If f (x) > α for some x and α, then f ∗∗(x) ≥ α.

Once, the claim is proven, the theorem follows: If x /∈ dom( f ),
then we can choose α arbitrarily large and see that f ∗∗(x) = ∞ as
well. If x ∈ dom( f ), and f ∗∗(x) = f (x)− � for some � > 0, then
we could chose α = f (x)− �/2 and would get f ∗∗(x) < α which
would contradict f ∗∗(x) ≥ α.

Nowwe prove the claim: If (x, α) /∈ epi( f ), we can, since epi( f )
is closed and convex, strictly separate (x, α) from epi( f ), i.e. there
is (p, a) ∈ Rd+1 and � > 0 such that

sup
(y,β)∈epi( f )

�
�

p
a

�
,
�

y
β

�
� ≤ �

�
p
a

�
,
�

x
α

�
� − �.

which says that for all (y, β) ∈ epi( f ) we have

�p, y�+ aβ ≤ �p, x�+ aα − � (*)

If we had a > 0 we would get a contradiction with β → ∞.
Hence we have a ≤ 0. If a < 0, we divide (*) by −a > 0 and set

p̄ = −p/α to get

� p̄, y� − β ≤ � p̄, x� − α + �
a

We set β = f (y) and take the supremum over all y on the left-hand
side to get

f ∗( p̄) ≤ � p̄, x� − α + �
a < � p̄, x� − α.

We rearrange and use the Fenchel inequality (Lemma 13.3) to get

α < � p̄, x� − f ∗( p̄) ≤ f ∗∗(x).

In the remaining case a = 0 the inequality (*) turns into

�p, y� ≤ �p, x� − �

and still holds for all y ∈ dom( f ). If we had x ∈ dom( f ) we would
get a contradiction by choosing y = x, so we have x /∈ dom( f ) if
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a = 0. So we have f (x) = ∞ in this case and for all q we have by
Fenchel’s inequality again

�q, y� − f (y) ≤ f ∗(q).

Multiplying the second to last inequality by µ > 0 and adding the
last one gives

�q + µp, y� − f (y) ≤ f ∗(q) + µ�p, x� − µ�.

Taking the supremum over y gives

f ∗(q + µp) ≤ f ∗(q) + µ�p, x� − µ�,

which leads to

�q, x� − f ∗(q) + µ� ≤ �q + µp, x� − f ∗(q + µp) ≤ f ∗∗(x).

Since the left hand side goes to ∞ for µ → ∞, this shows f ∗∗(x) =
∞, as desired.
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14 Conjugation calculus

Proposition 14.1. If f : Rd → R̄ is proper, then f ∗ = f it and only if
f (x) = 1

2�x�2
2.

Proof. We have seen in the previous lecture that αx2 has the conju-
gate 1

4α p2 so with a = 1
2 they are equal. Applying this component-

wise we see that the conjugate of 1
2�x�2

2 is the function itself.
For the converse, assume f = f ∗. By Fenchel’s inequality

we have f (x) + f ∗(p) ≥ �x, p� and with p = x we get f (x) ≥
1
2�x�2

2 =: h(x). By Lemma 13.3 i) we know that f (x) = f ∗(x) ≤
h∗(x) = 1

2�x�2
2 which proves the claim.

Lemma 14.2. Let f : Rd → R̄, A ∈ Rd×d be invertible, a ∈ R,
b ∈ Rd and λ ∈ R \ {0}. Then it holds that

i) If ϕ(x) = f (x) + a, then ϕ∗(p) = f ∗(p)− a.

ii) If ϕ(x) = f (λx), then ϕ∗(p) = f ∗(λ−1 p).

iii) If ϕ(x) = λ f (x), λ > 0, then ϕ∗(p) = λ f ∗(λ−1 p).

iv) If ϕ(x) = f (x)− �b, x�, then ϕ∗(p) = f ∗(p + b).

v) If ϕ(x) = f (Ax + b), then ϕ∗(p) = f ∗(A−T p)− �A−T p, b�.

Proof. These are straightforward calculations:

i) ϕ∗(p) = supx
�
�p, x� − f (x)− a

�
= f ∗(p)− a.

ii) This is a special case of v).

iii) ϕ∗(p) = supx
�
�p, x�−λ f (x)

�
= λ supx

�
�λ−1 p, x�− f (x)

�
=

λ f ∗(λ−1 p).

iv) ϕ∗(p) = supx
�
�p, x�− ( f (x)−�b, x�)

�
= supx

�
�p + b, x�−

f (x)
�
= f ∗(p + b).

v) ϕ∗(p) = supx
�
�p, x�− f (Ax+ b)

�
= supy

�
�p, A−1(y − b)�−

f (y)
�
= supy

�
�A−T p, y − b�− f (y)

�
= f ∗(A−T p)−�A−T p, b�.

By these rules one immediately sees that for f (x) = 1
2�x − b�2

2
one has f ∗(p) = 1

2�p�2
2 + �p, b�, for example.

The conjugation of the infimal convolution is readily calcu-
lated:

Lemma 14.3. If f1, f2 : Rd → R̄ are proper, then it holds that

( f1 � f2)
∗ = f ∗1 + f ∗2 .
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Proof. This can be seen as follows:

( f1 � f2)
∗(p) = sup

x

�
�p, x� − inf

x1+x2=x
( f1(x1) + f2(x2))

�

= sup
x

sup
x1+x2=x

�
�p, x� − f1(x1)− f2(x2)

�

= sup
x1,x2

�
�p, x1�+ �p, x2� − f1(x1)− f2(x2)

�

= f ∗1 (p) + f ∗2 (p).

One would be tempted to assume that one also has that ( f1 +
f2)∗ = f ∗1 � f ∗2 but this does not holds without further assump-
tions.

Here is a counterexample:
Example 14.4. Let f , g : R2 → R̄ defined by

f (x) =

�
−√

x1x2, x1, x2 ≥ 0
∞, else

, g(x) = I{x1=0}(x).

The sum is ( f + g)(x) = I{x1=0, x2≥0}(x) and has the conjugate

( f + g)∗(p) = sup
x1=0, x2≥0

�
p1x1 + p2x2

�
= I{p2≤0}(p).

The individual conjugates are

g∗(p) = sup
x1=0

�
p1x1 + p2x2

�
= I{p2=0}(p)

f ∗(p) = sup
x1,x2≥0

�
p1x2 + p2x2 +

√
x1x2

�

We see that

f ∗(p) = I{p1 p2≤−1}(p).

Hence, the infimal convoluiton is

( f ∗ � g∗)(p) = inf
q+r=p

I{p2=0}(q) + I{p1 p2≤−1}(r) = I{p2=0}+{p1 p2≤−1}(p) = I{p2<0}(p).

Note that ( f + g)∗ �= ( f ∗ � g∗)(p) and that the latter is not even
lsc. �

We show a very general result which is due to Attouch and
Brezis from 1986: Let f , g : Rd → R̄ be two proper and convex
functions and assume that

�

λ≥0

λ(dom( f )− dom(g)) is a subspace of Rd. (Q)

Note that in Example 14.4 we have
dom( f ) = {x1, x2 ≥ 0} and
dom(g) = {x2 = 0} and hence
dom( f ) − dom(g) = {x2 ≥ 0}.
Thus, (Q) is not fulfilled
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Theorem 14.5. If f , g : Rd → R̄ are proper, convex, and lsc and satisfy
condition (Q), then

( f + g)∗ = f ∗ � g∗

and the inf-convolution on the right is exact.

Proof. Step 0: First we note that for any decomposition p = p1 + p2
we get

( f + g)∗(p) = sup
x

�
�x, p� − f (x)− g(x)

�

= sup
x

�
�x, p1�+ �x, p2� − f (x)− g(x)

�

≤ sup
x

�
�x, p1� − f (x)

�
+ sup

x

�
�x, p2� − g(x)

�

= f ∗(p1) + g∗(p2).

Taking the infimum over all such decomposition on the right
hand side shows

( f + g)∗ ≤ f ∗ � g∗.

Step 1: Now we claim that if the more restrictive condition
�

λ≥0

λ(dom( f )− dom(g)) = Rd (Q’)

holds, then f ∗ � g∗ is lsc on Rd. Let µ ∈ R and

C := levµ( f ∗ � g∗) = {p ∈ Rd | ( f ∗ � g∗)(p) ≤ µ}

and aim to show that C is closed. For � > 0 consider

C� := {q + r ∈ Rd | f ∗(q) + g∗(r) ≤ µ + �}.

By definition of the infimal convolution we have ( f ∗� g∗)(p) ≤ µ
if and only if p = q + r such that for all � > 0 it holds that
f ∗(q) + g∗(r) ≤ µ + �. In other words: It holds that

C =
�

�>0

C�

and hence, it is enough, to prove that all the C� are closed. To that
end, we consider the sets

K = C� ∩ Bt(0)

= {q + r ∈ Rd | f ∗(q) + g∗(r) ≤ µ + �, �q + r� ≤ t}.

If all these K are closed, then C� is closed. Let

H = {(q, r) ∈ Rd × Rd | f ∗(q) + g∗(r) ≤ µ + �, �q + r� ≤ t}.

Since the map (q, r) �→ f ∗(q) + g∗(r) is closed (both f ∗ and g∗ are
lsc), we see that H is closed.
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We show that H is bounded: To show this, we show that there
is a constant C(x, y) such that for all (q, r) ∈ H it holds that
�x, q�+ �y, r� ≤ C(x, y). By assumption (Q’) we can write every
(x, y) as

x − y = λ(u − v)

with some u ∈ dom( f ), v ∈ dom(g) and λ ≥ 0. Then (using the
inequality by Fenchel and Cauchy-Schwarz)

�x, q�+ �y, r� = λ�u, q�+ λ�v, r�+ �y − λv, q + r�
≤ λ( f ∗(q) + f (u) + g∗(r) + g(v)) + �q + r��y − λv�
≤ λ(µ + � + f (u) + g(v)) + t�y − λv� = C(x, y).

This shows that H is bounded, and hence, compact. It remains to
note that K is the image of H under the linear map (q, r) �→ q + r
and hence, K is also compact, hence closed.

Step 2: Now we prove that if condition (Q’) is fulfilled, we
have ( f + g)∗ = f ∗ � g∗ and that the inf-convolution is exact.
By Lemma 14.3 we have ( f ∗ � g∗)∗ = f ∗∗ + g∗∗ = f + g and
another conjugation shows

( f + g)∗ = ( f ∗ � g∗)∗∗,

But our previous step showed that f ∗ � g∗ is lsc and hence ( f ∗ �
g∗)∗∗ = f ∗ � g∗.

To see that the inf-convolution is exact, we note that we can see
(similar to he first step) that for each µ the set {q | f ∗(q) + g∗(p −
q) ≤ µ} is closed and hence, the infimum in the definition of the
inf-convolution is attained.

Step 3: In the last step we get rid of the restrictive assump-
tion (Q’). We use the following fact: If A ⊂ Rd is convex and�

λ≥0 λA is a subspace, then 0 ∈ A andhence
�

λ>0 λA =
�

λ≥0 λA.

Let a ∈ A. Since a ∈ �
λ≥0 λA and the latter set is a vector

space, there is b ∈ A such that −a = λb. But then we have
that

1
1+λ a + λ

1+λ b ∈ A

but the convex combination on the right hand side is 0.

From Assumption (Q) and the previous observation it follows
that dom( f ) ∩ dom(g) �= ∅ and we may assume without loss of
generality that 0 ∈ dom( f ) ∩ dom(g). We define the subspace
V =

�
λ≥0 λ(dom( f ) − dom(g)) and note dom( f ) ⊂ V and

dom(g) ⊂ V. Hence, we could have worked in V from the start
and since V is isomorophic to Rn, the proof is complete.

As a consequence, the subgradient sum-rule also holds if (Q)
is fulfilled:
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Corollary 14.6. Let f and g be proper, convex and lsc and fulfull condi-
tion (Q). Then it holds that

∂( f + g) = ∂ f + ∂g.

As we have seen, the inclusion ∂ f + ∂g ⊂ ∂( f + g) always
holds. For the reverse inclusion let p ∈ ∂( f + g)(x). By Fenchel’s
equality (Lemma 13.3) we get

( f + g)(x) + ( f + g)∗(p) = �p, x�.

Theorem 14.5 shows ( f + g)∗ = f ∗ � g∗ and that the inf-
convolution is exact, i.e. we have ( f + g)∗(p) = f ∗(p − q) +
g∗(q) for some q. We get

f (x) + g(x) + f ∗(p − q) + g∗(q) = �p − q, x�+ �q, x�.

We conclude p − q ∈ ∂ f (x) and q ∈ ∂g(x) (since q /∈ ∂g(x)
would imply g(x) + g∗(q) > �x, q� from which we would get
f (x) + f ∗(p − q) < �p − q, x� which contradict Fenchel’s
inequality). Hence, we have p ∈ ∂ f (x) + ∂g(x).

Finally, let us note that condition (Q) is more general than the
assumption in Theorem 10.4 namely that

∃x ∈ dom( f ) ∩ dom(g), f continuous at x =⇒ (Q) fulfilled.

If there is x ∈ dom( f ) ∩ dom(g) and f is continuous at
f , then x ∈ int dom( f ), i.e. B�(x) ⊂ dom( f ) for some �.
Hence dom( f )− dom(g) ⊃ B�(x)− {x} = B�(0) and we
see that

�
λ≥0 λ(dom( f )− dom(g)) = Rd while for (Q) we

only need that the union is a subspace.
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15 Fenchel-Rockafellar duality

The Fenchel equality states that

p ∈ ∂ f (x) ⇐⇒ f (x) + f ∗(p) = �p, x� ⇐⇒ x ∈ ∂ f ∗(p).

Hence, we see that if x∗ is a minimizer of f , then we know that x ∈
∂ f ∗(0). In other words: The subgradient of the conjugate at zero
shows us, where minimizers of f are. Hence, knowing conjugate
functions is quite helpful to treat minimization problems.

In this section, we use conjugate functions to derive a quite
general notion of duality between optimization problem (which
includes the notion of duality of linear programs, for example).

The problems which we will treat in this section are of the
form

min
x∈Rn

f (x) + g(Ax)

where A ∈ Rm×n and f : Rn → R̄ and g : Rm → R̄ are two
proper, convex and lsc functions. We have seen examples for this,
e.g. in Example 12.5 where we minimized 1

2�Ax − b�2
2 + αR(x), i.e.

we could take f = R and g(y) = 1
2�y − b�2

2.
To motivate the duality, we express g via its conjugate and get

min
x∈Rn

f (x) + g(Ax) = min
x∈Rn

f (x) + sup
y∈Rm

�y, Ax� − g∗(y)

= min
x∈Rn

sup
y∈Rm

f (x) + �y, Ax� − g∗(y).

If we would know that the supremum was a maximum and that
we could swap minimum and maximum, this would be equal to

max
y∈Rn

min
x∈Rn

f (x) + �y, Ax� − g∗(y) = max
y∈Rm

min
x∈Rn

�
f (x) + �ATy, x�

�
− g∗(y)

= max
y∈Rm

−
�

max
x∈Rn

�−ATy, x� − f (x)
�
− g∗(y)

= max
y∈Rm

− f ∗(−ATy)− g∗(y).

The problem in the last line is called the (Fenchel-Rockafellar) dual
problem. Note that the problem is a concavemaximization problem,
but since it is equivalent to

min
y∈Rm

f ∗(−ATy) + g∗(y)

it is of exactly the same type than the problem we started with (and
this problem is called primal problem in this context).

Let us explore the relation of the primal and dual problem in
general. We start from middle ground, namely with a so-called
saddle point problem, i.e. we have a function L : Rn × Rm → R̄ and
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want to find a pair (x∗, y∗) such that

x∗ ∈ argmin
x∈Rn

L(x, y∗)

y∗ ∈ argmax
y∈Rm

L(x∗, y).

Any such pair will be called saddle point of L. Put differently, the
solution (x∗, y∗) should satisfy

∀x, y : L(x∗, y) ≤ L(x, y) ≤ L(x, y∗). (*)

Proposition 15.1. For any L it holds the min-max inequality

inf
x

sup
y

L(x, y) ≥ sup
y

inf
x

L(x, y).

Moreover, (x∗, y∗) is a saddle point of L if and only if

min
x

max
y

L(x, y) = max
y

min
x

L(x, y) = L(x∗, y∗).

The statement should be read as
“(x∗, y∗) is a saddle point, if and only if
the minima and maxima exist and the
equality holds”.

Proof. For all x̄, ȳ it holds that

sup
y

L(x̄, y) ≥ L(x̄, ȳ) ≥ inf
x

L(x, ȳ).

Taking the infimum over all x̄ on the left and the supremum over
all ȳ on the right shows the inequality.

Now, let (x∗, y∗) be a saddle point. From the formulation (*)
above and the min-max inequality we get that

L(x∗, y∗) ≥ max
y

L(x∗, y) ≥ inf
x

max
y

L(x, y)

≥ sup
y

inf
x

L(x, y) = sup
y

min
x

L(x, y) ≥ min
x

L(x, y∗) = L(x∗, y∗).

Check, that the change from sup to
max and inf to min is justified in all
places.Conversely, assume that the interchange of minimum and

maximum gives the same result. Then

min
x

L(x, y∗) ≤ L(x∗, y∗) ≤ max
y

L(x∗, y)

which shows that (x∗, y∗) is a saddle point.

Example 15.2. In many cases, one only has the min-max inequality,
but no saddle points exist, even though maxima and minima exist.
The simplest example may be

L(x, y) = sin(x + y).

It holds that

inf
y

sup
x

sin(x + y) = 1 > −1 = sup
x

inf
y

sin(x + y)

even though the infima and suprema are attained. �
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Definition 15.3. For a saddle-point problem with function L de-
fine F(x) = supy L(x, y) and G(y) = infx L(x, y). Then the corre-
sponding primal and dual problem are

min
x

F(x) and max
y

G(y),

respectively.

One sees that if (x∗, y∗) is a saddle point of L, then x∗ solves
the primal problem and y∗ solves the dual problem and one has
the that F(x∗) = G(y∗), i.e. the primal and dual optimal values
coincide.

A little more terminology: If we have

inf
x

sup
y

L(x, y) = sup
y

inf
x

L(x, y)

we say that strong duality holds for the saddle point problem, while
the min-max inequality shows that one always has weak duality. In
terms of primal and dual problems: The primal and dual problems
of a saddle point problem always obey weak duality i.e. it always
holds that infx F(x) ≥ supy G(y) and if infx F(x) = supy G(y),
even strong duality holds. Note that strong duality does not imply
that the infimum or supremum are attained.

If a saddle point problem does not obey strong duality, we say
that there is a duality gap and the difference infx supy L(x, y) −
supy infx L(x, y) is called value of the duality gap.

Coming back to the problem

min
x

f (x) + g(Ax)

from the beginning of the section we see that this is the primal
problem of the saddle point problem for

L(x, y) = f (x) + �Ax, y� − g∗(y)

and the respective dual problem is

max
y

− f ∗(−ATy)− g∗(y).

In this context, the function L is also called Lagrangian of the
problem. Weak duality

inf
x

f (x) + g(Ax) ≥ sup
y

− f ∗(−ATy)− g∗(y)

always holds.Moreover,wewill denote the primal objective by F(x) =
f (x) + g(Ax) and the dual objective by G(y) = − f ∗(−ATy) −
g∗(y).

The knowledge of the dual problem is useful, to get cheap
estimates on the distance to optimality:
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Proposition 15.4. For convex, proper and lsc function f and g and
matrix A define the gap function

gap(x, y) := f (x) + g(Ax) + f ∗(−ATy) + g∗(y) = F(x)− G(y).

Moreover, denote the primal and dual objective by F and G as above.
Then it holds for any pair (x̄, ȳ) where G(ȳ) > −∞ that

gap(x̄, ȳ) ≥ F(x̄)− inf
x

F(x).

Proof. By weak duality one has F(x̄) ≥ infx F(x) ≥ supy G(y) ≥
G(ȳ) and especially infx F(x) ≥ G(ȳ). Hence, we have

F(x̄)− inf
x

F(x) ≤ F(x̄)− G(ȳ) = gap(x̄, ȳ).

What is the corresponding statement
for the distance to dual optimality?

Theorem 15.5 (Fenchel-Rockafellar duality). Let f : Rn → R̄, g :
Rm → R̄ be proper, convex and lsc and let A ∈ Rn×m. If

�

λ≥0

λ(dom(g)− A dom( f )) = Rm

then strong duality holds, i.e.

inf
x∈Rn

f (x) + g(Ax) = max
y∈Rm

− f ∗(−ATy)− g∗(y)

(and especially the max on the right hand side is attained).

Proof. We define Φ : Rn × Rm → R̄ by Φ(x, y) = f (x) + g(y)
and let M = {(x, Ax) | x ∈ Rn} (i.e. M is the graph of A).

We aim to show that
�

λ≥0

λ(dom(Φ)− M) = Rn × Rm.

To that end, let (x, y) ∈ Rn × Rm. By assumption, there exists
λ ≥ 0, u ∈ dom( f ) and v ∈ dom(g) such that

y − Tx = λ(v − Tu)

and one can show (as in the beginning of Step 3 in Theorem 14.5)
that one can even choose λ > 0. If we set a = u − x/λ we get

x = λ(u − a), y = λ(v − Ta)

and this shows that indeed (x, y) ∈ �
λ≥0 λ(dom(Φ)− M).

Now we define Ψ(x, y) = IM(x, y) and note that we have just
shown that condition (Q) is fulfilled for Φ and Ψ. Thus we have
by Theorem 14.5

(Φ + Ψ)∗ = Φ∗ � Ψ∗
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and the infimal convolution is exact. Actually, we only need this
equality at 0 since

(Φ + Ψ)∗(0) = sup
(x,y)

−Φ(x, y)− Ψ(x, y) = sup
y=Ax

− f (x)− g(y)

= − inf
x

f (x) + g(Ax)

and

(Φ∗ � Ψ∗)(0) = min
(x,y)

Φ∗(x, y) + Ψ∗(−(x, y)) = min
x=−ATy

f ∗(x) + g∗(y)

= min
y

f ∗(−ATy) + g∗(y).
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16 Examples of duality and optimality systems

Example 16.1 (LP duality). A linear program is an optimization prob-
lem where the objective function is linear and where there are
linear equality and inequality constraints. The standard form of a
linear program is: Given c ∈ Rn, A ∈ Rm×n and b ∈ Rm solve

min
x∈Rn

�c, x� subject to Ax ≤ b

where the inequality is understood componentwise. In otherwords

min
x∈Rn

{�c, x� | Ax ≤ b}.

We rewrite this in the context of Fenchel-Rockafellar duality
as

min
x∈Rn

f (x) + g(Ax)

with f (x) = �c, x�, g(v) = IRm
≤0
(v − b). The conjugates are

f ∗(p) = sup
x
�p − c, x� =

�
0, if p − c = 0
∞, else,

= I{c}(p),

g∗(y) = sup
v−b≤0

�v, y� =
�
�b, y�, if y ≥ 0
∞, else.

Hence, the dual problem is

max
y∈Rm

− f ∗(−ATy)− g∗(y) = max
y

{−�b, y� | −ATy = c, y ≥ 0}

I.e. the (Fenchel-Rockafellar) dual of a linear problem is another
linear program, namely

max
y∈Rm

−�b, y� subject to ATy + c = 0
y ≥ 0.

If m < n, then the dual problem has fewer variables (but more
constraints). �
Example 16.2 (Equality constrained norm minimization). We con-
sider the primal problem

min
x∈Rn

�x� subject to Ax = b

with A ∈ Rm×n, b ∈ Rm and �·� denoting any norm on Rn. With
f (x) = �x� and g(v) = I{b}(v) this is of the form minx f (x) +
g(Ax). The conjugate of g is simply

g∗(y) = �b, y�

and the conjugate of f is

f ∗(p) = sup
x
�p, x� − �x�.
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With the notion of dual norm, defined by

�p�∗ = sup
�x�≤1

�p, x�

which fulfills �p, x� ≤ �x��p�∗ we can express the conjugate of f
as

f ∗(p) = I{�·�∗≤1}(p).

Hence, the dual problem is

max
y∈Rm

−�b, y� subject to �ATy�∗ ≤ 1.

In the case of the 1-norm (whose dual is the ∞-norm), the primal

min
Ax=b

�x�1

has the dual

max
�ATy�∞≤1

−�b, y�

which can be written as a linear program By the previous example, we know that
the primal should also be a linear pro-
gram, can you see how to write it a
such?

max
y∈Rm

−�b, y� subject to ATy ≤ 1

−ATy ≤ 1.

�
If both the subgradient sum-rule and the subgradient chain-

rule hold for the objective

min
x

f (x) + g(Ax)

an optimal x∗ is characterized by the inclusion

0 ∈ ∂ f (x∗) + AT∂g(Ax∗).

Fenchel-Rockafellar duality allows for an alternative optimality
system that uses the dual variable:

Proposition 16.3. Let f , g be proper, convex and lower semicontinuous
and assume strong duality is fulfilled and that the primal problem has a
solution, i.e. we have

min
x

f (x) + g(Ax) = max
y

− f ∗(−ATy)− g∗(y)

then a pair (x∗, y∗) is a saddle point of f (x) + �Ax, y� − g∗(y) if and
only if By the subgradient inversion theorem

(Lemma 13.3), the primal dual optimality
system is also equivalent to

−ATy∗ ∈ ∂ f (x∗)
Ax∗ ∈ ∂g∗(y∗).

−ATy∗ ∈ ∂ f (x∗)
y∗ ∈ ∂g(Ax∗).

This primal-dual optimality system (or Fenchel-Rockafellar duality sys-
tem) is also equivalent to x∗ begin a solution to the primal problem and
y∗ being a solution to the dual problem.

Convex Analysis | TU Braunschweig | Dirk Lorenz | SoSe 2021
Please submit erros to d.lorenz@tu-braunschweig.de

71



09.06.2021, VL 16-3

Proof. A pair (x∗, y∗) is optimal if and only if

− f ∗(−ATy∗)− g∗(y∗) = f (x∗) + g(Ax∗)

to which we add and subtract �y∗, Ax∗� to get
�−ATy∗, x∗�+ �y∗, Ax∗� − f ∗(−ATy∗)− g∗(y∗) = f (x∗) + g(Ax∗).

ByFenchel’s inequalitywe have �−ATy∗, x∗� ≤ f (x∗)+ f ∗(−ATy∗)
and �y∗, Ax∗� ≤ g(Ax∗) + g∗(y∗), and see that the previous equal-
ity if equivalent to

�−ATy∗, x∗� = f (x∗) + f (−ATy∗) and �y∗, Ax∗� = g(Ax∗) + g∗(y∗)

which, by Fenchel’s equality, is equivalent to the primal-dual opti-
mality system.

Example 16.4 (Primal-dual optimality for LPs). Let us work out
the primal-dual optimality system for the LP from Example 16.1.
The subgradient of f is just ∂ f (x) = c (independent of x). The
subgradient of g fulfills

∂g(v) =

�
0, if v < b,
∅, if v �≤ b

In the remaining (interesting) cases where some of the inqualities
vi ≤ bi are tight, we have for any w ∈ ∂g(v) that wi ∈ ]−∞, 0].
Hence, the primal-dual optimality system is The last condition is a so-called compli-

mentarity condition and it states that at
least one of the quantities yi or (Ax −
b)i has to be zero for every i.

−ATy∗ ∈ ∂ f (x∗) =⇒ −ATy∗ = c

y∗ ∈ ∂g(Ax∗) =⇒ Ax∗ ≤ b, and
�

y∗i = 0, if (Ax∗)i < bi

y∗i ≤ 0, if (Ax∗)i = bi.

�
Example 16.5 (Primal-dual optimality system for constrained norm
minimization). In the normminimization example (Example 16.2),
we have ∂g∗(v) is empty if v �= b, but equal to R for v = b. It total
we get as optimality system

−ATy∗ ∈ ∂ f (x∗) =⇒ −ATy∗ = ∂�x∗�
y∗ ∈ ∂g(Ax∗) =⇒ Ax∗ = b.

Let’s consider special cases:

• Let �x� = �x�1. Then the subgradient fulfills

p ∈ ∂�x�1 ⇐⇒
�

pi = sign(xi), if xi �= 0
|pi| ≤ 1, if xi = 0.

Hence, the primal-dual optimality system is

Ax∗ = b,

|ATy|i ≤ 1,

(ATy)i = sign(xi) if xi �= 0.
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• In the case of the 2-norm one would rather take f (x) =
1
2�x�2

2 (with subgradient ∂ f (x) = {x}) and get the primal-
dual optimality system

−ATy∗ = x∗

Ax∗ = b.

�
In some cases the inclusion−ATy ∈ ∂ f (x) can help to recover

a primal solution from a dual solution: By subgradient inversion
(Lemma 13.3) the inclusion is equivalent to x ∈ ∂ f ∗(−ATy). If
∂ f ∗ is single valued, this even leads to a single primal solution
correspoding the any dual solution. The next propositions shows
that this is the case, for example, when f is strongly convex.

Proposition 16.6. Let f : Rd → R̄ be proper, convex and lsc. Then the
subgradient is monotone, in the sense that for pi ∈ ∂ f (xi), i = 1, 2, then

�p1 − p2, x1 − x2� ≥ 0.

If f is strongly convex with constant µ, then it even holds that

�p1 − p2, x1 − x2� ≥ µ�x1 − x2�2
2.

Proof. The first claim follows by adding the two subgradient in-
equalities f (x2) ≥ f (x1) + �p1, x2 − x1� and f (x1) ≥ f (x2) +
�p2, x1 − x2�. For the second claim, apply the first one to the con-
vex function g(x) = f (x)− µ

2 �x�2
2 with pi − µxi ∈ ∂g(xi).

Proposition 16.7. If f : Rd → R̄ is proper, strongly convex with
constant µ and lsc, then:

i) dom( f ∗) = Rd,

ii) f ∗ is 1/µ-smooth and moreover ∇ f ∗(p) = argmaxx�p, x� − Recall that f ∗ is L-smooth if it is dif-
ferentiable with ∇ f ∗ being Lipschitz
continuous with constant L.f (x),

Proof. i) Since f ∗(p) = supx�x, p� − f (x), we see that strong
convexity of f ensures existence of maximizers for every p,
and this gives a finite value for the supremum for every p.

ii) By Fermat’s principle, some x maximizes �p, x� − f (x) exactly
if p ∈ ∂ f (x) which is, by subgradient inversion, equivalent
to x ∈ ∂ f ∗(p). By strong convexity of f , the maximizer x is
unique for every p, which shows that ∂ f ∗(p) is a singleton and
Proposition 9.7 implies differentiablity of f ∗ and

∂ f ∗(p) = {∇ f ∗(p)} = {x}.

This also implies that ∇ f ∗(p) = argmaxx�p, x� − f (x).
Proposition 16.6 shows for p ∈ ∂ f (x) and p� ∈ ∂ f (x�) that

�p − p�, x − x�� ≥ µ�x − x��2.
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Subgradient inversion gives x ∈ ∇ f ∗(p) and x� ∈ ∇ f ∗(p�)
and this gives

�p − p�,∇ f ∗(p)−∇ f ∗(p�)� ≥ µ�∇ f ∗(p)−∇ f ∗(p�)�2
2.

ApplyingCauchy-Schwarz’s inequality shows �∇ f ∗(p)−∇ f ∗(p�)�2 ≤
1
µ�p − p��2 as claimed.
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17 Classes of optimization problems

We are going to develop a theory that will allow us to say how hard
a certain class of optimization problems is. To that end we will
have to pin down some ingredients:

• The problem class: How do we describe a problem from a
class? What properties do we assume for a problem?

• The algorithm: What information of the problem can be
used by the algorithm?

• A notion of approximate solution: How do we measure how
good some approximate solution is?

We will analyze iterative algorithms and our goal is, to quantify
how many steps are needed to get an answer with a given accuracy.

We will start with a very simple case (that is actually not related
to convex analysis at all):

Global optimization of Lipschitz functions on bounded domains.

Problem class: Let Q = [0, 1]n be the unit cube and f : Q → R

be Lipschitz continuous with constant L with respect to the
∞-norm. The problem we consider is

min
x∈Q

f (x).

We consider Lipschitz continuous func-
tion for some reason: Since we want
a ceertain accuracy for some given it-
erate xk, we would like to able to es-
timate f (xk)− minx∈Q f (x) in some
way. If f is merely continuous, the func-
tion may vary as much as it like in a
small neighborhood, and with Lipschitz
continuity we are able to bound such
variations.Oracle: In each step we are able to query the function value f (x)

for some point x ∈ Q.
This is called a zeroth order oracle and
methods that only use functions evalu-
ations are called zeroth order methods.

Here is a very simple algorithm:

Algorithm 1: Grid search
Input: p ∈ N

For all (i1, . . . , in) ∈ {0, . . . , p}n assemble points

x(i1,...,in) =
� i1

p , . . . , in
p

�T

In every point x(i1,...,in) evaluate the functional value;
Find x̄ among the x(i1,...,in), which has the smallest
objection value;
Result: Pair (x̄, f (x̄))

Let us analyze this method:

Theorem 17.1 (Upper complexity bound for grid search). Denote
f ∗ := minx∈Q f (x) and let x̄ be the output of Algorithm 1. Then it holds
that

f (x̄)− f ∗ ≤ L
2p .
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Proof. Let f ∗ = f (x∗). Then, x∗ lies in one grid cell, i.e. we have

x := x(i1,...,in) ≤ x∗ ≤ y(i1+1,...,in+1) =: y.

From these two surronding points we define the best point on the
grid nearby as

x

y

x∗

x̃

(x̃)i =

�
yi, x∗i ≥ xi+yi

2

xi, else.

Then we have |x̃i − x∗i | ≤ 1/(2p) and since x̃ is among the grid
points, we have

f (x̄)− f ∗ ≤ f (x̃)− f (x∗) ≤ L�x̃ − x∗�∞ ≤ L
2p .

In other words: To reach an accuracy f (x̄)− f ∗ ≤ � we need
p ≥ L/(2�), and since the number of points in the grid is N =
(p+ 1)n, the number of function evaluations (or calls to the oracle)
is at least

N ≥ ( L
2� + 1)n.

While this is a lot, the next theorem shows, that one can not do
much better than that. We can prove such result, by constructing a
problem that tries to annoy a given problem as much as possible.

Theorem 17.2. If � < L/2, there is no method that solves the problem
with less than (�L/(2�)�)n function evaluations.

Proof. Set p = �L/(2�)� (note p ≥ 1) and assume that there is
method that needs N < pn function evaluations to solve any
problem in our class. We construct an “annoying” f : We build f
such that f (x) = 0 for all points that have been tried, but f ∗ =
min f being as small as possible.

Since p ≥ 1, and since we have N < pn evaluation points,
there has to be a small cube Q� ⊂ Q of sidelength 1/p that does
not contain any of these evaluation points. Let x∗ be the midpoint
of Q� and set Q

Q�

x∗

f (x) = min(0, L�x − x∗�∞ − ��)

with � < �� < L/(2p). This f is L-Lipschitz by definition and
equals 0 outside of Q� (since ��/L < 1/(2p)). Its minimal values
is f ∗ = f (x∗) = −��. Hence, the accuracy of this method is �� >
�.

We have seen that grid seach need roughly ( 1
� )

n iterations and
the lower bound we got in the theorem is of the same order of
magnitude. Hence, grid search is actually not a bad method for
this class, althoug the numer of iterations can be insanely large.
This indicates, that general problems from this class can be very
hard.

Here are further problems classes that we will deal with:
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Convex and L-Lipschitz.

Problem class: f : Rn → R̄, proper, convex and L-Lipschitz with
respect to the 2-norm and the problem is

min
x∈Rn

f (x).

Oracle: At a given point xk we are able to query one subgradient
pk ∈ ∂ f (xk).

Method: The iterates will only move in the set

xk ∈ x0 + span{p0, . . . , pk−1}

i.e. in each step we can only move into directions of subgra-
dients which we have already encoutered.

Convex and L-smooth.

Problem class: f : Rn → R convex and differentiable with L-
Lipschitz gradient and the problem is

min
x∈Rn

f (x).

Oracle: At a given point xk we are able to query the gradient gk =
∇ f (xk).

Method: The iterates will only move in the set

xk ∈ x0 + span{g0, . . . , gk−1}

i.e. in each stepwe can onlymove into directions of gradients
which we have already encoutered.

Convex, L-smooth and µ-strongly convex. Same as before, and
we additionally assume that f is strongly convex with constant
µ > 0.

Now we collecd a few more facts about smooth and strongly
convex functions:

Theorem 17.3. The following conditions are equivalent to f being convex
and L-smooth (each holding for all x, y and λ ∈ [0, 1]): The property in iii) is called cocoerciv-

ity of the gradient ∇ f . It is not to be
confused with strong convexity where
one has a lower bound of the form
µ/2�x − y�2

2.

i) 0 ≤ f (y)− f (x)− �∇ f (x), y − x� ≤ L
2 �x − y�2

ii) f (x) + �∇ f (x), y − x�+ 1
2L�∇ f (x)−∇ f (y)�2 ≤ f (y)

iii) 1
L�∇ f (x)−∇ f (y)�2 ≤ �∇ f (x)−∇ f (y), x − y�

iv) �∇ f (x)−∇ f (y), x − y� ≤ L�x − y�2

v) λ f (x) + (1 − λ) f (y) ≥ f (λx + (1 − λ)y) + λ(1−λ)
2L �∇ f (x)−∇ f (y)�2

vi) λ f (x) + (1 − λ) f (y) ≤ f (λx + (1 − λ)y) + λ(1−λ)L
2 �x − y�2
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Proof. Claim i) is just convexity combined with Lemma 12.4.
Now fix x0 and consider ϕ(y) = f (y)− �∇ f (x0), y� which has

its minimum at y∗ = x0. By i) we have

ϕ(y∗) ≤ ϕ(y − 1
L∇ϕ(y)) ≤ ϕ(y) + L

2 � 1
L∇ϕ(y)�2 + �∇ϕ(y),− 1

L∇ϕ(y)�
= ϕ(y)− 1

2L�∇ϕ(y)�2

which shows ii) since∇ϕ(y) = ∇ f (y)−∇ f (x0).
Inequality iii) follows from ii) by adding two copies of ii) with

x and y swapped and by Cauchy-Schwarz we get L-smoothness
from iii).

Inequality iv) follows from i) by adding two copies and vice
versa iv) implies i) by

f (y)− f (x)− �∇ f (x), y − x� =
� 1

0
�∇ f (x + τ(y − x))−∇ f (x), y − x�dτ

≤ L
2 �y − x�2.

To get v) from ii) set xα = αx + (1 − α)y and note

f (x) ≥ f (xα) + �∇ f (xα), (1 − α)(x − y)�+ 1
2L�∇ f (x)−∇ f (xα)�2

f (y) ≥ f (xα)− �∇ f (xα), α(y − x)�+ 1
2L�∇ f (y)−∇ f (xα)�2.

Multiplying by α and (1 − α), respectively, and adding we get v).
Conversely, we get ii) from v) by dividing by 1 − α and α → 1.

Similarly, one shows the equivalence of i) and vi).

Lemma 17.4. A differentiable function f : Rn → R̄ is µ-strongly
convex if and only if for all x, y we have

f (y) ≥ f (x) + �∇ f (x), y − x�+ µ
2 �y − x�2

2.

Proof. Just apply Theorem 5.1 iii) to the convex function g(x) =
f (x)− µ

2 �x�2
2 with gradient ∇g(x) = ∇ f (x)− µx.

Theorem 17.5. Let f be µ-strongly convex. Then it holds for all x, y that

f (y) ≤ f (x) + �∇ f (x), y − x�+ 1
2µ�∇ f (x)−∇ f (y)�2

2

�∇ f (x)−∇ f (y), x − y� ≤ 1
µ�∇ f (x)−∇ f (y)�2

2.

Proof. For the first inequality we fix x and tilt f by defining ϕ(y) =
f (y) + �∇ f (x), y�. Note that∇ϕ(x) = 0 and thus ϕ is minimal at
x. Since ϕ is still µ-strongly convex, we have ϕ(x) ≥ minz ϕ(z) ≥
minz

�
ϕ(y) + �∇ϕ(y), z − y�+ µ

2 �z − y�2
2
�
. We calculate that the

minimum on the right as attained at z = y − 1
µ∇ϕ(y) and has the

value ϕ(y)− 1
2µ�∇ϕ(y)�2

2 which is exactly the first inequality.
For the second inequality just swap the roles of x and y in the

first and add both of them.
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Theorem 17.6. Let f be µ-strongly convex and L-smooth with L ≥ µ.
Then it holds for all x, y that

�∇ f (x)−∇ f (y), x − y� ≥ µL
µ+L�x − y�2

2 +
1

µ+L�∇ f (x)−∇ f (y)�2
2.

Proof. We define the function ϕ(x) = f (x)− µ
2 �x�2

2 which is still
convex and since the gradient is∇ϕ(x) = ∇ f (x)− µx, is it L− µ-
smooth.

In the case L = µ we see from Theorem 17.3, iv) and Proposi-
tion 16.6 that �∇ f (x)−∇ f (y), x − y� = µ�x − y�2

2 from which
we conclude f (x) = µ

2 �x�2
2 and the theorem holds.

For µ < L we get from Theorem 17.3 iii) that

�∇ϕ(x)−∇ϕ(y), x − y� ≥ 1
L−µ�∇ϕ(x)−∇ϕ(y)�2

2.

The left hand side evaluates to

�∇ f (x)−∇ f (y), x − y� − µ�x − y�2
2

while the right hand side is

1
L−µ

�
�∇ f (x)−∇ f (y)�2

2 − 2µ�∇ f (x)−∇ f (y), x − y�+ µ2�x − y�2
2
�
.

Plugging this in and cleaning up proves the result.
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18 Convergence rates and worst case analysis

Now we will apply the concept of “annoying problems” to more
classes of optimization problems. We start with the class of convex
and L-Lipschitz functions, i.e. we do not assume differentiability
or strong convexity and can only use subgradients in each iteration.
Here is the result on worst case analysis:

Theorem 18.1. For every k ∈ {0, . . . , n + 1} there exists some convex
function fk : Rn → R̄ which is Lipschitz contiuous with constant L,
and has a minimum f ∗k = fk(x∗) at some x∗ with �x∗�2 ≤ R and an
oracle that gives a subgradient p ∈ ∂ f (x) such that any sequence xk

that fulfills xk ∈ x0 + span{p0, . . . , pk−1} fulfills

fk(xk)− f ∗k ≥ LR
2(1+

√
k+1)

.

Proof. For some constant µ, γ > 0 (to be defined later) we set

fk(x) = γ max
1≤i≤k

xi +
µ
2 �x�2

2.

The subdifferential is

∂ fk(x) = γ conv{ei | i ∈ I(x)}+ µx

where I(x) := {j ∈ {1, . . . , k} | xj = max1≤i≤k xi}. This function
is Lipschitz continuous on any ball Bρ(0), since by the subgradient
inequality we have for all pk(x) ∈ ∂ fk(x) that

fk(y)− fk(x) ≤ �pk(y), y − x� ≤ �pk(y)�2�x − y�2 ≤ (µρ + γ)�x − y�2

and hence L = µρ + γ is a Lipschitz constant.
Solving the inclusion 0 ∈ ∂ fk(x) we see that a minimizer is at

xk∗ given by

(xk∗)i =

�
− γ

µk , if 1 ≤ i ≤ k

0, else.

The norm of the minimizer and the optimal value are

Rk := �xk∗�2 =

�
k
� γ

µk

�2
= γ

µ
√

k
, f ∗k := fk(xk∗) = − γ2

µk +
µ
2 R2

k = − γ2

2µk .

Let us initialize the method with x0 = 0 and see what we can get.
We aim to show that the j-th iterate (j ≤ k) xj has all entries with
indices i = j + 1, . . . , n equal to zero. In the first step, our oracle
gives us the subgradient p0 = γe1 (others would be possible, but
this is the worst choice) and hence, x1 has all entries x1

i equal to
zero with the only possible exception of i = 1 and this proves the
case j = 1.

For an induction assume that xj fulfills the assumption. Our
oracle gives the subgradient pj = µxj + γei∗ with i∗ ≤ j + 1 (note
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that the first j entries may all be negative so that i∗ = j + 1 is
possible), and this shows the claim.

Hence, in the first k − 1 steps, the objective value fulfills

fk(xi) ≥ max
1≤j≤k

xi
j ≥ 0.

Now we choose our constants as

γ =
√

kL
1+

√
k
, µ = L

(1+
√

k)R

and observe that

f ∗k = − γ2

2µk = − LR
2(1+

√
k)

and �x0 − x∗�2 = γ

µ
√

k
= R. Finally, we compute that the function

is indeed Lipschitz continuous on the ball BR(0) with constant
µR + γ = L as desired.

Hence, we conclude that no algorithm that only uses subgradi-
ent steps is able to solve all optimization problems with Lipschitz-
continuous convex objective with less than O(1/

√
k) operations.

One says: The iterations complexity of convex optinization is
O(1/

√
k).

Now let us analyze the next class of problems: Convex and L-
smooth objectives. At each iteration xk we can query the gradient
gk = ∇ f (xk) and the k-th iterate is assumed to be in the set

x0 + span{g0, . . . , gk−1}.

We will call any method that fulfills this
assumption a first order method.Here is an annoyoing objective that is difficult for all such

methods: For given L > 0 and 0 ≤ k ≤ n let fk : Rn → R be
defined by

fk(x) = L
4

�
1
2

�
(x1)

2 +
k

∑
i=1

(xi − xi+1)
2 + (xk)

2�− x1

�
.

We rewrite this objective with the matrix

Dk =




−1
1 −1

. . . . . . 0k+1,n−k
1 −1

1
0n−k−1,k 0n−k−1,n−k




.

as

fk(x) = L
4

� 1
2�Dkx�2

2 + �e1, x�
�
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and we have

∇ fk(x) = L
4 (DT

k Dkx − e1) and ∇2 f (x) = L
4 DT

k Dk.

One sees

Ak = DT
k Dk =




2 −1

−1 2
. . .

. . . −1 0k,n−k
−1 2

0n−k,k 0n−k,n−k




and hence, we get

0 ≤ L
4 �Dks�2 = �∇2 fk(x)s, s�

= L
4

�
(s(1))2 +

k−1

∑
i=1

(s(i) − s(i+1))2 + (s(k))2
�

≤ L
4

�
(s(1))2 +

k−1

∑
i=1

2
�
(s(i))2 + (s(i+1))2�+ (s(k))2

�

≤ L
n

∑
i=1

(s(i))2 = L�s�2.

This shows 0 � ∇2 fk(x) � LI and we have proven the fk is convex
and L-smooth.

Proposition 18.2. The function fk has a minimizer

x∗i =

�
1 − i

k+1 , if i = 1, . . . , k
0, if i = k + 1, . . . , n.

and optimal value and norm

f ∗k = fk(x∗) = L
8 (−1 + 1

k+1 ) and �x∗�2
2 ≤ k+1

3 , respectively.
Note that the entries of the minimizer
(and hence also f ∗k and its norm as well)
depend on the value k. We will make
use of this in the following.

Proof. The optimality condition is

0 = ∇ fk(x) = L
4 (Akx − e1)

which is



2 −1

−1 2
. . .

. . . −1 0k,n−k
−1 2

0n−k,k 0n−k,n−k







x1
...
...

xn



=




1
0
...
0




We see that xi = 0 for i = k + 1, . . . , n. The first equation is
2x1 − x2 = 1, which gives

x2 = 2x1 − 1.
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Plugging this is the second equation −x1 + 2x2 − x3 = 0 gives

x3 = 3x1 − 2.

Proceeding in this way, we get for i = 2, . . . , k from the i − 1th
equation that

xi = ix1 − (i − 1). (*)

The k-th equation −xk−1 + 2xk = 0 is then

0 = −(k − 1)x1 + (k − 2) + 2(kx1 − (k − 1)) = (k + 1)x1 − k.

which shows x1 = 1 − 1/(k + 1). Plugging this in (*) shows the
formula for the minimizer.

For the minimal value we just plug in and get

f ∗k = fk(x∗) = L
4

� 1
2�Dx∗�2 − �x∗, e1�

�

= L
4

� 1
2 �Akx∗� �� �

e1

, x∗� − �x∗, e1�
�
= − L

8 �x∗, e1�

= L
8 (−1 + 1

k+1 ).

Finally, we esimate

�x∗�2 =
n

∑
i=1

(x∗i )
2 =

k

∑
i=1

�
1 − i

k+1

�2
=

k

∑
i=1

�
1 − 2i

k+1 +
i2

(k+1)2

�

= k − 2
k+1

k

∑
i=1

i

����
=

k(k+1)
2

+ 1
(k+1)2

k

∑
i=1

i2

����
≤ (k+1)3

3

≤ k+1
3 . (3)

We used the estimate (k + 1)3 =

∑k
i=0[(i+ 1)3 − i3] = ∑k

i=0[3i2 + 3i+
1] ≥ 3 ∑k

i=1 i2. The exact sum would
be ∑k

i=1 i2 = k(k+1)(2k+1)
6 (which we

will use in the next section).

Now let us analyze how methods according to our definition
perform for this particular function.

Lemma 18.3. Let 1 ≤ p ≤ n and x0 = 0. Then it holds for every
sequence xk with

xk ∈ Lk := span{∇ fp(x0), . . . ,∇ fp(xk−1)}
and k ≤ p that xk = (∗, . . . , ∗, 0 . . . , 0), i.e. only the first k entries can
be different from zero.
Proof. Recall that ∇ fp(x) = L

4 (Apx − e1), and hence we see that
∇ fp(x0) = − L

4 e1, and hence, x1 fulfills the claim.
No proceed inductively: if xk only has the first k entries non-

zero, then, since Ap is tridiagonal, gk+1 = ∇ fp(xk) has only the
first k + 1 entries different zero and the same holds for xk+1.

Corollary 18.4. For every sequence xk, k = 0, . . . , p with x0 = 0 and
xk ∈ Lk it holds that fp(xk) ≥ f ∗k .

We only observe that since xk ∈ Lk, it only has the first k
components non-zero and thus, that fp(xk) = fk(xk) ≥ f ∗k .
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