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Abstract. Deploying a physically unclonable trusted anchor is required for se-
curing software running on embedded systems. Common mechanisms combine 
secure boot with either stored secret keys or keys extracted from a Physical Un-
clonable Function (PUF). We propose a new secure boot mechanism that is hard-
ware-based, individual to each device, and keyless to prohibit any unauthorized 
alteration of the software running on a particular device. Our solution is based on 
the so-called Secret Unknown Hash (SUH), a self-created random secret un-
known hardwired hash function residing as a permanent digital hardware-module 
in the device’s physical layout. It is initiated in the device in a post-manufactur-
ing, unpredictable single event process in self-reconfigurable non-volatile SoC 
FPGAs. In this work, we explain the SUH creation process and its integration for 
a device-specific secure boot. The SUH is shown to be lightweight when imple-
mented in a sample scenario as a DM-PRESENT-based hash function. A security 
analysis is also presented, highlighting the different proposed sample SUH-class 
entropies .  

Keywords: Self-reconfigurable environment, SoC FPGA, Secure-boot, Physi-
cally Unclonable Function, Unknown Secret. 

1 Introduction 

Our trust in electronic systems depends on trusting that the physical electronic plat-
forms’ software executes all and only the intended operations. Rigorous trustworthiness 
starts from the foundation and expands through the system software stacks [1]. After 
power-on and before executing the end-application software, the bootstrap process 
should ensure that no software component has been modified in an unauthorized man-
ner. Thus, a secure boot becomes an essential requirement for ensuring a bootstrap se-
cure and robust against possible severe attacks [2][3]. In addition to software integrity, 
some secure boot variants ensure software authenticity by deploying a key provisioned 
by the manufacturer of the System on Chip (SoC). Unfortunately, if the key is not 
unique to each device, then if one device’s secure boot’s key is compromised, the secure 
boot of all the other devices using that same key is also compromised. Thus, 
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establishing a device-specific secure boot eliminates such risk. However, provisioning 
a unique key for every device can be a logistically demanding task, and even if it is 
uniquely generated, when stored in a Non-Volatile Memory (NVM), reconfigurable, or 
One-Time Programmable (OTP), the key is prone to some read-back attacks [4].  

An alternative device-specific secure boot solution is to derive a device-unique key 
from a Physical Unclonable Function (PUF). However, despite what PUF technology 
promises, additional mechanisms are required to ensure the consistency of PUF’s re-
sponse reproducibility over time. Moreover, a non-protected strong PUF falls 2short 
against modeling attack. 

This paper proposes using a self-created random hardwired cryptographic function, 
so-called Secret Unknown Hash (SUH), to establish a device-specific secure boot for 
an SoC environment equipped with reconfigurable hardware fabric. SUH’s digital na-
ture makes its responses inherently reproducible over time without the need for addi-
tional countermeasures, as in the PUF case. The proposed boot mechanism requires 
SoC with a self-reconfigurable non-volatile (embedded) Field-Programmable Gate Ar-
ray ((e)FPGA) fabric as a suitable platform for the SUH creation. SUH can be created 
during a post-manufacturing unpredictable single event process within the device itself, 
eliminating the need to trust the SoC manufacturer for provisioning a device-unique 
secret. The self-created SUH hardware module is distributed in the unoccupied FPGA 
fabric areas, making it harder for adversary reach. The self-reconfigurable property is 
still not existent in the non-volatile FPGA landscape, but it is expected to submerge 
soon due to its demanded properties.  

2 Summary of Contributions:  

In this work:  
 We first introduce SUH-based secure boot (Table. 1, Fig.1), and we show state-of-

the-art secure boot hardware-based solutions such as PUF-based secure boot. 
 We enumerate the PUF limitation (Section 3). 
 We show how self-reconfigurable non-volatile SoC FPGA enables SUH creation 

and explain how SUH ensures a device-specific secure boot. (Section 4) 
 As proof of the concept, we present a possible sample implementation variant of a 

SUH based on a lightweight DM-PRESENT and evaluate its security. (Section 5)   
 We introduce a generalized comparison between two cases of the class entropy of 

SUH. (Table 4) 

Motivation: SUH Vs. PUF secure boot. To highlight the importance of the proposed 
secure-boot mechanism, we summarize the difference between the state-of-the-art 
PUF-based secure boot with the proposed SUH-secure boot. We propose Table 1 and 
Fig. 1 to show the characteristics, similarities, and differences of every solution. The 
hash-based secure boot is to be noted as a reference point since it is the most trivial 
secure boot mechanism. As we show in Table.1, both PUF-based and SUH-based en-
sure software integrity and authentication along with electronic device authentication. 
Meanwhile, unlike PUF, our proposal using SUH has the advantage of providing a 
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consistent response reproducibility without additional measures, being keyless, and be-
ing created in a post-manufacturing setting.  

Table 1. Characteristics, similarities, and differences between SUH-based secure boot (our 
work), hash-based secure boot, and PUF-based secure boot. 

Characteristics Secure boot based on: 

A hardwired tra-
ditional hash 

function alone 

PUF + A hardwired 
traditional hash 

function (Fig. 1(a)) 

SUH 
(introduced in 

this work) 

(Fig. 1(b)) 

Offers data integrity yes yes yes 

Offers data authentication  no yes yes 

Offers device authentication  no yes yes 

Requires additional measurements 
for a consistent response reproduc-
ibility  

no yes no 

Uses a key  no yes no 

Created in Post-manufacturing set-
ting 

no no yes 

Fig.1 shows how the proposed SUH-based solution replaces the PUF and the hash func-
tion while providing a software executable’s digest that is unique and individual to the 
electronic device where the SUH is self-created.  
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Fig. 1. (a) state of the art of device-specific secure boot and (b) the proposed concept 

of the device-specific secure boot. 
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3 Background & Related Work 

3.1 Secure boot  

Secure boot is one of the Trusted Computing (TC) mechanisms used to establish a 
chain-of-trust that starts from a root-of-trust and ends with the last executed software. 
There are a variety of authentication schemes to establish a secure boot: hash-based, 
Message Authentication Code (MAC)-based, and signature-based [5][6]. In this work, 
we refer to a device as an electronic unit. Two devices with identical models, identical 
brands, and identically produced are considered two different electronic units. 

Device-specific secure-boot. A software digest is unique to the device if a unique de-
vice Identity (ID) is included in the hash computation [5][6]. By generating a device-
specific hash value (digest) of the software binary to be authenticated during the boot 
process, the secure boot is made unique to that device. The benefit is that if the adver-
sary could determine a different pre-image for that device’s authentic software digest 
to use it as malicious software, it does not affect the secure boot of other devices run-
ning the same authentic software.  

PUF-based Secure boot. Several secure boot scenarios utilizing PUF as a key source 
exist. Some aim to secure the volatile SoC FPGA bitstream, and others aim to secure 
the processor. The used key is unknown as it is extracted from the PUF and links the 
software or the bitstream to that specific device. For instance, in [7], Twisted Bistable 
Ring PUF (TBR-PUF) generates system keys to protect and authenticate the firmware 
and the operating system using the Advanced Encryption Standard (AES) cipher in a 
Galois/Counter Mode (GCM). In [8], a diode-connected nMOS transistors PUF gener-
ates a 128-bit unique key to be used with the PRESENT cipher and the MAC algorithm 
to ensure the firmware’s confidentiality, authenticity, and integrity. In [9], a Hardware-
Embedded Delay PUF (HELP) is implemented into a Xilinx Zynq 7020 SoC FPGA 
fabric to generate a key encrypting/decrypting a second bitstream containing the pro-
grammable logic and the software to be executed. In [10], a Configurable response-
length Linear Feedback Shift Register (LFSR) based PUF (CoLPUF) generates the 
signing keys for a proposed secure boot framework in a RISC-V SoC environment. 

3.2 PUFs and their limits 

PUF can be considered the physical equivalent of a one-way hash function [11][12]. 
The significant random physical components constituting the PUF make it inherently 
unclonable. Several designs of PUF were proposed, and based on their Challenge Re-
sponses Pairs (CRP), researchers have classified them into two categories; Strong PUF 
supports a large number CRPs with a space that scales exponentially relatively to the 
PUF size and Weak PUF, which is, on the contrary, supports a limited number of CRPs 
in a polynomial or a linear space growth [13]. Although PUF can be a compelling so-
lution for device-specific security, not all PUF are “good enough” for some applica-
tions’ required security level. A PUF should be selected carefully based on some criteria 
such as uniqueness, randomness, and diffuseness, besides the limits enumerated below: 
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Predictability. “An unprotected strong PUF able to resist modeling would be a real 
breakthrough”[13]. Strong PUFs are prone to modeling attacks [14]. Thus, they need 
protection by integrating additional cryptographic primitives [13]. Nevertheless, some 
protected, strong PUFs still fail against different types of modeling attacks. For exam-
ple, the Bistable Ring (BR) PUF was improved twice and still exhibits vulnerabilities 
against modeling attacks. As a first improvement, the TBR-PUF was proposed [15]. 
The second amelioration suggests XORing at least 4 BRs, which has shown the BR is 
immune against only one type of modeling attack: the Support-Vector Machines (SVM 
ML) attack [16]. 

Response Reproducibility. PUF being an analog function, its responses are not accu-
rately reproducible due to aging, wear out, voltage variation, and environmental condi-
tions such as temperature and noise. An adversary can take advantage of this vulnera-
bility to attack the PUF [17]. A post-processing function must condition the raw PUF 
responses into high-quality cryptographic keys and ensure their reproducibility. Such 
functions can be Error Correction Code (ECC), Fuzzy Extractor (FE), or Helper data 
[13]. Besides the additional implementation costs of such functions, some FE  are risky 
to use when the PUF response entropy is low [18].  

Response length expansion. Some PUFs provide a small response space of a few bits 
or, most likely one-bit length [13]. If a PUF is used to generate a key for an encryption 
algorithm, then the required key length n should exceed n=128 bits. Therefore, such 
PUFs require additional methods for expanding the response space. 

3.3 Clone-Resistant Random Secret Unknown Hardwired Crypto-Functions 

PUF became a famous example of exploiting the differences in electronic devices’ 
physical properties to serve as a physical-based security solution. Alternatively, the au-
thors in [4] proposed using uncontrollable permanent differences created within the 
device after manufacturing as a bio-inspired electronic DNA (e-DNA). The e-DNA is 
self-created, non-repeatable, hard to clone, and easily provable with the ability to 
evolve during the device’s lifetime and spread all along in the device’s hardware. Sub-
sequently, a clone-resistant random secret unknown hardwired dynamic/evolving cryp-
tographic functions were proposed in [19] as a device’s e-DNA.  

In our work, we exploit the concept of the clone-resistant self-created random hard-
wired cryptographic function, being a hash function, in a reconfigurable environment 
focusing on its creation and deployment without covering the additional sophisticated 
characteristics such as the evolving property and the diffusion of the e-DNA in the 
whole device’s body.  

4 SUH-based Device-Specific Secure Boot 

The proposed secure boot mechanism relies on a self-created SUH-hardware module 
in a post-manufacturing single even process. A hash function is chosen as a building 
block for the proposed mechanism since its output is an integrity token used in the 
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secure boot process. This hash function is randomly selected from a huge class of hash 
functions such that the probability of guessing which hash has been selected is negligi-
ble—and this hash is secretly self-implemented in the reconfigurable hardware’s fabric 
in hard to predict areas, making it a digital unknown secret for that unique device. PUF 
itself can be regarded as an unpredictable and unknown physical one-way function [12]. 
Thus, SUH can be considered as a possible digital replacement to PUF technology.  

4.1 SUH Creation 

A dedicated temporary software package, so-called Genie-H, generates the SUH within 
the device in a secure environment. Genie-H is then eliminated irreversibly after its task 
completion, ensuring that the SUH is an unknown secret since its creator has disap-
peared. The SUH-generation requires an in-device True Random Number Generator 
(TRNG). The creation steps are depicted in Fig. 2 as follows: A Trusted Authority 
(TA1) injects the temporal Genie-H into the SoC FPGA device SoCu, during a one-time 
random single event operation. A huge class of hash functions {H1, H2,.., Ht} of size 𝑡 
is generated, where 𝑡 →∞ in the best case. Genie-H using a TRNG randomly selects 
one hash function Hj from {H1, H2,..., Ht}. Finally, Genie-H is completely and irrevers-
ibly deleted. What remains in the SoC FPGA is a SUH-choice that nobody knows. A 
TA2, which can be different from TA1, enrolls the SUH in a secure environment. The 
TA2 stimulates the SUH by a set of challenges, Messages (M), and stores the corre-
sponding responses Digests (D) as CRPs of the enrolled device in a secret Mi/Di record. 

TRNG

H1 H2 H3 Hj Ht-1 H t
… …

SUH = Hj

Generated Secret Unknown Hash
(SUH)

Randomly Chosen 

Hash function  Hj

Genie-H

of t Hashes

System on Chip 
Self-reconfigurable 
non-Volatile FPGA

Huge Hash Data Base

IDu

Mu,0 Du,0

… …

Mu,i Du,i

… …

Mu,t-1 Du,t-1

1
“Genie-H” upload

Genie: Smart Designer for Hash

4

The device secret 
records by TA
(kept secret)

Trusted 
Authority 

TA1

Enrollment process

Trusted 
Authority 

TA2

Mu,i

Du,i

3

Response (Digest)

SoCu
Challenge (Message) 

2

SoCu

TRNG

SUHu

TRNG

TRNG

SUHu

Genie-H

Genie-H

SoCu

SUH creation 

SUH elimination 

 

Fig. 2. Creation Steps of SUH on a self-reconfigurable non-volatile SoC FPGA.   

Eventually, the only one who knows about which SUH is selected is the already van-
ished Genie-H. In this setting, nobody knows about the selected SUH even though the 
hash generation method may be known or published. This creation process exempts the 
manufacture from provisioning and knowing anything about the device-specific secret 
for secure boot. It is hard to clone a device whose secret is unknown. The self-created 
SUH hardwired module is programmed in the FPGA fabric such that it is randomly 
distributed on the leftover areas. Finally, any further reconfiguration/modification is 
hard-locked forever by burning some “last fuse.” We refer leftover areas to the FPGA 
fabric spaces that remain free after primary programming it with the main in-
tended/commercial applications (e.g., video & image processing, medical, telecom, 
cloud computing). On the contrary of storing a key in non-volatile memory or storing 
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a design in a well-known FPGA fabric location, SUH is diffused in the leftover areas, 
which can be disjointed, making it harder to recover SUH by some physical probing 
points attacks [20]. 

SUH as a Unique Device ID. Aside from the secure boot authentication, SUH is also 
used for the device’s ID verification via the deployment of the device’s corresponding 
stored Mi/Di: The verifier asks TA2 for a Mi/Di pair from the device’s secret record. 
Then stimulates the device with Mi, and the SUH responds with Di’. If Di’=Di, the ver-
ifier considers the device as authentic.   

4.2 System Model 

The SUH creation requires a platform equipped with SoC and a non-volatile (e)FPGA 
fabric. The FPGA fabric should be able to be self-reconfigurable to enable in-device 
post-manufacturing secret creation. While non-volatile SoC FPGAs exist, the option of 
internally self-reconfiguring the non-volatile FPGA fabric is still a futuristic feature. 
Meanwhile, we implement a SUH candidate on the flash-based SoC FPGA SmartFu-
sion2 since it provides the non-volatility trait and incorporates Differential Power Anal-
ysis (DPA) countermeasures to protect the bitstream key(s) to be discovered using side-
channel analysis [21]. The generic boot sequence of the SmartFusion2 is shown in Fig. 
3. The first piece of code that boots after power-on is the Boot-ROM code defined by 
the manufacturer and stored as a Metal-Read Only Memory (ROM). The reference di-
gests and executables can be stored in the embedded NVM’s reconfigurable ROM sec-
tions. In our work, we assume that during the secure boot authentication, after digest 
generation, the computed digest with the reference digest is compared either within: a 
protected processor or the FPGA Fabric. In an environment equipped with an OTP 
memory, the user bootloader code can replace the Boot-ROM code to ensure that the 
SoC FPGA boot sequence is fully user-defined.  

User Bootloader Firmware KernelBoot-ROM code

M a n u f a c t u r e r  
d e f i n e d

R e - c o n f i g u r a b l e  

 

Fig. 3. A generic boot-sequence on the SmartFusion2 SoC FPGA 

4.3 Secure Boot Operational Scenario  

Setting up the SoC FPGA requires an already in-device self-created SUH, as previously 
depicted in Fig.2. 

System set-up. Fig. 4.(A) demonstrates the system set-up phase. The user needs to 
upload the different software executables such as the user bootloader, the firmware, and 
the kernel. Next, the user bootloader runs in a Set-Up Mode to generate the firmware’s 
reference digests (DF) and the kernel’s reference digest (DK).  The storage act can be 
done internally by the bootloader in a self-reconfigurable device since internal 
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reconfiguration is expected from such technology. After the set-up phase, the system is 
ready to be used.  

Secure boot in action. Fig. 4.(B) illustrates the steps after power-on, and after that, the 
Boot-ROM has passed the system’s control to the user bootloader. The steps are as 
follows:  
a) The bootloader in execution:  

(1) The firmware binary is fetched from the eNVM to the SUH to generate firmware 
digest’ (DF’). (2) DF’ is compared with DF. (3) If DF=DF’, then inputs of the SUH 
are also equal, and thus the firmware’s binary has not been altered. Then, the boot-
loader passes the system’s control to the firmware. 

b) The firmware in execution:  
(4) The kernel binary is fetched to the SUH input, and the correspondent digest’ 
(DK’) is generated. (5) DK’ is compared with the reference digest DK. (6) If 
DK=DK’, the firmware passes the system’s control to the kernel to boot.   

The chain-of-trust can be further extended due to many possible SUH digests (2n/2). 
Therefore, SUH-CRPs can support the OS kernel to authenticate system services, de-
vice drivers, and other applications. 
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Fig. 4. Secure Boot Sequence deploying SUH 
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4.4 Adversary Model: 

The same system can be a target to different attacks with different aims. Some adver-
saries may try to replace the authentic software, while others may try to imperson-
ate/clone the device ID. In this section, we consider two attack scenarios, the first, 
where the adversary aims to run an unauthorized version of the software executable, 
and the second is where the adversary aims to impersonate the device. 

Unauthorized Modification of the Software Executable. An adversary seeks that the 
chain-of-trust does not detect the maliciously modified version of the original software. 
This goal can be reached either by exploiting the hardware’s storage units or exploiting 
the hash function’s limitations. In the first case, the adversary should replace both the 
software and its digest successfully. Such attacks are not considered in this work be-
cause the verification digest is always stored in a tamper-resistant memory in the secure 
boot context. It is assumed hard for the adversary to change such memory’s content. In 
the second case, the adversary makes sure to find a modified software version that cor-
responds to the authentic reference digest; the adversary should find a pre-image of the 
reference digest, which is different from the authentic software executable. Such attacks 
can be performed based on the hash function limitations. We consider this case in our 
model through two adversaries with different capabilities:  

Unbounded Adversary (UA): can read the eNVM content and challenge the embedded 
SUH with chosen inputs and observe the output/digest. In this case, the adversary can 
consider the SUH as a black box.  

Bounded Adversary (BA): can read the eNVM content. However, BA can only observe 
the SUH input and output without challenging the SUH. 

Cloning Attack. An adversary tries to clone the device ID to impersonate that device 
using the authentic ID on a fraud device. The impersonation attack on a device with 
integrated SUH means that the adversary can somehow identify the SUH. In this ad-
versary model, we suppose that the SUH creation is maintained in a secure environ-
ment. Any attempt to clone the SUH is conducted after its creation, implying that the 
adversary has no access or knowledge of the TRNG-value chosen by Genie-H to the 
SUH’s random selection. The cloning complexity is then proportional to the number of 
possible hash functions t if the Genie-H is published. If the Genie-H is not published, 
then the cloning complexity is proportional to all possible hash functions. In our par-
ticular sample example, when using an n-to-n bit cipher for constructing the hash func-
tion, the choice space becomes 2n!. 

5 SUH-Sample Implementation and Variants 

Designing a cryptographic hash function is challenging, let alone constructing a huge 
class of hash functions. Meanwhile, a practical approach to generate such a class is by 
utilizing a block cipher-based iterated hash function [22][23]. In the following, we in-
troduce one possible variant of a SUH implementation, see Fig. 5, where a PRESENT-
like cipher is deployed as a building block of an iterated hash function. 
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5.1 PRESENT-like based SUH 

PRESENT is a lightweight 64-bit iterated block cipher with two key-length possibili-
ties: an 80-bit key (PRESENT-80) and a 128-bit key (PRESENT-128). The cipher is 
composed of an adding key, a substitution layer, and a permutation layer [24]. The 
substitution layer, a nonlinear transformation, is performed via 16 Substitution Boxes 
(S-Boxes) which are mappings of a 4-bit to 4-bit. A Golden S-boxes (GS) is an S-box 
exhibiting ideal cryptographic properties [25]: (1) Differential Characteristic probabil-
ity DC=¼, (2) Linear approximation probability LC=¼, (3) Branch Number BN=3. 
PRESENT’s S-box has these properties; thus, replacing the PRESENT’s S-box with 
any GS maintains the PRESENT cipher’s same security level. We exploit this property 
to define a SUH variant as a PRESENT-like based hash function using randomly se-
lected GSs. Different compact PRESENT-based hash functions were introduced in 
[26]: (1) DM-PRESENT-80 and DM-PRESENT-128: deploying a single block cipher 
to obtain a 64-bit digest. (2) H-PRESENT-128: is a double-block-length hash function 
for a 128-bit digest. (3) C-PRESENT-192: is a triple-block-length hash function for a 
192-bit digest. For instance, a SUH variant can be a DM-PRESENT where the S-box 
is preplaced with randomly chosen GS. Genie-H is responsible for randomly choosing 
16 GS to populate the S-box layer. Genie-H can distribute the chosen GS in a random 
order within the S-Box layer and can, in addition, randomly select one of the secure 12 
schemes of the block cipher-based hash construction schemes analyzed in [27]. 

E

𝐻௜

𝐻௜ିଵ

𝑚௜

E as PRESENT-like Block Cipher  

# of all Possible SUH as E= DM-PRESENT is: 
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H is an n-bit length final digest. 

𝑚௜

Permutation Layer
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GS0 GS1 GS2 GS3 GS4 GS5 GS6 GS7 GS8 GS9 GS10 GS11 GS12 GS13 GS14 GS15

 
Fig. 5. A sample of a SUH construction based on Davies-Meyer Scheme 

5.2 DM-PRESENT-like Hash Implementation 

SmartFusion2 SoC FPGA fabric logic elements have 4-input LUTs [28] convenient to 
the 4-bit to 4-bit S-boxes of the PRESENT-like based SUH variant. Our sample imple-
mentation of DM-PRESENT-80-like has consumed in a SmartFusion2 FPGA 526 
LUTs and 331 Flip-Flops. Table 2 shows the relatively low percentage of the consumed 
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resources on the different SmartFusion2 SoC FPGAs. The security measures must be 
implemented, consuming as little hardware as possible since it is usually a protection 
measure that accompanies the main application.  

Table 2. Hardware resource consumption of SUH-PRESENT-80-LIKE based on SmartFusion2 
Soc FPGA family 

SmartFusion®2 SoC FPGA family 4-input LUTs Flip-Flops 

M2S005 8.67% 5.46% 

M2S010 4.35% 2.73% 

M2S025 1.89% 1.19% 

M2S050/ M2S060 0.93% 0.58% 

M2S090 0.61% 0.38% 

M2S150 0.35% 0.22% 

 
5.3 Security Analysis 

We discuss the efforts required for an adversary to clone SUH and to defeat its digest. 
Every electronic device is susceptible to side-channel attacks if no countermeasure is 
applied. A detailed evaluation of the side-channel attack on our design is out of the 
scope of this paper. We assume that the emerging self-reconfiguring mechanisms in 
“non-volatile” FPGA technologies would offer physical properties prohibiting reaching 
the bitstream after irreversibly locking the reconfiguration process. Physical side-chan-
nel attacks can only be fruitfully discussed first after the self-reconfiguration infrastruc-
ture is implemented and exists in future practical devices.  

Clone-resistant device ID. For example, let us consider that the SUH is constructed 
based on a DM-PRESENT-80-like:  
─ If 16 GS-Boxes are selected randomly out of 219.1 [25], it results in (219.1)16= 2305.6 

SUHs.  
─ If, in addition, an iterative hash’s compression function is selected randomly out of 

12 ≈ 23.5 [27], then the hash class cardinality is 𝑡 = 2305.6. 23.5 ≈ 2309 SUHs. 2309 

presents the computational cloning attack complexity of a DM-PRESENT-like 
based SUH. 

The attack complexity on cloning the other possible PRESENT-like-based SUH is pre-
sented in Table 3. 

Table 3. Computational Cloning Attack Complexity of the PRESENT-like based SUH 

SUH type Number of used Golden S-Boxes Computational Cloning attack 
Complexity (# Operations) 

DM-PRESENT-80-like 
DM-PRESENT-128-like 

16 (219.1)16= 2305.6. 23.5 ≈ 2309 

H-PRESENT-128-like 32 (219.1)32= 2611.2. 23.5 ≈ 2614 

C-PRESENT-192-Like 96 (219.1)96= 21833.6. 23.5 ≈ 21837 
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The entropy of SUH class.  Table 4 addresses the entropy differences that a SUH can 
offer depending on whether Genie-H is publically known or not. When the Genie-H is 
not public, all possible hash mappings for a hash function with an m-bit input and an n-
bit output are |𝐻| = 2௠ଶ೙

, thus the upper bound of the entropy of |H| in this case, is 
𝑚2௡. In the case that the Genie-H is known, the entropy of |H| is 𝑙𝑜𝑔ଶ(𝑡), where 𝑡 is 
the cardinality of the huge hash class, for instance, in the proposed sample case 
PRESENT-based SUH variant,  |H| ≥ 309.  

Table 4. The entropy of possible SUHs as a Clone-Resistant Identities for Different Devices  

SUH Class Entropy  Genie-H is Public Genie-H is not public 

SUH 
SUH

𝒏𝒎

 

 
𝑙𝑜𝑔ଶ𝑡 

 
𝑚2௡ 

Authentic Software Digest Protection.  Let us again consider the case that the SUH 
is constructed based on a DM-PRESENT-80-like which produces 64-bit digest length; 
the computational security on the hash digest is as follow:  

Case of Unbounded-Adversary Model. The UA can examine the SUH variant as a black 
box to conduct an online guessing attack. While under such a model, the SUH security 
level is equivalent to a traditional hash function, SUH still offers a clone-resistant de-
vice ID and a device-specific secure boot which, in the worst-case scenario, where one 
specific device’s hash function is defeated, not all devices secure boot would be de-
feated. 

Case of a Bounded-Adversary model. To defeat the hash function, BA should first de-
termine which SUH is randomly implemented, and this is equivalent to cloning the 
SUH. The results from Table 4 imply that SUH’s successful prediction on DM-
PRESENT-80-like construction requires 2309 search cycles. In this case, the required 
computation attack complexity on SUH’s digest additionally demands  

 2309.264=2373 computations for a successful pre-image attack,  
 2309.232=2341 computations for a successful collision attack,  
 and 2309.264=2373 computations for a successful second pre-image attack.  

Table 5. Evaluation of the computational security on the digest of PRESENT-like-based SUHs  

SUH type Hash  
(bit) 

Number of 
used Golden  
S-Boxes 

UA-Attack [29] BA-Attack 

Pre. Coll. 2nd  
Pre. 

Pre. Coll. 2nd  
Pre. 

DM-PRESENT-80-like 
DM-PRESENT-128-like 

64 16 264 232 264 2373 2341 2373 

H-PRESENT-128-like 128 32 2128 264 264 2742 2678 2678 

C-PRESENT-192-Like 192 96 2192 296 2192 22029 21933 22029 

Under a BA model, for the same hash-bit length, in this example, 64-bit, the SUH’s 
security level is way beyond the traditional hash function’s security. The attack 
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complexity on the software’s digest of other possible PRESENT-like-based SUH is 
presented in Table 5. The defined UA- and BA-based attack scenarios are only possible 
online since the electronic device’s SUH is unknown. It is only when an adversary suc-
ceeds in cloning the SUH that these attacks are possible offline. 

6 Conclusion 

This paper introduces a new device-specific/unit-individual secure boot mechanism for 
SoC equipped with self-reconfigurable non-volatile (e)FPGA providing a hardware-
based trusted foundation for software execution in electronic devices. The introduced 
approach deploys an in-device self-created Secret Unknown Hash (SUH) that generates 
a unique software binary digest for each individual electronic device. We showed that 
SUH being keyless, hardwired, unknown, randomly generated, can replace other solu-
tions to generate device-specific software digests such as using a PUF and a traditional 
hash function. SUH has the advantage over PUF of ensuring a consistent response re-
producibility without additional error correction codes. Comparing to the traditional 
hash function, SUH has the advantage of providing a clone-resistant unique device ID. 
We explained how to construct a SUH using a cipher-based hash function such as the 
PRESENT-like cipher as proof of concept. We showed a SUH sample implementation 
to be relatively lightweight.  Finally, we proved that the proposed SUH offers a high 
clone-resistance entropy and a high device-specific digest computational security. 
These particular findings are further beneficial for remote authentication of a fully user-
controlled secure booting of devices deploying unknown secrets. The user is responsi-
ble for individualizing the device’s clone-resistant unknown secret after its manufac-
turing instead of trusting the manufacturer for exclusively provisioning it, which moti-
vates using on a large scale the hopefully emerging SoC non-volatile (e)FPGAs with 
the enabled option of self-reconfigurability 
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