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1 Convex sets

We introduce the basic notions of convexity of sets. We will develop
everything in the euclidean space Rd, but most of what we will be
doing, will also work in a general real and separable Hilbert space
X, i.e. a real vector space that is equipped with an inner product
and has an orthonormal basis.

Definition 1.1. A set C ⊂ Rd is convex, if for all x, y ∈ C and
λ ∈ [0, 1] it holds that λx+(1−λ)y ∈ C. The term λx+(1−λ)y
is called convex combination.

More general: For x1, . . . , xn ∈ Rd and λ1, . . . , λn ≥ 0 with
∑n

i=1 λi = 1 we call x = ∑n
i=1 λixi a convex combination.

x

y
λx + (1 − λ)y

It holds: A set is convex exactly if it
contains all convex combinations of its
points, i.e. it equals its convex hull.Definition 1.2. The convex hull conv(S) of a subset S ⊂ Rd is the

set of all convex combinations of points in S.

An important operation with sets that preserves convexity is
the Minkowski sum:

Proposition 1.3. For two convex sets C1, C2 ⊂ Rd it holds that the
Minkowski sum

C1 + C2 := {x = x1 + x2 | x1 ∈ C1, x2 ∈ C2}

is again convex.

Proof. Let xi, yi ∈ Ci, i = 1, 2 and λ ∈ [0, 1]. Then x1 + x2, y1,+y2 ∈
C1 + C2 and it holds that

λ(x1 + x2) + (1 − λ)(y1 + y2) =

λx1 + (1 − λ)y1 + λx2 + (1 − λ)y2 ∈ C1 + C2

since C1 and C2 are convex.

Other operations that preserve convexity are collected in the
next statement:

Proposition 1.4. The following sets are convex:

1. αC = {αx | x ∈ C}, for convex C ∈ Rd and α ∈ R,

2. AC ⊂ Rm, for convex C ∈ Rd and a matrix A ∈ Rm×d,

3. C1 × C2 ⊂ Rm+d for convex C1 ∈ Rm and convex C2 ∈ Rd,

4.
⋂

i∈I Ci for convex Ci and any index set I,

5. the closure C and the interior C◦ for convex C.
We will denote the closure of C also by
cl(C) and the interior also by int(C).

Proof. Let us prove the second point: If x, y are in AC then there
are u, v, such that x = Au and y = Av. For any λ ∈ [0, 1] it holds
that λu + (1 − λ)v ∈ C, and hence λx + (1 − λ)y = λAu + (1 −
λ)Av = A(λu + (1 − λ)v) is in AC.
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The proofs of the remaining assertions are straightforward
and left as exercise.

Here is a different characterization of the convex hull:

Proposition 1.5. For any set S ⊂ Rd it holds that

conv(S) =
⋂

{C | S ⊂ C, C convex} .

Proof. First note, that the convex hull conv(S) is itself convex and
fulfills S ⊂ conv(S). Hence, conv(S) is one of the Cs on the right
and this shows the inclusion “⊃”.

For the other inclusion, observe that if S ⊂ C and C is convex
that also conv(S) ⊂ C. This shows the inclusion “⊂”.

Definition 1.6. A set S ⊂ Rd is called affine if for all x, y ∈ S and
λ ∈ R it holds thatλx + (1 − λ)y ∈ S.

A point x is an affine combination of x1, . . . , xn if there exists λi
with ∑n

i=1 λi = 1 and x = ∑n
i=1 λixi.

The affine hull aff(S) of a set S is the set of all affine combina-
tions of elements of S.

Note that λx + (1 − λ)y = y +
λ(x − y), i.e. the point λx + (1 − λ)y
is reached by starting from y and going
λ times the vector from y to x in the
direction of x.

Of course, linear subspaces are also affine spaces and for every
non-empty affine set, there is a unique subspace L and some vector
a such that S = a + L. It’s also clear that affine sets are convex.

Alternatively, we could also define the affine hull of S as the
smallest affine set which contains S or the intersection of all affine
sets containing S.

An affine space inherits a topology from the surrounding space
Rd and hence, we have the closure and the interior with respect
this topology for subsets of affine spaces. This gives rise to the
following notion:

Definition 1.7. The relative interior of some S ⊂ Rd, denoted by
ri(S), is the interior of S relative to the affine set aff(S), i.e.

ri(C) = {x ∈ C | ∃ϵ > 0 : Bϵ(x) ∩ aff(C) ⊂ C}.

The set C \ ri(C) is called relative boundary of C.
You also see relint(S) for the relative
interior.
Note that there is no notion for rela-
tive closure as the “standard” closure is
always within the affine hull.

Proposition 1.8. If C is convex, the ri(C) is non-empty.

Proof. Let c ∈ C and consider V = aff(C)− c, then V is a subspace
that contains C − c and it holds that V = span(C − c). Now pick
a basis x1, . . . , xk ∈ C − c of V. Now we set x0 = 0 and P =
conv(0, x1, . . . , xk) and observe that P ⊂ C − c. It can be seen that
x = 1

k+1 ∑k
j=0 xj is in the interior of P and hence, in the interior

of C − c.

Proposition 1.9. 1. For convex C ̸= ∅ it holds that ri(C) is also
convex and it holds that aff(ri(C)) = aff(C).
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2. For convex C, A ∈ Rm×d and any b ∈ Rm it holds that

A ri(C) + b = ri(AC + b).

3. For convex C we have x ∈ ri(C) exactly if for every y ∈ aff(C)
there exists ϵ > 0 such that x ± ϵ(y − x) ∈ C,

4. For convex C1, C2 it holds C1 = C2 exactly if ri(C1) = ri(C2),

5. For convex C1, C2 it holds ri(C1 + C2) = ri(C1) + ri(C2).

We don’t give a proof of this proposition, but note that point
2. is helpful to prove other statements about the relative interior:
If aff(C) is an m-dimensional affine space, we can, without loss
of generality, assume that aff(C) lies in the subspace V = {x |
xm+1 = · · · = xn = 0} and since this is a just a copy of Rm, we
can assume that C is full dimensional, i.e. aff(C) is the full space.

Note that even for it is in general not true that C1 ⊂ C2 implies
that ri(C1) ⊂ ri(C2)! This can be seen, for example, with C2 being
a (closed) square in R2 and C1 being one of its sides.

Definition 1.10. A set of n + 1 points x0, . . . , xn ∈ Rd is called
affinely independent if the affine hull aff({x0, . . . , xn}) is an n-dimen-
sional affine space.

Since we have that aff{x0, . . . , xn} = V + x0 where V is the
subspace spanned by the vectors x1 − x0, . . . , xn − x0, we see that
the vectors x0, . . . , xn are affinely independent exactly if the vectors
x1 − x0, . . . , xn − x0 are linearly independent.

Proposition 1.11. If x0, . . . , xn are affinely independent, each x ∈
aff{x0, . . . , xn} can be represented uniquely as an affine combination
x = ∑n

0=1 λixi and these λi are called barycentric coordinates of x with
respect to the points x0, . . . , xn.

Proof. If M = aff{x0, . . . , xn} = x0 + V with

V = span{x1 − x0, . . . , xn − x0},

we can express each y ∈ V uniquely as y = ∑n
i=1 λi(xi − x0) and

since each x ∈ M is of the form x0 + y with y ∈ V, we express
each x ∈ M uniquely as x = ∑n

i=1 λi(xi − x0) + x0, i.e. as an affine
combination x = ∑n

i=0 λixi with ∑n
i=0 λi = 1.

If we have affinely independent points x0, . . . , xn their convex
hull is called a simplex. Of special importance is the probability
simplex (also called standard simplex) which is the convex hull of
the standard basis vectors ei, i = 1, . . . , d, in Rd i.e.

∆d := conv(e1, . . . , ed)
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2 Hyperplanes, cones, and projections

For each x0, p ∈ Rd with p ̸= 0 the hyperplane through x0 with
normal vector p can be written with α = ⟨x0, p⟩ as

Hp,α := {x ∈ Rd | ⟨p, x⟩ = α} = {x | ⟨p, x − x0⟩ = 0}.

Hyperplanes are affine sets of dimension d − 1. Moreover, there
are the associated half-spaces

H+
p,α := {x ∈ Rd | ⟨p, x⟩ ≥ α}, H−

p,α := {x ∈ Rd | ⟨p, x⟩ ≤ α}.

We will show (with the help of separation theorems) that a closed
and convex set equals the intersection of all half-spaces that con-
tain C.

H+
p,α

H−
p,α

Hp,α
p

A set C that is the intersection of finitely many half-spaces is
called polyhedral set, in this case we can write

C = {x | Ax ≤ b, Bx = d}

for some A ∈ Rn×d, b ∈ Rn, B ∈ Rm×d, c ∈ Rm.
Related to hyperplanes are affine functionals;

f (x) = ⟨p, x⟩+ α, p ∈ Rd, α ∈ R.

A hyperplane in Rd+1 is of the form

Hp,α = {(x′, xd+1) ∈ Rd+1 | ⟨p′, x′⟩+ pd+1xd+1 = α}.

A “vertical” hyperplane is one with pd+1 = 0 but for the others (i.e.
for pd+1 ̸= 0) we have

xd+1 = ⟨− p′
pd+1

, x′⟩+ α
pd+1

,

i.e., the hyperplane Hp,α ⊂ Rd+1 is the graph of the affine function
f : Rd → R, f (x′) = ⟨− p′

pd+1
, x′⟩+ α

pd+1
.

Definition 2.1. A set K ⊂ Rd is called a cone, if x ∈ K and λ ≥ 0
implies λx ∈ K.

Sometimes cones are defined with
just λ > 0. In this case, one may have
0 /∈ K for a cone K.

convex cone non-convex cone

Proposition 2.2. A cone K is convex exactly if K + K ⊂ K.

Proof. “⇒”: If K is convex and x, y ∈ K we have (x + y)/2 ∈ K
and hence x + y ∈ K.

“⇐”: Let K + K ⊂ K hold and let x, y ∈ K, since K is a cone, we
have λx, (1−λ)x ∈ K for any λ ≥ 0 and hence, λx+(1−λ)y ∈ K
by K + K ⊂ K.

Example 2.3. 1. Every linear subspace is a convex cone, more
precisely, a convex cone K is a linear subspace exactly if
K = −K.
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2. The halfspaces H+
p,0 = {x | ⟨p, x⟩ ≥ 0} are convex cones.

3. An important convex cone is the non-negative orthant K =
Rd

≥0 = {x | x1, . . . , xn ≥ 0}. We also write x ≥ 0 is every component
is non-negative.

4. The set {Ay | y ≥ 0} is a convex cone for A ∈ Rd×m and
cones of this form are called finitely generated.

5. The set {x | ATx ≤ 0} with A ∈ Rd×m is a convex cone and
cones of this type are called polyhedral cones.

6. The set -

Ld+1 = {(x′, xd+1) ∈ Rd+1 | ∥x′∥2 ≤ xd+1}

is a convex cone called second order cone (or Lorentz-cone or,
due to its shape, ice-cream cone).

The Lorentz cone L3:

x1

x2

x3

△

Definition 2.4. For a non-empty set S one defines the polar cone by

S∗ := {p ∈ Rd | ∀x ∈ S : ⟨p, x⟩ ≤ 0} =
⋂
x∈S

H−
x,0.

Consequently, S∗ is always closed and convex. Since for all
x ∈ S and p ∈ S∗ we always have

⟨p,x⟩
∥p∥2∥x∥2

≤ 0,

and the left hand side defines the cosine of the angle between x
and p, we see that this angle is always larger or equal to π/2.

One can see that for any cone it holds that (K∗)∗ = conv K
for any set K and hence, for closed convex cones K it holds that
(K∗)∗ = K.
Example 2.5. 1. The polar cone of K = {0} is K∗ = Rd.

2. If K is a linear subspace, one has K∗ = K⊥.

3. For the non-negative orthant Rd
≥0 the polar cone is (Rd

≥0)
∗ =

Rd
≤0, i.e. the non-positive orthant.

4. For some p ∈ Rd and K = H−
p,0 = {x | ⟨p, x⟩ ≤ 0} it holds

that K∗ = {λp | λ ≥ 0}.

5. The polar cone of the finitely generated cone K = {Ay | y ≥
0} for some A ∈ Rd×m is the polyhedral cone K∗ = {p |
AT p ≤ 0}.

△

Definition 2.6. For a convex C and x0 ∈ C we define the normal
cone of C at x0 as

NC(x0) := {p | ∀x ∈ C : ⟨p, x − x0⟩ ≤ 0}.

The tangential cone at x0 is defined as

TC(x0) := NC(x0)
∗.
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By definition, the normal and tangential cone are always closed.
Example 2.7 (Normal and tangential cones for hyperplanes). The
normal cone of the hyperplane Hp,α at some x ∈ Hp,α is

NHp,α(x) = span(p)

and hence, the tangential cone is

THp,α(x) = {p}⊥.

△

Now let’s turn to the notion of projection:

Theorem 2.8 (Projection theorem). Let C ⊂ Rd be a nonempty, closed,
convex set. Then, for any x0 ∈ Rd, there exists a unique x̂0 ∈ C, called
orthogonal projection of x0 onto C, and denoted by PCx0 := x̂0, such
that

∥x0 − x̂0∥2 = inf
x∈C

∥x0 − x∥2

and this element fulfills

Note that we also use ∥·∥2
2 here.

C

PC(x0)

x0
∥x − PC(x)∥

∀x ∈ C : ⟨x0 − x̂0, x − x̂0⟩ ≤ 0. (*)

Conversely, if y ∈ C fulfills the variational inequality

∀x ∈ C : ⟨x0 − y, x − y⟩ ≤ 0, (**)

then y = PCx0.

Proof. The function f (x) = ∥x − x0∥2
2 is continuous and since

C is closed, f takes its infimum in C (in fact, in the compact set
C ∩ cl(Br(x0)) fo r > infx∈C∥x0 − x∥2). By Weierstraß’ theorem,
the infimum is attained. This shows existence of a projection.

Now let x̂0 be an orthogonal projection of x0 onto C. By convex-
ity of C, we have x̂0 + λ(x − x̂0) ∈ C for every x ∈ C and λ ∈ [0, 1].
Since f is minimal at x̂0 we have

0 ≤ ∥x̂0 + λ(x − x̂0)− x0∥2
2 − ∥x̂0 − x0∥2

2

= λ2∥x − x̂0∥2
2 − 2λ⟨x̂0 − x0, x̂0 − x⟩.

For λ > 0 we can rearrange to

⟨x̂0 − x0, x̂0 − x⟩ ≤ λ
2 ∥x − x̂0∥2

2

and with λ → 0 we have shown that (*) holds.
Conversely, assume that the variational inequality (**) holds

for some y. Then, by Cauchy-Schwarz, it holds for all x ∈ C that

0 ≥ ⟨y − x0, y − x⟩ = ⟨y − x0, y − x0 + x0 − x⟩
= ∥y − x0∥2

2 + ⟨y − x0, x0 − x⟩
≥ ∥y − x0∥2

2 − ∥y − x0∥2∥x − x0∥2.
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Dividing by ∥y − x0∥2 we obtain ∥y − x0∥2 ≤ ∥x − x0∥2 for all
x ∈ C and this say that y is the orthogonal projection of x0 onto
C.

Finally, we show uniqueness: Assume that x̂0 and x̃0 are both
orthogonal projection of x0 onto C. Since x̂0, x̃0 ∈ C we can plug
them into their variational inequalities and get

⟨x0 − x̂0, x̃0 − x̂0⟩ ≤ 0, ⟨x0 − x̃0, x̂0 − x̃0⟩ ≤ 0.

Adding both inequalities we get ∥x̂0 − x̃0∥2
2 ≤ 0 which means

x̂0 = x̃0.

Example 2.9 (Projection onto hyperplanes). The orthogonal projec-
tion of some x onto Hp,α is

x̂ = x − ⟨p,x⟩−α

∥p∥2
2

p.

△

Example 2.10. We project onto balls in the p-norms for p = 1, 2, ∞:

1. First consider p = ∞ and the respective norm ball of radius
λ > 0 around 0 is

B∞
λ (0) := {x | max(|x1|, . . . , |xd|) ≤ λ}.

The projection of some x onto this ball is minimizing f (x −

1

1
y) = ∥x − y∥2 over all y ∈ B∞

λ (0), i.e. over all y with |yi| ≤ λ.
This can be done componentwise and leads to

(PB∞
λ (0)x)i =

{
xi, if |xi| ≤ λ

λ sign(xi), if |xi| > λ

which can be written consisely by PB∞
λ (0)x = min(max(x,−λ), λ)

where the minimum and maximum applied component-
wise.

2. For p = 2 we simply need to shrink x if it is outside of the
ball, i.e.

PB2
λ(0)

x =

{
x, if ∥x∥2 ≤ λ

λ x
∥x∥2

, if ∥x∥2 > λ.
= max(1, λ

∥x∥2
)x

1

1

3. The case p = 1 is more complicated and there is no explicit
formula. However, one can show the following: We define
the soft-shrinkage (or soft-thresholding) function

1

1

Sλ(x) = max(|x| − λ, 0) sign(x)

and denote by π a permutation of {1, . . . , d} which sorts
the entries of x in decreasing order, i.e. |xπ(1)| ≥ |xπ(2)| ≥
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· · · ≥ |xπ(d)| ≥ 0. Then, if m is the largest index such that

|xπ(m)| > 0 and |xπ(1)|+···+|xπ(m)|−λ

m ≤ |xπ(m)|, one has

PB1
λ(0)

x =

{
x, if ∥x∥1 ≤ λ

Sµ(x), if ∥x∥1 > λ.

△

Theorem 2.11. Let K ⊂ Rd be a non-empty, closed and convex cone.
Then every x0 can be decomposed as

x0 = PKx0 + PK∗x0

and it holds that PKx0⊥PK∗x0.

Proof. By the Projection Theorem (Theorem 2.8) one has for every
x ∈ K

⟨x0 − PKx0, x − PKx0⟩ ≤ 0. (*)

For x = 0 we have ⟨x0 − PKx0, PKx0⟩ ≥ 0 and for x = 2PKx0 ∈ K
one has ⟨x0 − PKx0, PKx0⟩ ≤ 0 which implies that we have

⟨x0 − PKx0, PKx0⟩ = 0. (**)

Thus, by (*) we have for all x ∈ K

⟨x0 − PKx0, x⟩ ≤ 0

and this means that x0 − PKx0 ∈ K∗ by the definition of the polar
cone. Moreover, since for all x ∈ K∗

⟨x0 − (x0 − PKx0), x − (x0 − Pkx0)⟩ = ⟨PKx0, x − x0 + PKx0⟩
= ⟨PKx0, x⟩+ ⟨PKx0, PKx0 − x0⟩ ≤ 0

we have (again by the Projection Theorem) that x0 − PKx0 = PK∗x0.
The orthogonality follows from (**).

Since the polar cone of a subspace V
is the orthogonal complement V⊥ we
obtain:

Corollary. Let V be a non-empty sub-
space of Rd. Then the orthogonal projec-
tion of x0 onto V is characterized by

∀x ∈ V : ⟨x0 − PV x0, x⟩ = 0

and, moreover, x0 = PV x0 + PV⊥ x0.
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3 Separation

Now we come to the notion of separation:

Definition 3.1. Let C1, C2 be two sets. We say that a hyperplane
Hp,α

1. separates C1 and C2 if for all x1 ∈ C and x2 ∈ C2 it holds that
In terms of halfspaces: C1 ⊂ H−

p,α and
C2 ∈ H+

p,α.⟨p, x1⟩ ≤ α ≤ ⟨p, x2⟩.

2. strictly separates C1 and C2 if for all x1 ∈ C and x2 ∈ C2 it
holds that In terms of halfspaces: C1 ⊂ int(H−

p,α)

and C2 ⊂ int(H+
p,α).⟨p, x1⟩ < α < ⟨p, x2⟩.

3. properly separates C1 and C2 if it separates the sets and there
exist xi ∈ Ci, i = 1, 2 such that

⟨p, x1⟩ < ⟨p, x2⟩.

Theorem 3.2. If C is a non-empty, closed and convex set and x0 /∈ C,
then we can strictly separate C from {x0}, i.e. there exists p and ϵ > 0
such that

sup
x∈C

⟨p, x⟩ ≤ ⟨p, x0⟩ − ϵ.

Proof. By the Projection Theorem (Theorem 2.8) we have for all
x ∈ C that

⟨PCx0 − x0, PCx0 − x⟩ ≤ 0,

from which we deduce by adding and subtracting x0 in the right
argument that

∥PCx0 − x0∥2
2 ≤ ⟨x0 − PCx0, x0 − x⟩

for all x ∈ C. But since x0 /∈ C, we have ∥PCx0 − x0∥2
2 ≥ ϵ > 0 so

we can take p = x0 − PCx0 since then we have

ϵ ≤ ∥PCx0 − x0∥2
2 ≤ ⟨x0 − PCx0, x0 − x⟩ = ⟨p, x0 − x⟩.

This shows that for all x ∈ C we have ⟨p, x⟩ ≤ ⟨p, x0⟩ − ϵ and
taking the supremum over all such x shows the claim.

Corollary 3.3. For a closed and convex set C ist holds that C equals the
intersection of all halfspaces that include C.

The case of C = ∅ is clear. That C is a subset of said intersection
is clear. And if x /∈ C we can find a hyperplane that separates
C from x and hence, there is a corresponding halfspace that
contains C, but not x and hence, x is not in said intersection.
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Theorem 3.4 (Strict separation). Let C1, C2 be non-empty, convex
and disjoint and let C1 be closed and C2 be compact. Then there exists
p ∈ Rd and α ∈ R such that Hp,α strictly separates C1 and C2, i.e. for
all x1 ∈ C1, x2 ∈ C2 it holds that

⟨p, x1⟩ < α < ⟨p, x2⟩.

Proof. We consider the Minkowski sum

C := C1 + (−C2) = {x1 − x2 | x1 ∈ C1, x2 ∈ C2}

which is non-empty and convex. Since C2 is compact, C is also
closed. Also 0 /∈ C since C1 and C2 are disjoint. Hence, we can
consider x̂ = PC0 ∈ C. Since this is a point in C = C1 − C2 we
can write it as x̂ = x̂1 − x̂2 with xi ∈ Ci, i = 1, 2. Now we set A close inspection of the geometric sit-

uation shows that the points x1 and x2
are two points from C1 and C2, respec-
tively, that realize the distance, i.e. such
that

∥x1 − x2∥2 = inf
x̂i∈Ci

∥x̂1 − x̂2∥2.

This also motivates to choose p and x∗

as we do here.

x∗ := x̂2+x̂1
2 , p := x̂2−x̂1

2 , α := ⟨p, x∗⟩.

Note that p ̸= 0. By the Projection Theorem, we get for all x1 ∈ C1,
x2 ∈ C2 that

⟨0 − (x̂1 − x̂2), x1 − x2 − (x̂1 − x̂2)⟩ ≤ 0

from which we deduce (using x∗ − x̂1 = (x̂2 − x̂1)/2 and x∗ −
x̂2 = (x̂1 − x̂2)/2)

⟨x∗ − x̂1, x1 − x̂1⟩+ ⟨x∗ − x̂2, x2 − x̂2⟩ ≤ 0.

Plugging in x1 = x̂1 and x2 = x̂2, respectively, we get for all xi ∈ Ci
that

⟨x∗ − x̂i, xi − x̂i⟩ ≤ 0.

This means that x̂i is the orthogonal projection of x∗ onto Ci.
Finally, since x∗ − x̂1 = p we get

⟨p, x1⟩ ≤ ⟨p, x̂1⟩ = ⟨p, x∗⟩+ ⟨p, x̂1 − x∗⟩ = α − ∥p∥2
2 < α.

Similarly, (using x∗ − x̂2 = −p) one shows that ⟨p, x2⟩ > α.

We recall the following fact from analysis:

Proposition 3.5. If (Sx)x is a familiy of compact subsets of a metric space
such that the intersection of every finity subfamily of the Sx is non-empty,
then

⋂
x Sx ̸= ∅.

This proposition is related to the notion
of “finite intersection property”

Proposition 3.6. Let C be a non-empty convex set and x0 /∈ int(C).
Then there exists a non-zero p such that for all x ∈ C it holds that

⟨p, x⟩ ≤ ⟨p, x0⟩.
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Proof. For every x ∈ C we define

Fx := {p | ∥p∥2 = 1, ⟨p, x⟩ ≤ ⟨p, x0⟩}

and observe that each Fx is closed and since Fx is subset of the com-
pact set {∥p∥2 = 1}, it is compact as well. Now we show that every
intersection of finitely many Fx is non-empty: For x1, . . . , xn ∈ C
we define

M := conv(x1, . . . , xn).

Since C is convex, we have M ⊂ C and hence, x0 /∈ M. Since M
is non-empty, convex and closed, we can invoke the Projection
Theorem to get that for all x ∈ M it holds that

⟨x0 − PMx0, x − PMx0⟩ ≤ 0

from which we deduce

∥x0 − PMx0∥2
2 ≤ ⟨x0 − PMx0, x0 − x⟩.

Now we set p = (x0 − PMx0)/∥x0 − PMx0∥ and get ⟨p, x⟩ ≤
⟨p, x0⟩ for all x ∈ M and especially ⟨p, xi⟩ ≤ ⟨p, x0⟩ for i =
1, . . . , n. This shows p ∈ ⋂n

i=1 Fxi . By Proposition 3.5, we conclude
that

⋂
x∈C Fx is non-empty as well, which shows the assertion.

Theorem 3.7 (Separation Theorem). Any two non-empty closed, con-
vex and disjoint sets C1 and C2 can be separated by a hyperplane.

Proof. We consider the Minkowski sum C = C1 + (−C2) which
is non-empty and convex with 0 /∈ C. By Proposition 3.6 we can
separate 0 from C by some hyperplane Hp,α and this allows to
seperate C1 and C2: For x1 ∈ C1 and x2 ∈ C2 we have x1 − x2 ∈ C
and hence

0 ≤ α ≤ ⟨p, x1 − x2⟩ which implies⟨p, x2⟩ ≤ ⟨p, x1⟩.

We will also use the following slight generalization which even
characterizes proper separation:

Theorem 3.8 (Proper separation theorem). Two non-empty, convex
sets C1, C2 ∈ Rd can be properly separated exactly if ri C1 and ri C2 are
disjoint.

Proof. “⇒”: Suppose that Hp,α separates C1 and C2 properly, i.e.
for all xi ∈ Ci we have ⟨p, x1⟩ ≤ α ≤ ⟨p, x2⟩ and there exist
x̄i ∈ Ci such that ⟨p, x̄1⟩ < ⟨p, x̄2⟩. We aim to show that for
all xi ∈ ri C we have that ⟨p, x1⟩ < ⟨p, x2⟩ as well (which
then implies that ri C1 and ri C2 are disjoint).
To do so, assume that there are xi ∈ ri Ci such that ⟨p, x1⟩ =
⟨p, x2⟩. By Proposition 1.9 we know that there exists ϵ > 0
such that for i = 1, 2 we have

yi := xi − ϵ(x̄i − xi) = (1 + ϵ)xi − ϵx̄i ∈ Ci.
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Thus,

⟨p, y1⟩ = ⟨p, (1 + ϵ)x1 − ϵx̄1⟩
= ⟨p, (1 + ϵ)x2⟩ − ϵ⟨p, x̄1⟩
> ⟨p, (1 + ϵ)x2⟩ − ϵ⟨p, x̄2⟩
= ⟨p, y2⟩.

This contradicts the separation property of Hp,α.

“⇐”: Now let ri(C1) ∩ ri(C2) = ∅, i.e. 0 /∈ ri(C1) − ri(C2) =
ri(C1 − C2) (by Proposiion 1.9 5.). We construct a properly
separating hyperplane Hp,α.
Remembering the remark after Proposition 1.9, we assume
without loss of generality, that aff(C1 − C2) = Rm for some
m ≤ d. Then ri(C1 − C2) = int(C1 − C2) (where the inte-
rior is taken with respect to Rm and not with respect to the
ambient space Rd) and by Proposition 3.6 there exists p ̸= 0
such that for all x1 − x2 ∈ int(C1 − C2)

⟨p, x1 − x2⟩ ≥ 0.

We conclude that

{x ∈ Rd | ⟨p, x⟩ ≥ 0} ⊃ int(C1 − C2).

Since the set on the left is closed, we also get

{x ∈ Rd | ⟨p, x⟩ ≥ 0} ⊃ cl(C1 − C2).

Thus, we even have

⟨p, x1 − x2⟩ ≥ 0

for all x1, x2 with x1 − x2 ∈ C1 − C2. Thus, we can sepa-
rate C1 and C2 with this p and α := supx2∈C2

⟨p, x2⟩. Finally,
for x1 − x2 ∈ int(C1 − C2) we have the strict inequality
⟨p, x1 − x2⟩ > 0.

For a non-empty convex set C one calls a halfspace supporting, if
it contains C and has a point in the closure of C in its boundary. A
supporting hyperplane, is one which is the boundary of a supporting
halfspace. Our above results show:

Proposition 3.9. Let C be convex. For every x0 ∈ cl(C) \ int(C), there
exists a supporting hyperplane for C which contains x0 (namely, one which
separates x0 from int(C)).
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4 Convexity and lower semicontinuity of func-
tions

When working with convex functions, it will be convenient to
use the extended real numbers R̄ = [−∞, ∞]. We will use the
following conventions:

For −∞ < a ≤ ∞: a + ∞ = ∞ + a = ∞,
For −∞ ≤ a < ∞ : a − ∞ = −∞ + a = −∞,
For 0 < a ≤ ∞: a · ∞ = ∞ · a = ∞,
For 0 < a < ∞: a · (−∞) = (−∞) · a = −∞,
For −∞ < a < 0: a · ∞ = ∞ · a = −∞,
For −∞ ≤ a < 0: a · (−∞) = (−∞) · a = ∞,

0 · ∞ = ∞ · 0 = 0 = 0 · (−∞) = (−∞) · 0,
−(−∞) = ∞,

inf ∅ = ∞,
sup ∅ = −∞.

The expressions ∞ − ∞, −∞ + ∞, and (−∞) · ∞ will be left un-
defined intentionally.

We will consider functions of the form f : Rd → R̄,i.e. ones
which are allowed to attain the values ±∞ (but ∞ will not be al-
lowed in the domain of definition in any way). We will use the
notion of indicator function of a set S which is iS : Rd → R̄ defined
by

iS(x) :=

{
0, if x ∈ S
∞, if x /∈ S.

Indicator functions are helpful to for-
mulate constrained minimization prob-
lems minx∈S f (x) as (formally) un-
constrained minimization problems
minx∈Rd f (x) + iS(x).

Definition 4.1. A function f : Rd → R̄ is proper, if f (x) > −∞
for all x and there exists x0 such that f (x0) < ∞. The (effective)
domain of f is

dom f := {x | f (x) < ∞}.

We say that f is lower semicontinuous (lsc) at x0 if

f (x0) ≤ lim inf
x→x0

f (x)

and f is called lsc if it is lsc at every point.

Equivalent formulation of lower semi-
continuity are

• f is lsc at x0 if for every λ with
λ < f (x0) there exists ϵ > 0
such that f (x) ≥ λ for all x ∈
Bϵ(x0).

• f is lsc at x0 if f (x0) ≤
limk→∞ f (xk) whenever xk →
x0 and lim f (xk) exists.

Intuitively, a function is lsc, if it only may
jump down in the limit like in this ex-
ample:

It is a simple observation that an indicator function iS is lower
semicontinuous exactly if S is closed.
Example 4.2. Consider fi : R → R̄ given by

f1 = i]1,1], f2 = i[−1,1]

f3(x) =

{
0, if x = 0
1, else.

f4(x) =

{
1
x , if x > 0
∞, else.

Then: f1 is not lsc while f2, f3 and f4 are. △
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f
epi f

Definition 4.3. The epigraph of a function f : Rd → R̄ is

epi f := {(x, α) ∈ Rd × R | f (x) ≤ α}.

The level sets of f for level α ∈ R are

levα f := {x ∈ Rd | f (x) ≤ α}

Theorem 4.4. The following conditions for f : Rd → R̄ are equivalent:

i) f is lsc,

ii) epi f is closed,

iii) for all α ∈ R, levα f is closed.

Proof. i) =⇒ ii): Let f be lsc and consider a sequence (xn, αn) →
(x, α) with (xn, αn) ∈ epi f , i.e. f (xn) ≤ αn. Since f is lsc,
we have f (x) ≤ lim inf f (xn) ≤ lim αn = α and this shows
(x, α) ∈ epi f .

ii) =⇒ iii): Up to translation the level set levα f is equal to the set
epi( f ) ∩

{
(x, α)

∣∣ x ∈ Rd}. The latter set is closed as inter-
section of two convex sets and this shows that the level set
is closed as well.

iii) =⇒ i): Let levα f be closed for all α and let x0 ∈ Rd. If f (x0) =
−∞ holds, f is obviously lsc at x0. Otherwise, let α < f (x0)
which means that x0 /∈ levα f . Since levα f is closed, there
is ϵ > 0 such that levα f ∩ Bϵ(x0) = ∅. Thus, f (x) > α for
all x ∈ Bϵ(x0) and hence, f is lsc at x0.

Proposition 4.5. If f , g, fi : Rd → R̄ are lsc, A ∈ Rd×m and α > 0,
then the following functions are also lsc:

i) f + g (if it’s defined), α f

ii) f ◦ A

iii) inf( f , g)

iv) supi fi for arbitrarily many fi.
It’s not true that the infimum of in-
finitely many lsc fi is again lsc. Can you
think of an example?Proof. The items i) and ii) follow directly from the definition. For

iii) note that (x, α) ∈ epi(inf( f , g)) exactly if f (x) ≤ α or g(x) ≤ α.
Hence, epi(inf( f , g)) = epi f ∪ epi g. And since the union of two
closed sets is closed, the assertion follows.

For item iv) note that epi(supi fi) is the intersection of all the
sets epi( fi) and since the intersection of closed sets is closed set,
we are done.
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Since we characterized lower semi-continuity of a function
by closedness of the epigraph, we can associate to every function
f : Rd → R̄ which is not a lsc another lsc function f̄ via closing
the epigraph, i.e. f̄ is characterized by

epi( f̄ ) = epi( f ).

This function is called the lower semi-continuous hull of f .
Taking special care of the case when f (x) = −∞ can occur, we

define the closure of f by

cl( f )

{
:= f̄ , if f (x) > −∞ for all x
≡ −∞, if f (x) = −∞ for some x.

We call a function closed, if cl f = f and for functions which do
not take the value −∞, closed means the same as lsc and hence,
we have

(cl f )(x0) = lim inf
x→x0

(cl f )(x) = lim inf
x→x0

f (x) ≤ f (x0).

f
epi f

cl( f )
epi cl( f ) = cl(epi f )

Intuitively, the closure of a function moves the function values
to the lowest possible values at points of discontinuity.
Example 4.6. For the function

f (x) = i]a,b[(x) =

{
0, a < x < b
∞, else,

the closure (and also the lsc hull) is

cl f = f̄ = i[a,b].

△

Definition 4.7. A function f : Rd → R̄ is called

• convex, if for all x, y ∈ dom( f ), λ ∈ [0, 1] it holds that

f (λx + (1 − λ)y) ≤ λ f (x) + (1 − λ) f (y).

• strictly convex, if it is convex and for x ̸= y, x, y ∈ dom( f ),
and λ ∈ ]0, 1[ it holds that

f (λx + (1 − λ)y) < λ f (x) + (1 − λ) f (y).

• uniformly convex, if there exists a strictly increasing function
φ with φ(0) = 0 such that for all x, y ∈ dom( f ), λ ∈ [0, 1]
it holds that

f (λx + (1 − λ)y) ≤ λ f (x) + (1 − λ) f (y)− λ(1 − λ)φ(∥x − y∥2).
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• strongly convex with modulus σ > 0, if for all x, y ∈ dom( f ),
λ ∈ [0, 1] it holds that

f (λx + (1 − λ)y) ≤ λ f (x) + (1 − λ) f (y)− σ
2 λ(1 − λ)∥x − y∥2

2.

Put differently: A function is strongly
convex (with modulus) σ, if it is uni-
formly convex with respect to φ(t) =
σ
2 t2.
The modulus of strong convexity is also
called constant of strong convexity.

One can show that a function f is strongly convex with constant
σ exactly if the function x 7→ f (x)− σ

2∥x∥2
2 is convex.

It’s clear that

strongly convex =⇒ strictly convex =⇒ convex

but the reverse implications do not hold: f (x) = i[a,b] is convex
but not strictly so, f (x) = x4 is stricly convex, but not strongly so.
It’s also clear that dom( f ) is a convex set for any convex function
f .

Finally, we call a function f concave if − f is convex.
By induction one can deduce from the defining inequality:

Lemma 4.8 (Jensen’s inequality). A function f : Rd → R̄ is convex
exactly if for all xi ∈ dom( f ) and λi ∈ [0, 1] with ∑n

i=1 λi = 1 it holds
that

f (
n

∑
i=1

λixi) ≤
n

∑
i=1

λi f (xi).

Lemma 4.9. If a convex function f has a finite value at some point
x0 ∈ ri(dom( f )), then it is proper (i.e. it does not assume the value −∞
anywhere).

Proof. For a contradiction, assume that x1 ∈ dom( f ) exists with
f (x1) = −∞. Since x0 ∈ ri(dom( f )), there exists x2 ∈ ri(dom( f ))
and λ ∈ [0, 1] such that x0 = λx1 + (1 − λ)x2. But, by convexity
we would get

f (x0) ≤ λ f (x1) + (1 − λ) f (x2) = −∞

which contradicts f (x0) finite.

Example 4.10. 1. Any affine function is convex as well as concave
and only affine functions are both at the same time.

2. Any norm f (x) = ∥x∥ is convex, but no norm is strictly
convex since for y = 0 and x ̸= 0 and λ ∈ [0, 1] we have

∥λx + (1 − λ)y∥ = λ∥x∥+ (1 − λ)∥y∥.

3. Indicator functions iC are convex exactly for convex sets C.
△
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5 Characterization of convex functions

If a function f is convex, its level set levα f are all convex (if f (x), f (y) ≤
α, then f (λx + (1 − λ)y) ≤ λ f (x) + (1 − λ) f (x) ≤ α). The con-
verse is not true (consider something like f (x) = log(1 + x2) on
the real line, for example). Convexity of the epigraph, though, does Functions with convex level sets some-

times are called quasi-convex.characterize convexity of the function:

Proposition 5.1. A function f : Rd → R̄ is convex exactly if epi f is a
convex set.

Proof. The case f ≡ ∞ is clear since in this case epi f = ∅. So
consider dom( f ) ̸= ∅.

⇒: Let f be convex and (x, a), (y, b) ∈ epi( f ), i.e. f (x) ≤ a,
f (y) ≤ b. Hence, for λ ∈ [0, 1]: f (λx + (1 − λ)y) ≤ λ f (x) +
(1 − λ) f (y) ≤ λa + (1 − λ)b. But this means that λ [ x

a ] + (1 −
λ)

[ y
b

]
∈ epi( f ). Beware: Sometimes I write tuples as

(x, a) and sometimes they will be [ x
a ]

depending on the typographic circum-
stances.

⇐: Let epi( f ) be convex and x, y ∈ dom( f ) with f (x), f (y) ̸=
−∞. Since (x, f (x)), (y, f (y)) ∈ epi( f ), we have for λ ∈ [0, 1]

λ

[
x

f (x)

]
+ (1 − λ)

[
y

f (y)

]
=

[
λx + (1 − λ)y

λ f (x) + (1 − λ) f (y)

]
∈ epi( f )

and this means that f (λx + (1 − λ)y) ≤ λ f (x) + (1 − λ) f (y).
If f (x) = −∞, then we use (x,−N) instead of (x, f (x)) and let
N → −∞.

For differentiable functions, convexity can be described with
derivatives:

Theorem 5.2. If f : Rd → R is differentiable, the following conditions
are equivalent:

i) f is convex,

ii) the gradient ∇ f : Rd → Rd is monotone, i.e. for all x, y ∈ Rd

A function g : Rd → Rd is called
monotone if for all x, y it holds that
⟨g(x)− g(y), x − y⟩ ≥ 0. Can you
see, why this is called “monotonicity”?
(Hint: consider d = 1.)⟨∇ f (x)−∇ f (y), x − y⟩ ≥ 0,

iii) for all x, y ∈ Rd it holds that The equivalence of i) and iii) is quite
remarkable: Besides the definition of
convex function from above by “func-
tion lies below it’s secants” we have the
equivalent description from below by
“function lies above it’s tangents”. This
is comparable to the duality of the de-
scriptions of convex sets from the inside
(via convex combinations) and the out-
side (by separating hyperplanes).

f (y) ≥ f (x) + ⟨∇ f (x), y − x⟩.

If f is twice differentiable, then f is convex exactly if the Hessian ∇2 f (x)
is positive semi-definite for every x.

Strict convexity is characterized by strict inequalities for x ̸= y in i)
and ii). Positive definiteness in the case of twice differentiability is sufficient
but not necessary for strict convexity.

The function f (x) = x4 is strictly con-
vex, but the second derivative vanishes
(i.e., is not positive definite) at x = 0.Proof. We first show i) ⇐⇒ iii) ⇐⇒ ii):
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i) =⇒ iii): For λ ∈ ]0, 1]we rearrange f (λy+(1−λ)x) ≤ λ f (y)+
(1 − λ) f (x) to

f (x+λ(y−x))− f (x)
λ ≤ f (y)− f (x).

For λ → 0 the left hand side converges to the directional
derivative of f in x in the direction of y − x which equals
⟨∇ f (x), y − x⟩ since f is differentiable.

iii) =⇒ i): Set xλ = λx + (1 − λ)y and note that x − xλ = (1 −
λ)(x − y) and y − xλ = −λ(x − y). We get the inequalities

f (x) ≥ f (xλ) + ⟨∇ f (xλ), x − xλ⟩ = f (xλ) + (1 − λ)⟨∇ f (xλ), x − y⟩
f (y) ≥ f (xλ) + ⟨∇ f (xλ), y − xλ⟩ = f (xλ)− λ⟨∇ f (xλ), x − y⟩.

Multiplying the first inequality with λ and the second with
(1 − λ) and adding the inequalities shows the assertion.

iii) =⇒ ii): We add f (y) ≥ f (x) + ⟨∇ f (x), y − x⟩ and f (x) ≥
f (y)+ ⟨∇ f (y), x − y⟩ and get 0 ≥ ⟨∇ f (x)−∇ f (y), y − x⟩
which shows the assertion.

ii) =⇒ iii): Since for h(λ) = f (y + λ(x − y)) we have h′(λ) =
⟨∇ f (y + λ(x − y)), x − y⟩ and the fundamental theorem of
calculus gives

f (x)− f (y) = h(1)− h(0) =
∫ 1

0
h′(λ)dλ

=
∫ 1

0
⟨∇ f (y + λ(x − y)), x − y⟩dλ.

Subtracting ⟨∇ f (x), x − y⟩ from both sides, we get

f (x)− f (y)−⟨∇ f (x), x − y⟩ =
∫ 1

0
⟨∇ f (y + λ(x − y))−∇ f (x), x − y⟩dλ.

Since y+λ(x− y)− x = (1−λ)(y− x) = −(1−λ)(x− y)
we have that the right hand side is

∫ 1

0
⟨∇ f (y + λ(x − y))−∇ f (x), x − y⟩dλ

= −
1∫

0

1
1−λ ⟨∇ f (y + λ(x − y))−∇ f (x),−(1 − λ)(x − y)⟩dλ.

Thus, the right hand side is non-positive by monotonicity
of ∇ f and this shows iii).

The claim on strict convexity follows by inspection of the above
arguments in this case.
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For twice differentiable functions we show the equivalence of
positive semidefinite Hessian and ii): Set xτ = x + τs for τ > 0
and with ii) we get (using d

dλ ⟨∇ f (x + λs), s⟩ = ⟨∇2 f (x + λs)s, s⟩)

0 ≤ 1
τ2 ⟨∇ f (xτ)−∇ f (x), xτ − x⟩

= 1
τ ⟨∇ f (xτ)−∇ f (x), s⟩ = 1

τ

∫ τ

0
⟨∇2 f (x + λs)s, s⟩dλ

and τ → 0 shows that ∇2 f (x) ≽ 0. Conversely, if ∇2 f (x) ≽ 0 we
can write (using the fundamental theorem of calculus twice)

f (y) = f (x) + ⟨∇ f (x), y − x⟩+
∫ 1

0

∫ τ

0
⟨∇2 f (x + λ(y − x))(y − x), y − x⟩dλdτ

≥ f (x) + ⟨∇ f (x), y − x⟩
which implies convexity of f .

Example 5.3. 1. The function f (x) = 1
2 ⟨Ax, x⟩ + ⟨a, x⟩ + b is

convex as soon as the matrix A is positive semidefinite and
it is strictly convex if A is positive definite (since ∇2 f (x) =
A). Moreover, one can even show strong convexity of f for
positive definite A (what is the modulus?).

2. The “log-sum-exp” function is

logsumexp(x) = log(
d

∑
i=1

exp(xi)).

We abbreviate h(x) = ∑d
i=1 exp(xi) and get

∂i logsumexp(x) = exp(xi)
h(x)

and

∂j∂i logsumexp(x) =


exp(xi)h(x)−exp(2xi)

h(x)2 , i = j

− exp(xi+xj)

h(x)2 , i ̸= j.

Thus, we can compute for z ∈ Rd:

⟨∇2 logsumexp(x)z, z⟩ = 1
h(x)2

(
h(x)

d

∑
i=1

exp(xi)z2
i −

d

∑
i,j=1

exp(xi + xj)zizj

)
= 1

h(x)2

( d

∑
i,j=1

exp(xi + xj)z2
i −

d

∑
i,j=1

exp(xi + xj)zizj

)
= 1

h(x)2

(
1
2

d

∑
i,j=1

exp(xi + xj)z2
i +

1
2

d

∑
i,j=1

exp(xi + xj)z2
j

−
d

∑
i,j=1

exp(xi + xj)zizj

)
= 1

h(x)2

( d

∑
i,j=1

exp(xi + xj) (
1
2 z2

i +
1
2 z2

j − zizj)︸ ︷︷ ︸
=

1
2 (zi−zj)2≥0

)
≥ 0
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which shows convexity of logsumexp.
△

We apply the separation of points from convex sets with hy-
perplanes to the epigraph and obtain:

Proposition 5.4. If f : Rd → R̄ is a convex and proper, then there
exists p ∈ Rd and α ∈ R such that for all x it holds that

f (x) ≥ ⟨p, x⟩+ α.

Proof. Since cl f ≤ f we only need to consider the case where f is
closed.

If x /∈ dom( f ), the inequality is valid for any p and α. Now
fix x0 ∈ dom( f ) and β such that f (x0) > β, i.e. (x0, β) /∈ epi( f ).
Since epi( f ) is closed and convex, we can use Theorem 3.4 to
separate the compact singleton {(x0, β)} from epi( f ). This means,
that there exists ( p̄,−b) ∈ Rd+1 \ {0} and ϵ > 0 such that for all
x ∈ dom( f ) it holds that

⟨ p̄, x⟩ − b f (x) ≤ ⟨ p̄, x0⟩ − bβ − ϵ. (*)

For x = x0 we get

b( f (x0)− β) ≥ ϵ > 0

and since f (x0) − β > 0 we obtain b > 0 as well. Hence, with
p = p̄/b we get, by dividing (*) by b,

f (x) ≥ ⟨p, x⟩ − ⟨p, x0⟩+ β

and we proved the claim with α = −⟨p, x0⟩+ β.

Corollary 5.5. If f : Rd → R̄ is convex, it holds for all x0 ∈ Rd

cl f (x0) = sup{⟨p, x0⟩+ α | p ∈ Rd, α ∈ R with f (x) ≥ ⟨p, x⟩+ α ∀x ∈ Rd}.

Convexity is preserved under several operations.

Proposition 5.6. 1. f1 + f2 is convex if f1 and f2 are convex.

2. α f is convex if f is convex and α ≥ 0.

3. f ◦ A is convex if f is convex and A is linear.

4. φ ◦ f is convex if f is convex and φ : R̄ → R̄ is convex and
increasing (with φ(∞) = ∞ and φ(−∞) = −∞).

5. supi∈ I fi is convex if all the fi are.

All proofs are straightforward calculations.
Example 5.7. By Proposition 5.6 5. we see that f (x) = max(x1, . . . , xd)
is convex. △
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6 Continuity of convex functions and minimiz-
ers

Surprisingly, the notion of convexity implies a certain continuity.
We start with a lemma:

Lemma 6.1. Let f : Rd → R̄ be proper and convex and suppose that it
is locally bounded at x0, i.e. there exists δ > 0 and m, M ∈ R such that
for x ∈ B2δ(x0) it holds that

m ≤ f (x) ≤ M.

Then f is Lipschitz continuous on Bδ(x0) with Lipschitz constant at most
(M − m)/δ.

Proof. Let x1, x2 ∈ Bδ(x0), x1 ̸= x2 and set

y :=
(
1 + δ

∥x1−x2∥2

)
x2 − δ

∥x1−x2∥2
x1 = x2 + δ x2−x1

∥x1−x2∥2
.

It holds that ∥y − x2∥2 ≤ δ, i.e. y ∈ B2δ(x0). By rearranging to

x2 = ∥x1−x2∥2
δ+∥x1−x2∥2

y + δ
δ+∥x1−x2∥2

x1

we see that x2 is a convex combination of x1 and y.
Since f is convex we get,

f (x2) ≤ ∥x1−x2∥2
δ+∥x1−x2∥2

f (y) + δ
δ+∥x1−x2∥2

f (x1)

which leads to

f (x2)− f (x1) ≤ ∥x1−x2∥2
δ+∥x1−x2∥2

( f (y)− f (x1))

≤ M−m
δ ∥x1 − x2∥2.

Since we can swap the roles of x1 and x2 this shows the desired
Lipschitz continuity.

Theorem 6.2. Let f : Rd → R̄ be proper and convex. Then f is Lipschitz
continuous on any compact subset C of ri(dom( f )).

Proof. 1. (Restriction to fulldimensional case.) Let C ⊂ ri(dom( f )).
Since C is a subset of the affine hull of the relative interior,
we can restrict f to this affine set and hence, we may assume
that ri(dom( f )) = int(dom( f )).

2. (Locally Lipschitz.) Let x0 ∈ C and since x0 ∈ int(dom( f )),
there exist v1, . . . , vr ∈ dom( f ) and δ > 0 such that

B2δ(x0) ⊂ conv(v1, . . . , vr) ⊂ dom( f ).

Hence, any v ∈ B2δ(x0) can be written as v = ∑r
i=1 αivi,

∑i αi = 1, αi ≥ 0 and convexity of f gives

f (v) ≤
r

∑
i=1

αi f (vi) ≤ max
i

f (vi) =: M.
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This shows that f is bounded from above on B2δ(x0).
By Proposition 5.4 we know that there are p ∈ Rd and α ∈ R

such that

f (x) ≥ ⟨p, x⟩+ α.

Hence, f is bounded from below on B2δ(x0) since the right
hand side is so.
Thus, we can apply Lemma 6.1 and obtain that f is Lipschitz
continuous on Bδ(x0).

3. (Lipschitz on full C) The function f is bounded on the com-
pact set C. Assume that f is not Lipschitz on C. There there
exist sequences xk and yk such that | f (xk)− f (yk)|/|xk −
yk| → ∞ for k → ∞. Since f is bounded, we have |xk − yk| →
0. By compactness of C, xk has a convergent subsequence xkn

with limit x and we see that f can not be Lipschitz at this x.

Corollary 6.3. If f : Rd → R̄ is proper and convex, then it is contin-
uos on ri(dom( f )) relative to aff(dom( f )). If f is additionally finite
everywhere, then it is continuous on Rd.

Now we start our treatment of minimization problems

min
x∈Rd

f (x).

A tremendously large class of pratically relevant problems can be
written in this form (note that we can treat constraint problems
just by setting f = g + iC) and we will see some examples later in
the lecture.

In addition to the usual definitions of local and global minima
of functions, we will also need the set of minimizers which we will
denote by

argmin f := {x̂ ∈ dom( f ) | f (x̂) = inf
x

f (x)}.

Similarly we have argmax f := argmin(− f ).
Now we are interested in conditions on f which ensure the

follwing properties

i) f attains its minimum, i.e. argmin f ̸= ∅,

ii) every local minimizer of f is a global minimizer,

iii) the global minimizer is unique.
Mere convexity does not even ensure
existence of minimizers, even in the
proper case as f (x) = exp(x) shows.Definition 6.4. A function f : Rd → R̄ is called level-bounded or

coercive if all level sets levα f are bounded.

Another way to put this: f is coercive exactly if f (x) → ∞
whenever ∥x∥2 → ∞.
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⇐: Assume that f (x) → ∞ whenever ∥x∥2 → ∞. If x ∈
levα f , then f (x) ≤ α. Thus, there can’t be an unbounded
sequence in levα f since this would contradict that f (x) ≤ α
for all x ∈ levα f .

⇒: We prove the contraposition: Assume that there exists
∥xn∥ → ∞ with f (xn) ≤ C. But then levC f is not bounded,
since xn ∈ levC f .

Theorem 6.5. Let f : Rd → R̄ be proper.

i) If f is lsc and coercive, then argmin f is non-empty and compact.

ii) If f is convex, then every local minimizer is also global and the set
argmin f is convex (but possibly empty).

iii) If f is strictly convex, then argmin f contains at most one point.
In other words: lsc and coercivity en-
sure existence of minimizers, convex-
ity excludes non-global minimizers and,
strict convexity ensures uniqueness of
minimizers.

Proof. i) Since f is proper, we have that ᾱ := inf f < ∞. Hence,
there is a sequence xn such that f (xn) → ᾱ. Since f is coercive,
the sequence xn is bounded, and hence, it has a convergent
subsequence xnk with limit x̄. Since f is lsc, this limit fulfills
f (x̄) ≤ lim infk f (xnk) = ᾱ and this shows x̄ ∈ argmin f .
Moreover argmin f = levᾱ f and since all level sets are closed
(by lsc) and bounded (by coercivity), argmin f is compact.

ii) Let x̄ be a local minimizer of f , i.e. there exists δ > 0 such that
f (x̄) ≤ f (x) for all x ∈ Bδ(x̄). Now let y ∈ Rd and choose
λ ∈ ]0, δ/∥x̄ − y∥2[ with λ < 1. Then λy + (1 − λ)x̄ ∈ Bδ(x̄)
and by convexity of f we get

f (x̄) ≤ f (λy + (1 − λ)x̄) ≤ λ f (y) + (1 − λ) f (x̄).

This implies f (x̄) ≤ f (y) and hence, x̄ is a global minimizer.
If x̄, x∗ are global miminizers, i.e. f (x̄) = f (x∗) = ᾱ, then for
every λ ∈ [0, 1]

f (λx̄ + (1 − λ)x∗) ≤ λ f (x̄) + (1 − λ) f (x∗) = ᾱ,

i.e. λx̄ + (1 − λ)x∗ is also a global minimizers and hence, the
set of global minimizers ist convex.

iii) If f is strictly convex, assume that x̄ and x∗ are two different
global minimizers. But then

f ((x̄ + x∗)/2) < 1
2 ( f (x̄) + f (x∗))

and hence, (x̄ + x∗)/2 would be below the global minimum
which is impossible.
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7 Subgradients

If you’ve found it surprising that convex functions automatically
have some continuity property, you may find it even more surpris-
ing, that they also fulfill some kind of differentiability.

We recall the notion of directional derivative: For f : Rd → R,
x0, v ∈ Rd we denote by

D f (x0, v) := lim
h↘0

f (x0+hv)− f (x0)
h

the one-sided directional derivative (whenever the limit exists). Recall that in the case of differentiable f ,
it holds that D f (x0, v) = ⟨∇ f (x0), v⟩,
but that directional differentiability in
all directions does not imply differentia-
bility (it does so, if D f (x0, v) = ⟨w, v⟩
for all v and in this case it holds that
∇ f (x0) = w).

Definition 7.1. A function f : Rd → R̄ is positively homogeneous (of
degree 1) if

λ > 0 =⇒ f (λx) = λ f (x).
Positive homogeneity of degree p
would mean f (λx) = λp f (x), but we
will not need this notion.

Norms and semi-norms are obvious examples of positive ho-
mogeneous functions as well a linear functions.

Theorem 7.2. Let f : Rd → R̄ be convex, x0 ∈ dom( f ), v ∈ Rd.
Then, the limit in the definition of the directional derivative exists in R̄

and it holds

D f (x0, v) = inf
h>0

f (x0+hv)− f (x0)
h .

Moreover, the function D f (x0, ·) is convex and positvely homogeneous
and for any v it holds that

D f (x0, v) ≤ f (x0 + v)− f (x0)

and if f (x0 − v) ̸= −∞ it also holds that

f (x0)− f (x0 − v) ≤ D f (x0, v).

In particular, D f (x0, v) is finite for all v if x0 ∈ int dom( f ).

Proof. The proof relies on the following monotonicity property of
the difference quotient: For 0 < h1 < h2 it holds that

f (x0+h1v)− f (x0)
h1

≤ f (x0+h2v)− f (x0)
h2

.

To see this first note that if x0 + h2v /∈ dom f , the inequality
is always fulfilled. Hence, we assume that x0 + h2v ∈ dom f .
By convexity of f we get

f (x0 + h1v)− f (x0) = f
( h1

h2
(x0 + h2v) + (1 − h1

h2
)x0

)
− f (x0)

≤ h1
h2

f (x0 + h2v) + (1 − h1
h2
) f (x0)− f (x0)

= h1
h2

(
f (x0 + h2v)− f (x0)),

and this shows the desired monotonicity.
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The monotonicity implies that the limit in the definition of
the directional derivative is actually an infimum and, moreover,
D f (x0, v) ≤ f (x0 + v)− f (x0) follows by taking h = 1.

To show the lower inequality, let v be such that f (x0 − v) >
−∞. If f (x0 − v) = ∞ or D f (x0, v) = ∞, there is nothing to
prove. Hence, assume that both quantities are finite. Since ∞ >
D f (x0, v) = limh→0( f (x0 + hv) − f (x0))/h, there is an h̄ > 0
such that f (x0+hv)− f (x0)

h is finite for all h ∈ ]0, h̄]. Hence, x0 −
v, x0 + hv ∈ dom f for these h and we get, again using convexity,

f (x0) = f
(

1
1+h (x0 + hv) + h

1+h (x0 − v)
)

≤ 1
1+h f (x0 + hv) + h

1+h f (x0 − v).

We rearrange to

f (x0)− f (x0 − v) ≤ f (x0+hv)− f (x0)
h

and the claim follows for h ↘ 0.
Now we show that D f (x0, ·) is convex: For v1, v2 ∈ dom D f (x0, ·)

we have (for small enough h and λ ∈ [0, 1])

f (x0 + h(λv1 + (1 − λ)v2))− f (x0) = f (λ(x0 + hv1) + (1 − λ)(x0 + hv2))− λ f (x0)− (1 − λ) f (x0)

≤ λ( f (x0 + hv1)− f (x0)) + (1 − λ)( f (x0 + hv2)− f (x0))

Dividing by h > 0 and h ↘ 0 shows the desired convexity.
To show that D f (x0, ·) is positively homogeneous, we observe

for λ > 0

D f (x0, λv) = lim
h↘0

f (x0+λhv)− f (x0)
h

= lim
h̄↘0

λ
f (x0+h̄v)− f (x0)

h̄ (h̄ = λh)

= λD f (x0, v)

as desired.
Finally, we show that D f (x0, v) is finite for x0 ∈ int dom f and

all v: For every v there is λ > 0 such that x0 ± λv ∈ int dom f and
thus

1
λ ( f (x0)− f (x0 − λv)) ≤ 1

λ D f (x0, λv)︸ ︷︷ ︸
=D f (x0,v)

≤ 1
λ ( f (x0 + λv)− f (x0))

and the claim follows since the leftmost and rightmost expressions
are finite.

Now recall that by Theorem 5.2 we know that a differentiable
and convex f fulfills that for every x0 it holds that

∀x : f (x) ≥ f (x0) + ⟨∇ f (x0), x − x0⟩.
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Definition 7.3. Let f : Rd → R̄ be convex and x0 ∈ dom f . Then
p ∈ Rd is a subgradient of f at x0 if

∀x ∈ Rd : f (x) ≥ f (x0) + ⟨p, x − x0⟩.

The set of all subgradients of f at x0 is denoted by ∂ f (x0) and
called subdifferential of f at x0.

If x0 /∈ dom f we set ∂ f (x0) = ∅. Furthermore we denote

dom ∂ f = {x | ∂ f (x) ̸= ∅}

and f is called subdifferentiable at x0 if x0 ∈ dom ∂ f , i.e. if ∂ f (x0) ̸=
∅.

A direct consequence of the definition is that the set ∂ f (x0) is
always closed and convex.

If pn ∈ ∂ f (x) with pn → p, then f (y) ≥ f (x) + ⟨pn, y − x⟩
for all y and passing to the limit pn → p shows that p ∈
∂ f (x). If p, q ∈ ∂ f (x), then f (y) = λ f (y) + (1 − λ) f (y) ≥
λ f (x) + λ⟨p, x − y⟩+ (1 − λ) f (x) + (1 − λ)⟨q, y − x⟩ =
f (x) + ⟨λp + (1 − λ)q, y − x⟩, i.e. λp + (1 − λ)q ∈ ∂ f (x).

Graphically, some p is a subgradient of f at x0 if the function
x 7→ f (x0) + ⟨p, x − x0⟩ is a supporting affine lower bound which
is exact at x0.

The nice thing about subgradient is, that they even exist where
a convex function has a kink, and in this case there is more than
one of them:
Example 7.4. 1. Consider f (x) = |x| on the real line. In one di-

mension, we can charactarize the subdifferential completely
by left- and right-derivatives, since these are the directional
derivatives D f (x,−1) and D f (x, 1), respectively. For the ab-
solute value we get

∂ f (x) =


{−1}, if x < 0
[−1, 1], if x = 0
{1}, if x > 0.

2. Let f = i[a,b]. This function is differentiable in ]a, b[ with
derivative zero. At the left endpoint, affine functions p(x− a)
for p ≤ 0 fit below the graph while at the right endpoint, the
affine function p(x − b) with p ≥ 0 fit below the graph. For
x < a and x < b the value of the function is ∞ and hence,
the subgradient is empty there. Hence, we have

∂i[a,b](x) =


∅ : x < a and x > b
]−∞, 0] : x = a
0 : a ≤ x ≤ b
[0, ∞[ : x = b.
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3. Now consider the function

f (x) =

{
∞, if x < 0 or x > 1
−
√

x, if 0 ≤ x ≤ 1.

We get

∂ f (x) =


∅, if x ≤ 0,
{− 1

2
√

x}, if 0 < x < 1,

[− 1
2 , ∞[, if x = 1,

∅, if x > 1.

Note that the subdifferential ∂ f (x0) can be empty or un-
bounded if x0 /∈ int dom f . The next theorem shows that
none of this can happen in the interior of the domain.

△

Here are some pictures showing convex functions and their

subgradients:
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Proposition 7.5 (The subdifferential and directional derivatives).
Let f : Rd → R̄ be convex x0 ∈ dom f . Then it holds that

∂ f (x0) = {p ∈ Rd | ∀v ∈ Rd : ⟨p, v⟩ ≤ D f (x0, v)}. (*)

Proof. Denote the set on the right hand side of (*) by M.

∂ f (x0) ⊂ M: Let p ∈ ∂ f (x0) and set x = x0 + hv for h > 0. Then,
by definition of the subdifferential:

f (x0 + hv)− f (x0) ≥ ⟨p, hv⟩

and division by h and h ↘ 0 shows p ∈ M.

∂ f (x0) ⊃ M: Now let p ∈ M. Theorem 7.2 shows that for all v ∈
Rd.

⟨p, v⟩ ≤ D f (x0, v) ≤ f (x0 + v)− f (x0)

and the claim follows if we set x = x0 + v
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Subgradients have some properties similar to gradients:

Proposition 7.6. Let f : Rd → R̄ be convex. Then it holds:

i) ∂φ(x) = ∂ f (x + x0) for φ(x) := f (x + x0).

ii) ∂φ(x) = λ∂ f (λx) for φ(x) := f (λx) and λ ̸= 0.

iii) ∂φ(x) = λ∂ f (x) for φ(x) := λ f (x) if λ > 0 of λ = 0 and
∂ f (x) ̸= ∅.

The rule for subgradients of the sum of
convex functions has a small twist and
we will treat that later.

These are straightforward consequences of the definition and
one should do the proofs as exercises (and check why the extra
conditions are needed by constructing counter examples).

Proposition 7.7. A convex function f : Rd → R̄ is differentiable at
x0 if a only if ∂ f (x0) only has one element and in this case we have
∂ f (x0) = {∇ f (x0)}.

Proof. Let f be differentiable at x0. By Proposition 7.5 we have that
p ∈ ∂ f (x0) fulfills ⟨p, v⟩ ≤ ⟨∇ f (x0), v⟩ for all v which implies
p = ∇ f (x0).

To show the converse, we assume without loss of generality
that x0 = 0 and ∂ f (0) = {w}. We define the convex function
Fv(t) = f (tv). Similarly to Proposition 7.6 ii) we see that ∂Fv(0) =
{⟨w, v⟩} which implies for t > 0

0 ≤ Fv(t)−Fv(0)
t − ⟨w, v⟩. (*)

On the other hand, for ϵ > 0 there exists tϵ such that Fv(tϵ) <
Fv(0) + tϵ⟨w, v⟩+ tϵϵ (because ⟨w, v⟩+ ϵ /∈ ∂Fv(0)). Convexity of
Fv shows that for every t ∈ [0, tϵ] it holds that

Fv(t) ≤ t
tϵ

Fv(tϵ) +
tϵ−t

tϵ
Fv(0)

≤ F(0) + t⟨w, v⟩+ tϵ,

and hence,

Fv(t)−Fv(0)
t − ⟨w, v⟩ ≤ ϵ.

Since ϵ > 0 was arbitrary, it follows that

lim
t↘0

Fv(t)−Fv(0)
t ≤ ⟨w, v⟩.

From (*) we have the reverse inequality and this gives that D f (0, v) =
⟨w, v⟩ for all directions v which proves differentiablity of f and
∇ f (0) = w.
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8 Subdifferential calculus

Proper and convex functions always have subgradients in the inte-
rior of their domain.

Theorem 8.1. If f : Rd → R̄ be proper and convex. Then it holds that
∂ f (x0) is non-empty and bounded if x0 ∈ int dom f .

There is sharper result, namely that the
subdifferential ∂ f (x0) is non-empty
and bounded exactly if x0 ∈ ri dom f ,
but we will not prove this here.

Proof. If x0 ∈ int dom f , then f is locally Lipschitz-continuous at
x0 (Lemma 6.1), hence, there is δ > 0 such that | f (x)− f (x0)| < 1
for |x − x0| < δ. In particular, for some p ∈ ∂ f (x0) and all x with
∥x∥2 < 1 we have

1 > f (x0 + δx)− f (x0) ≥ ⟨p, δx⟩.

Hence, ⟨p, x⟩ ≤ 1/δ, and taking the supremum over all x with
∥x∥2 ≤ 1 shows ∥p∥2 ≤ 1/δ.

To show that ∂ f (x0) is non-empty, note that int(epi f ) is not
empty (since it contains an open set of the form Bδ(x0)× ] f (x0), ∞[).
Moreover (x0, f (x0)) is not in int(epi f ) and hence we can, by
Proposition 3.6, find (p0, t) ∈ Rd × R for fulfills (p0, t) ̸= (0, 0)
and

⟨p0, x⟩+ ts ≤ λ if x ∈ dom f , f (x) ≤ s and ⟨p0, x0⟩+ t f (x0) ≥ λ.

With x = x0 and s = f (x0) we see that λ = ⟨p0, x0⟩ + t f (x0).
Moreover, we see that t < 0, since t > 0 would lead to a contradic-
tion by sending t → ∞ and t = 0 would imply ⟨p0, x − x0⟩ ≤ 0
for all x ∈ Bδ(x0) and this would imply p0 = 0 which would
contradict (p0, t) ̸= 0. With p = −p0/t we get

f (x0) + ⟨p, x − x0⟩ ≤ f (x0)

for all x ∈ dom f and this shows p ∈ ∂ f (x0).

Derivatives can be used to find local minima of functions. For
convex functions, this is accomplished by subgradients. However,
due to convexity, the first order condition is necessary and suffi-
cient.

Theorem 8.2 (Fermat’s rule). Let f : Rd → R̄ be proper and convex.
Then it holds that x̂ is a global minimizer of f exactly if 0 ∈ ∂ f (x̂).

Proof. Let x̂ be a global minimizer. Hence, we have for all x

f (x) ≥ f (x̂)
= f (x̂) + ⟨0, x − x̂⟩

and this shows 0 ∈ ∂ f (x̂). Conversely, if 0 ∈ ∂ f (x̂), then the above
subgradient inequality holds for all x and hence, x̂ is a global
minimizer.
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Example 8.3. Let C be convex and non-empty. Then the subdiffer-
ential of the indicator function of C is given by

∂iC(x0) =

{
{p ∈ Rd | ∀x ∈ C : ⟨p, x − x0⟩ ≤ 0}, if x0 ∈ C
∅, if x0 /∈ C

First, we observe, that for x0 ∈ int C, it holds that ∂iC(x0) = {0}
(as the function is locally constant there). If x ∈ ∂C, then there is
geometric meaning of the subgradients: A vector p is a subgradient,
if the angle between p and the line from x0 to any point x ∈ C is
larger than 90°. We have seen this property already and indeed it
holds that the subgradient of the indicator is in fact the normal
cone, i.e.

C

∂iC(x) = NC(x).

△

Theorem 8.4 (Sum and chain rule for subdifferentials). i) Let f , g :
Rd → R̄ be proper and convex. Then it holds for every x that

∂ f (x) + ∂g(x) ⊂ ∂( f + g)(x).

Equality holds if there exists some x̄ such that x̄ ∈ dom( f ) ∩
dom(g) and f is continuous at x̄. Note that the point x̄ is totally unre-

lated to the x in the assertion and that
only one of the two functions need to
be continuous at x̄.

ii) Let f : Rd → R̄ be proper and convex and A ∈ Rd×n. Then
φ(x) := f (Ax) satisfies

AT∂ f (Ax) ⊂ ∂φ(x)

for all x and equality holds if there exists x̄ such that f is continuous
and finite at Ax̄.

Proof. i) We start with the inclusion: Let p ∈ ∂ f (x) + ∂g(x), i.e.
we have p = q + r with p ∈ ∂ f (x), r ∈ ∂g(x). Hence, we have
for all y that

f (y) ≥ f (x) + ⟨q, y − x⟩
g(y) ≥ g(x) + ⟨r, y − x⟩

and adding these inequalities shows that p = q + r ∈ ∂( f +
g)(x).
Now assume that f is continuous at some x̄ with x̄ ∈ dom( f )∩
dom(g) and it remains to show that ∂( f + g)(x) ⊂ ∂ f (x) +
∂g(x). If f (x) = ∞ or g(x) = ∞, then the inclusion is clear,
since then ∂( f + g)(x) = ∅.
Hence, let x ∈ dom( f )∩dom(g). We have to prove that every
p ∈ ∂( f + g)(x) can be decomposed into p = q + r with
q ∈ ∂ f (x) and r ∈ ∂g(x). The subgradient inequality for
p ∈ ∂( f + g)(x) is

f (y) + g(y) ≥ f (x) + g(x) + ⟨p, y − x⟩
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for all y. We rewrite this as

F(y) := f (y)− f (x)− ⟨p, y − x⟩ ≥ g(x)− g(y) =: G(y)
(*)

and consider the sets

C1 := {(y, α) ∈ Rd × R | α ≥ F(y)} = {(y, α) ∈ dom( f )× R | α ≥ F(y)}
C2 := {(y, α) ∈ Rd × R | G(y) ≥ α} = {(y, α) ∈ dom(g)× R | G(y) ≥ α}.

Since F(x) = G(x) = 0, both sets are non-empty and since f
and g are convex (hence F is convex and G is concave), both
sets are convex. By (*), the sets C1 and C2 only share bound-
ary points. Hence, by the proper separation theorem (Theo-
rem 3.8), there exists a nonzero (q, a) such that

⟨
[

q
a

]
,
[

y2
α2

]
⟩ ≤ ⟨

[
q
a

]
,
[

y1
α1

]
⟩

for (yi, αi) ∈ Ci, i = 1, 2.
We aim to show a > 0: Since (x, α1) ∈ C1 for α1 ≥ 0 and
(x, α2) ∈ C2 for α2 ≤ 0, we have that aα2 ≤ aα1. Hence, a ≥ 0.
Now we show that a > 0, i.e. we only need to show that a ̸= 0.
If a = 0 would hold, than we would have

⟨q, y2⟩ ≤ ⟨q, y1⟩, for y1 ∈ dom F = dom f , y2 ∈ dom(−G) = dom g
⟨q, x̄⟩ ≤ ⟨q, y1⟩ for y1 ∈ dom F = dom f .

In particular, the continuity of f would imply that for y1 =
x̄ ± ∆x ∈ dom( f ) (which holds for all ∆x small enough), that
0 ≤ ⟨q,±∆x⟩ for all these ∆x and this would imply q = 0
which contradicts (q, a) ̸= 0.
Thus a > 0 and we can assume a = 1 without loss of generality.
We have for (y, F(y)) ∈ C1 and (y, G(y)) ∈ C2 that whenever
y is in dom( f ) or dom(g), respectively, that

⟨q, y⟩+ F(y) ≥ b ⟨q, y⟩+ G(y) ≤ b.

With y = x ∈ dom( f ) ∩ dom(g), we get the equality ⟨q, x⟩ =
b and we get

∀y ∈ dom( f ) : f (y)− f (x)− ⟨p, y − x⟩+ ⟨q, y⟩ ≥ ⟨q, x⟩

which means

∀y ∈ dom( f ) : f (y) ≥ f (x) + ⟨p − q, y − x⟩.

We conclude p − q ∈ ∂ f (x) and similarly, we get q ∈ ∂g(x)
which proves the claim.
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ii) For the inclusion let q = AT p with p ∈ ∂ f (Ax) we have for
all y that

φ(x) + ⟨q, y − x⟩ = f (Ax) + ⟨AT p, y − x⟩
= f (Ax) + ⟨p, Ay − Ax⟩ ≤ f (Ay) = φ(y)

and this shows that q ∈ ∂φ(x).
For the equality, assume that q ∈ ∂φ(x), i.e. for all y

f (Ax) + ⟨q, y − x⟩ ≤ f (Ay).

We aim to squeeze a separating hyperplane into this inequality.
We define

C1 = epi f , C2 = {(Ay, f (Ax) + ⟨q, y − x⟩) ∈ Rd × R | y ∈ Rd}.

We note that int(C1) is not empty and that int(C1) ∩ C2 = ∅.
Hence, by Theorem 3.8 we can find some 0 ̸= (q0, α0) ∈ Rd ×
R such that

⟨q0, ȳ⟩+ α0α ≤ λ ∀ȳ ∈ dom f , α ≥ f (ȳ)

⟨q0, Ay⟩+ α0( f (Ax) + ⟨q, y − x⟩) ≥ λ, ∀y ∈ Rd.

Again α0 > 0 can not occur (α → ∞ would lead to a con-
tradiction) and α0 ̸= 0 follows from the continuity of f at
Ax̄.

If α0 = 0, then ⟨q0, ȳ⟩ ≤ ⟨q0, Ay⟩ for all ȳ ∈ dom f and
y ∈ Rd. Hence we can choose y = x̄ and ȳ = Ax̄ ± ∆y
and would get ±⟨q0, ∆y⟩ = 0 and thus q0 = 0 as well,
contradicting (q0, α0) ̸= 0.

If we set ȳ = Ax, α = f (ȳ) and y = x we conclude λ =
⟨q0, Ax⟩+ α0 f (Ax). By the second inequality above we get

⟨q0, Ay − Ax⟩+ α0⟨q, y − x⟩ ≥ 0 ∀y ∈ Rd

and hence q = − 1
α0

ATq0. Setting p = − 1
α0

q0 we get from the
first inequality above, by rearranging and dividing by α0 < 0,
that

⟨p, z − Ax⟩+ f (Ax) ≤ f (z), ∀z ∈ dom f

and this means that p ∈ ∂ f (Ax). Hence, ∂φ(x) ⊂ AT∂ f (Ax).
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9 Applications of subgradients

Example 9.1. Let’s consider counterexamples to show that the sum-
rule rule and the chain rule for linear maps are indeed not always
true:

1. Let f = i[0,∞[ and

g(x) =

{
−
√
−x, x ≤ 0

∞, x > 0.

The subdifferentials are

∂ f (x) =


∅, x < 0
]−∞, 0], x = 0
{0}, x > 0

, ∂g(x) =

{
{ 1

2
√
−x}, x < 0

∅, x ≥ 0.

Thus, the sum of the subdifferentials is always empty: ∂ f (x)+
∂g(x) = ∅ for all x.
The sum of f and g, however, is

( f + g)(x) = i{0}(x)

and hence, the subdifferential of the sum is

∂( f + g)(x) =

{
∅, x ̸= 0,
R, x = 0,

which is much larger.

2. For the chain rule for linear maps there is a very simple
counterexample: Consider

f (x) =

{
∞, if x < 0,
−
√

x, if x ≥ 0,

with ∂ f (0) = ∅ and A = 0 (the 1 × 1 zero-matrix). Then
φ(x) = f (Ax) ≡ f (0) = 0, i.e. ∂φ(0) = {0}. Hence

∂φ(0) = {0} ⊋ ∅ = A∂ f (A0).

△

Here is a positive result:

Corollary 9.2. Let f : Rd → R̄ be proper, lsc, and convex and let
C ⊂ Rd be non-empty, closed, and convex such that dom f ∩ int C ̸= ∅.
Then it holds

x̂ ∈ argmin
x∈C

f (x) ⇐⇒

 1. x̂ ∈ C

2. 0 ∈ ∂ f (x̂) + NC(x̂)
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The condition that dom f ∩ int C ̸= ∅ ensures that the sub-
gradient sum-rule is fulfilled for f + iC and NC(x̂) = ∂iC(x̂)
proves the claim.

Here are two reformulations of the optimality conditions: x̂
solves minx∈C f (x) exactly if x̂ ∈ C and one of the following con-
ditions holds

A. ∃p ∈ ∂ f (x̂)∀x ∈ C : ⟨p, x − x̂⟩ ≥ 0,

B. ∃p ∈ ∂ f (x̂)∀γ > 0 : x̂ = PC(x̂ − γp).

Condition A.: It holds that 0 ∈ ∂ f (x̂) + NC(x̂) exactly if there
ist p ∈ ∂ f (x̂) and −p ∈ NC(x̂). Writing out the latter condi-
tion gives the assertion.
Condition B: The Projection Theorem (Theorem 2.8) we can
characterize x̂ = PC(x̂ − γp) by

∀x ∈ C : ⟨x̂ − γp − x̂, x − x̂⟩ ≤ 0

and this is equivalent to

∀x ∈ C : ⟨p, x − x̂⟩ ≥ 0.

The above results allow us to obtain very simple algorithms in
several situations.
Example 9.3 (Non-negative least squares). We consider a least squares
problem min 1

2∥Ax − b∥2
2 and want to find only non-negative so-

lutions. i.e. we add the constraint x ≥ 0. We can do this by adding
an indicator function of the non-negative orthant C = Rd

≥0, i.e.
we consider

min
x

1
2∥Ax − b∥2

2 + iRd
≥0
(x).

We use the projection characterization (item B. above): Projecting
onto the non-negative orthant is just clipping away the negative
entries, i.e we take the positive part of the vector:

PRd
≥0
(x) = max(x, 0) =: x+.

Moreover, the function f (x) = 1
2∥Ax − b∥2

2 is convex and differ-
entiable, hence ∂ f (x) = {AT(Ax − b)} and thus, solutions are
characterized by

x̂ = (x̂ − γAT(Ax̂ − b))+

for any γ > 0. It turns out that for suitable γ (namely 0 < γ <
2/∥AT A∥) the corresponding fixed point iteration

xk+1 = (xk − γAT(Axk − b))+

converges to a solution (we will prove this later). △

A little bit more general:
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Example 9.4 (Projected subgradient method). Let f : Rd → R̄ be
proper, convex and lsc and let C be non-empty, closed and convex
and consider the general convexly constrained convex optimiza-
tion problem minx∈C f (x)

Condition B. now reads as: For some p̂ ∈ ∂ f (x̂) it holds that

x̂ = PC(x̂ − γ p̂)

which we can turn into a fixed-point iteration

Choose pk ∈ ∂ f (xk),

Set xk+1 = PC(xk − γpk).

Let us analyze this method a little bit: If x∗ denotes any solution
of the problem, then PC(x∗) = x∗ and since PC is Lipschitz con-
tinuous with constant 1 (we will show this later) we get

∥xk+1 − x∗∥2
2 = ∥PC(xk − γpk)− PC(x∗)∥2

2

≤ ∥xk − γpk − x∗∥2
2

= ∥xk − x∗∥2
2 − 2γ⟨pk, xk − x∗⟩+ γ2∥pk∥2

2

≤ ∥xk − x∗∥2
2 − 2γ( f (xk)− f (x∗)) + γ2∥pk∥2

2

where the last step uses the subgradient inequality f (x∗) ≥ f (xk)+
⟨pk, x∗ − xk⟩. Since f (xk)− f (x∗) ≥ 0 (x∗ is a minimizer) we see
that a step with a small enough stepsize γ should reduce the dis-
tance to any minimizer. Of course, we can also use a stepsize γk
that changes with each iteration, leading to an estimate

∥xk+1 − x∗∥2
2 ≤ ∥xk − x∗∥2

2 − 2γk( f (xk)− f (x∗)) + γ2
k∥pk∥2

2

We can rearrange this to

γk( f (xk)− f (x∗)) ≤ 1
2 γ2

k∥pk∥2
2 +

1
2∥xk − x∗∥2

2 − 1
2∥xk+1 − x∗∥2

2.

Now we sum up these inequalities for k = 0, . . . , N and get

N

∑
k=0

γk( f (xk)− f (x∗)) ≤ 1
2

N

∑
k=0

γ2
k∥pk∥2

2 +
1
2∥x0 − x∗∥2

2 − 1
2∥xN+1 − x∗∥2

2

≤ 1
2

N

∑
k=0

γ2
k∥pk∥2

2 + ∥x0 − x∗∥2
2.

To get a convergent method, we assume that the norms of the
subgradients are bounded, i.e. for all k we have ∥pk∥2 ≤ L for some
L > 0. Furthermore we denote f ∗ := f (x∗), f N

best := mink=0,...,N f (xk)

and D2 = 1
2∥x0 − x∗∥2

2. Then we get

( N

∑
k=0

γk

)
( f N

best − f ∗) ≤ L2

2

N

∑
k=0

γ2
k + D2.
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Finally, this leads to

( f N
best − f ∗) ≤

D2 + L2

2 ∑N
k=0 γ2

k

∑N
k=0 γk

.

This shows: The best function value converges towards the mini-
mal one, if we assume that the stepsizes γk fulfill

∑N
k=0 γ2

k

∑N
k=0 γk

N→∞−→ 0.

This can be accomplished, for example, if ∑∞
k=0 γ2

k converges, while
∑∞

k=1 γk diverges. We have the following estimates (by comparison
with the respective integrals)

We use that for a function f
that decreases on an inter-
val [K − 1, N + 1] it holds that∫ N+1

K f (x)dx ≤ ∑N
k=K f (k) ≤

∫ N
K−1 f (x)dx.

log(N + 2) =
∫ N+1

0

1
x + 1

dx ≤
N

∑
k=0

1
k + 1

≤ 1 +
∫ N

0

1
x + 1

dx = 1 + log(N + 1)

2
√

N + 2 − 2 =
∫ N+1

0

1√
x + 1

dx ≤
N

∑
k=0

1√
k + 1

≤ 1 +
∫ N

0

1√
x + 1

dx = 2
√

N + 1 − 1

N

∑
k=0

1
(k + 1)2 ≤ 1 +

∫ N

0

1
(x + 1)2 dx = 2 − 1

N + 1
.

Hence, we get for the stepsize γk = 1/(k + 1) that

( f N
best − f ∗) ≤

D2 + L2

2 (2 −
1

N+1 )

log(N + 2)
.

and for the stepsize γk = 1/
√

k + 1 that

( f N
best − f ∗) ≤

D2 + L2

2 (1 + log(N + 1))

2
√

N + 2 − 2
.

If one wants to achieve the best result with a fixed number N
of iterations, one can proceed differently: Here one would like to
minimize the ratio

R(γ) =
D2 + L2

2 ∑N
k=0 γ2

k

∑N
k=0 γk

over all variables γk. We can take the gradient with respect to the
vector γ = (γ1, γ2, . . . , γN) and get

∇R(γ) =
L2γ ∑N

k=0 γk − (D2 + L2

2 ∑N
k=0 γ2

k)1(
∑N

k=0 γk

)2

where 1 denotes the vector of all ones. Setting this to zero we
observe that γ should be a constant vector, i.e. γ = h1 for some h.
Plugging this in, we need to solve

L2(N + 1)h2 = L2

2 (N + 1)h2 + D2
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stepsize γk
1

k+1
1√
k+1

√
2D

L
√

N+1

estimate f N
best − f ∗ L2

2
D2+2− 1

N+1
log(N+2)

L2

2
D2+1+log(N+1)

2
√

N+2−2
2D2

√
N+1

iter. needed for f N
best − f ∗ < ϵ O(e1/ϵ) O(ϵ−2) O(ϵ−2)

Table 1: Iteration complexity of the subgradient method for differ-
ent stepsizes (L: Lipschitz constant of f , D = ∥x0 − x∗∥2/

√
2).

leading to the constant stepsize

γk ≡
√

2D
L
√

N + 1
.

This gives us the guarantee that

f N
best − f ∗ ≤ 2D2 1√

N+1
.

The number (or order of ) iterations that is needed to reach a guar-
anteed accuracy (is some sense) is called the iteration complexity
of a method. We can translate our estimates on f N

best − f ∗ into
results on the iteration complexity, see Table 1. So, theoretically,
the option with fixed step-size has the best worst-case guarantee,
but note that further iterations will not improve this any more,
and moreover, an estimate on ∥x0 − x∗∥2 is needed. In practice,
the stepsize 1/(k + 1) often leads to best results, but the choice of
step-sizes for subgradient methods is a delicate issue.

Here is an example for the problem of least absolute deviations
(LAD) which is

min
x∈Rn

∥Ax − b∥1,

i.e. one minimizes the sum of the absolute deviations and not the
sum of the squares. This approach is useful if b containes additive
noise which follows a Laplace distribution. Since the 1-norm is
convex, lsc and everywhere continous, we can apply the chain rule
from Theorem 8.4. Since the subgradient of the 1-norm is obtain
from the known subgradient of the absolute value by applying this
component-wise, we obtain

∂∥x∥1 = Sign(x)

with the so-called multivalued sign function which acts componen-
twise as

Sign(xi) =


{−1}, xi < 0
[−1, 1], xi = 0
{1}, xi > 0.
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By the chain rule and Lemma 7.6 we get as subgradient of f (x) =
∥Ax − b∥1

∂ f (x) = AT Sign(Ax − b).

Hence, the subgradient method for the LAD problem can be im-
plemented by choosing the ordinary sign-function

xk+1 = xk − γk AT sign(Axk − b).

Here is a plot of the value of f k
best over iterations:

0 500 1000 1500 2000 2500 3000
0

50

100

150

200
fkbest

1/(k+1)

1/sqrt(k+1)

0.1/sqrt(N+1)

△
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10 Inf-convolution and the Moreau enevelope

Definition 10.1. For two functions f1, f2 : Rd → R̄ we define the
inf-convolution (also called infimal convolution or epi-addition) as

( f1 □ f2)(u) := inf
x+y=u

f1(x) + f2(y) = inf
x

f1(x) + f2(u − x)

If the infimum is attained at some x whenever it is finite, we call
the inf-convolution exact. You may compare this definition to the

standard convolution of two functions
f1 ∗ f2(u) =

∫
f1(x) f2(u − x)dx

and note that the integral (“generalized
sum”) has been replaces by an infimum
(“generalized minimum”) and the mul-
tiplication has been replaced by an ad-
dition.

Since different infima commute, we get for more than two
functions

f1 □ ( f2 □ f3)(u) = inf
x+y=u

f1(x) + ( f2 □ f3)(y)

= inf
x+y=u

[
f1(x) + inf

z+v=y
f2(z) + f3(v)

]
= inf

x+y=u
z+v=y

f1(x) + f2(z) + f3(v)

= inf
x+z+v=u

f1(x) + f2(z) + f3(v)

(and we see that inf-convolutions are associative).
Example 10.2. 1. For two sets S1 and S2 we get for the inf-convolution

of their indicator functions

(iS1 □ iS2)(u) = inf
x+y=u

iS1(x) + iS2(y) = iS1+S2(u).

2. If we take f1(x) = ∥x∥ (for some norm) and f2 = iC the
indicator function of a convex set C, we get as their inf-
convolution

( f1 □ f2)(u) = inf
x∈C

∥u − x∥ = d(u, C),

i.e., the distance function for the set C (with respect to the
norm ∥·∥)

△

Theorem 10.3. Let f1/2 : Rd → R̄ be proper. Then it holds

epi f1 + epi f2 ⊂ epi( f1 □ f2)

and equality holds exactly if the inf-convolution is exact. Moreover, if f1
and f2 are convex, then so is f1 □ f2.

Proof. First, let’s show the inclusion: Let (x, α) ∈ epi f1 + epi f2, i.e.
there exist (αi, xi) ∈ epi fi (i = 1, 2) with x = x1 + x2, α = α1 + α2
and f1(x1) ≤ α1, f2(x2) ≤ α2. Hence

( f1 □ f2)(x) = ( f1 □ f2)(x1 + x2)

= inf
y1+y2=x1+x2

f1(y1) + f2(y2)

≤ f1(x1) + f2(x2) ≤ α1 + α2 = α
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and this shows that (x, α) ∈ epi( f1 □ f2).
Now let’s show that there is equality precisely in the case of

exactness: Let (x, α) ∈ epi( f1 □ f2), i.e. ( f1 □ f2)(x) ≤ α. By ex-
actness, there are x1, x2 with x = x1 + x2 and ( f1 □ f2)(x) =
f1(x1) + f2(x2) ≤ α. Hence

(x, α) = (x1, f1(x1)) + (x2, α − f1(x1)︸ ︷︷ ︸
≥ f2(x2)

) ∈ epi f1 + epi f2.

For the converse implication assume that epi( f1 □ f2) = epi( f1) +
epi( f2) and let f = f1 □ f2 be finite at x, i.e. (x, f (x)) ∈ epi( f1 □
f2) = epi f1 + epi f2. Then, there exist (xi, αi) ∈ epi fi (i = 1, 2)
with (x, f (x)) = (x1, α1) + (x2, α2) and thus, f (x) = α1 + α2 ≥
f1(x1)+ f2(x2). However, since we also have f (x) = infy1+y2=x f1(y1)+
f2(y2) ≤ f1(x1) + f2(x2) by the definition of the inf-convolution,
we have equality and see that the infimum is attained at x =
x1 + x2.

Finally, let f1, f2 be convex. By Proposition 5.1, we know that
epi f1 + epi f2 is a convex set. It remains to note that

( f1 □ f2)(x) = inf
x1+x2=x

f1(x1) + f2(x2)

= inf {α ∈ R | α > α1 + α2, α1 > f (x1), α2 > f (x2), x1 + x2 = x}
= inf{α ∈ R | (x, α) ∈ epi f1 + epi f2}.

The set epi f1 + epi f2 is convex, and hence the function f1 □ f2 is
also convex.

Inf-convolutions are not always as nice as we would like them
to be (namely, when they are not exact):
Example 10.4. 1. The functions f1(x) = px (p ∈ R) and f2(x) =

exp(x) are proper, convex, and continuous. Their inf-convolution
is

( f1 □ f2)(u) =


p(u − log(p)) + p, if p > 0,
0, if p = 0,
−∞, if p < 0.

Hence, for p < 0, the inf-convolution is not proper. More-
over, for p = 0

epi f1 = R × [0, ∞[, epi f2 = {(x, α) | exp(x) ≤ α}, epi( f1 □ f2) = R × [0, ∞[

and hence, epi f1 + epi f2 = R × ]0, ∞[ ⊂ epi( f1 □ f2) with
strict inclusion.

2. Consider

C1 := {(x, y) | y ≥ exp(x)}, C2 := {(x, y) | y ≥ exp(−x)}
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which are both non-empty, closed, convex sets in R2 and
hence, their indicator functions iC1 and iC2 are proper, convex
and lsc. The Minkowski sum of C1 and C2 is

C1 + C2 = R × ]0, ∞[

which is not closed and hence, their inf-convolution iC1 □
iC2 = iC1+C2 is not lsc.

△

A special inf-convolution is the one with the function h(x) =
1
2∥x∥2

2:

Definition 10.5. The Moreau envelope (with parameter λ) of a proper,
convex and lsc function f is

λ f :=
( 1

2λ∥·∥
2
2 □ f

)
.

Note that λ f is always convex for convex f . Moreover, the inf
convolution in the definition of the Moreau envelope is always
exact:

Theorem 10.6. Let f be proper, convex and lsc. Then the infimal convo-
lution in the definition of the Moreau envelope is exact, especially, λ f is
finite (hence continuous) everywhere.

Proof. The function gx(y) := 1
2λ∥x− y∥2

2 + f (y) is (strictly) convex
and lsc. Now we show that it is also coercive: By Proposition 5.4
there exists an affine lower bound for f , i.e. we have f (y) ≥ ⟨p, y⟩+
α for some p and α. Hence, we have

gx(y) := 1
2λ∥y − x∥2

2 + f (y)

≥ 1
2λ∥y − x∥2

2 + ⟨p, y⟩+ α

= 1
2λ∥y − x + λp∥2

2 − λ2

2 ∥p∥2 + ⟨p, x⟩+ α

where we completed the square in the last line. Hence, we have
that gx is coercive and we see by Theorem 6.5, that minimizers
exist.

Example 10.7. We consider f (x) = i[−1,1](x). The Moreau envelope
is

λ f (x) =
(

1
2λ |·|

2 □ i[−1,1]

)
(x) = inf

y+u=x
1

2λ y + i[−1,1](u)

= inf
−1≤u≤1

1
2λ |x − u|2

=


0 : −1 ≤ x ≤ 1
1

2λ (x + 1)2 : x < −1
1

2λ (x − 1)2 : x > 1.

△
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11 Proximal mappings

Definition 11.1. For a proper, convex and lsc function f : Rd → R̄

we define the proximal mapping prox f : Rd → Rd by

prox f (x) := argmin
y∈Rd

1
2∥x − y∥2

2 + f (y).

The proximal mapping is related to the Moreau envelope: Since
for λ > 0 we have

proxλ f (x) = argmin
y

1
2∥x − y∥2

2 + λ f (y)

= argmin
y

1
2λ∥x − y∥2

2 + f (y)

we see that the proximal mapping maps x to the point where the
minimum in the Moreau envelope is attained. Hence we have

λ f (x) = 1
2λ∥x − proxλ f (x)∥2

2 + f (proxλ f (x)).

Theorem 11.2. For f : Rd → R̄ proper, convex and lsc and λ > 0 it
holds that:

1. For every x there is exists a unique minimizer x̂ = proxλ f (x) of
1
2∥x − y∥2

2 + λ f (y).

2. This x̂ is characterized by the variational inequality

∀y ∈ Rd : ⟨x − x̂, y − x̂⟩+ λ( f (x̂)− f (y)) ≤ 0

and by the inclusion

x−x̂
λ ∈ ∂ f (x̂).

3. Some x∗ is a minimizer of f exactly if x∗ is a fixed point of proxλ f
for any λ > 0, i.e. x∗ = proxλ f (x∗).

4. The Moreau envelope λ f is differentiable with gradient

∇(λ f )(x) = 1
λ (x − proxλ f (x)).

5. It holds that

argmin
x

f (x) = argmin
x

λ f (x).

Proof. 1. Existence is clear (we showed that when we showed
that the inf-convolution for the Moreau envelope is exact).
Uniqueness follows since the map y 7→ 1

2∥x − y∥2
2 + λ f (y)

is always strongly convex.
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2. Since the proximal mapping is defined as minimizers we
have for x̂ = proxλ f (x), then for every µ ∈ [0, 1] and every y

1
2∥x̂ − x∥2

2 + f (x̂) ≤ 1
2λ∥x̂ + µ(y − x̂)− x∥2

2 + f (x̂ + µ(y − x̂)

which we rearrange to

0 ≥ λ
(

f (x̂)− f (x̂ + µ(y − x̂))
)
+ 1

2

(
∥x̂ − x∥2

2 − ∥x̂ − x + µ(y − x̂)∥2
2
)

≥ λ
(

f (x̂)− f (x̂ + µ(y − x̂))
)
+ 1

2

(
− µ2∥y − x̂∥2

2 − 2µ⟨x̂ − x, y − x̂⟩
)

By convexity of f we get

0 ≥ λµ
(

f (x̂)− f (y)
)
+ µ⟨x̂ − x, x̂ − y⟩ − µ2

2 ∥x̂ − y∥2
2

Dividing by µ and letting µ → 0 shows the claim.
Conversely, let the variational inequality be fulfilled. This
means that for all y ∈ Rd

λ f (x̂) + 1
2∥x̂ − x∥2

2 ≤ λ f (y)− ⟨x̂ − x, x̂ − y⟩+ 1
2∥x̂ − x∥2

2

≤ λ f (y) + 1
2∥x̂ − y∥2

2 − ⟨x̂ − x, x̂ − y⟩+ 1
2∥x̂ − x∥2

2

= λ f (y) + 1
2∥y − x∥2

2

and this shows x̂ = proxλ f (x).

For the inclusion note that the norm is continuous every-
where and hence by the sum rule (Theorem 8.4) and Fermat’s
rule (Theorem 8.2) we get that

0 ∈ x̂ − x + λ∂ f (x̂)

which we can rearrange to the claimed inclusion.

3. If x̂ is a minimizer of f , then f (x̂) ≤ f (x) for all x and hence
λ f (x̂) + 1

2∥x̂ − x̂∥2
2 ≤ λ f (x) + 1

2∥x − x̂∥2
2 which shows that

x̂ = proxλ f (x̂).

Conversely, if x̂ = proxλ f (x̂), we get, by 2., that

0 = x̂−x̂
λ ∈ f (x̂)

which, by Fermat’s principle, shows that f (x̂) ≤ f (y) for all
y.

4. For x0 ∈ Rd define x̂0 := proxλ f (x0) and z := x0−x̂0
λ . To

show that λ f is differentiable at x0 with (λ f )′(x0) = z we
need to show that

r(u) := λ f (x0 + u)−λ f (x0)− ⟨z, u⟩ = o(∥u∥2) for u → 0.

By the definition of the prox and the Moreau envelope, we
have

λ f (x0) = f (x̂0) +
1

2λ∥x̂0 − x0∥2
2

λ f (x0 + u) = min
x

[
f (x) + 1

2λ∥x − x0 − u∥2
2

]
≤ f (x̂0) +

1
2λ∥x̂0 − x0 − u∥2

2.
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It follows (plugging in z)

r(u) ≤ 1
2λ∥x̂0 − x0 − u∥2

2 − 1
2λ∥x̂0 − x0∥2

2 − 1
λ ⟨x0 − x̂0, u⟩ = 1

2λ∥u∥2
2.

Using the convexity of r, we get

0 = r(0) = r( 1
2 u + 1

2 (−u)) ≤ 1
2 (r(u) + r(−u))

and this shows

r(u) ≥ −r(−u) ≥ − 1
2λ∥−u∥2

2

and in total we get |r(u)| ≤ 1
2λ∥u∥2

2 which proves the claim.

5. We know by 3. that x̂ is a minimizer of f exactly if x̂ =
proxλ f (x̂) and by 4. this is equivalent to ∇(λ f )(x̂) = 0, i.e.
exactly when x̂ is a minimizer of λ f .

Example 11.3 (Prox of indicators are projections). Let f (y) = iC(y)
for some non-empty, convex and closed C. Then (note that λiC =
iC)

proxiC(x) = argmin
y∈Rd

1
2∥x − y∥2

2 + λiC(y) = argmin
y∈C

∥x − y∥ = PC(x),

i.e. proxλ f (x) is the orthogonal projection of x onto C (indepently
of λ > 0).

The Moreau envelope is

λiC(x) = 1
2λ∥x − PC(x)∥2

2 = 1
2λ d(x, C)2.

△

λ = 1, 1
2 , 1

4 , 1
8

Example 11.4 (Prox of |·| is soft shrinkage). Now consider f (x) = |x|.
To calculate x̂ := argminy

1
2 (x − y)2 + λ|y| we first observe that

if x ≥ 0, then x̂ ≥ 0 and also proxλ f (−x) = −proxλ f (x). Hence,
we only consider x > 0 and have

x̂ = argmin
y≥0

1
2 (x − y)2 + λy.

We note that the unconstrained minimizer is x − λ, and if 0 ≤
x ≤ λ, then the minimizer is 0. In total, we get that

proxλ|·|(x) =


x − λ, if x > λ,
0, if |x| ≤ λ,
x + λ, if x < −λ,

= max(|x| − λ, 0) sign(x) =: Sλ(x).

This function is known as the soft thresholding or soft shrinkage
function.

y 7→ 1
2 (y − x)2 + |y|, x = 0.75, 1, 1.25, 1.5, 1.75

Prox: Sλ(x) = prox|·|(x) Moreau envelope: 1 |·|
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To calculate the Moreau envelope of |·| we just plug in and get

λ f (x) = 1
2λ (x − Sλ(x))2 + |Sλ(x)|

=

{
|x| − λ

2 , if |x| > λ
1

2λ x2, if |x| ≤ λ.

This function is called Huber function.
△

Lemma 11.5 (Calculus for proximal mappings). For proper, convex
and lsc functions f : Rd → R̄ and λ > 0 it holds that:

i) If g(x) = f (x) + α for α ∈ R, then proxλg = proxλ f .

ii) If g(x) = τ f (µx) for τ > 0, µ ∈ R, then proxλg(x) = 1
µ proxλµ2τ f (µx).

iii) If g(x) = f (x + x0) + ⟨p, x⟩, for x0, p ∈ Rd, then proxλg(x) =
proxλ f (x + x0 + λp)− x0.

iv) If g(x) = f (Qx) for orthonormal Q ∈ Rd×d, then proxλg(x) =
QT proxλ f (Qx).

v) If h(x, y) = f (x) + g(y) for proper, convex and lsc g : Rk → R̄,
then proxλh(x, y) = (proxλ f (x), proxλg(y)).

Proof. The first three items are straightforward implications from
the definition by appropriate substitutions. For item iv) we write

proxλg(x) = argmin
y

1
2∥x − y∥2

2 + λ f (Qy)

and use that QT is onto by assumption. Hence, we can substutite
y = QTz, minimize over z, but keep in mind that we are interested
in the minimizer. Hence, we have, using QQT = I

proxλg(x) = QT argmin
z

1
2∥x − QTz∥2

2 + λ f (z)

= QT argmin
z

1
2∥Qx − z∥2

2 + λ f (z)

where we used that ∥Qu∥2 = ∥u∥2 since Q is orthonormal. For
item v) just observe that norm is the product space fulfills ∥(x, y)∥2 =
∥x∥2 + ∥y∥2 and that the minimization can be carried out inde-
pendently over x and y.
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12 Proximal algorithms

We start this section with an observation for subgradients, namely
that they fulfill a monotonicity property similar the gradient of a
convex function (cf. Theorem 5.2 ii)).

Proposition 12.1. Let f : Rd → R̄ be proper, convex and lsc. Then the
subgradient is monotone, in the sense that for pi ∈ ∂ f (xi), i = 1, 2, then

⟨p1 − p2, x1 − x2⟩ ≥ 0.

If f is strongly convex with constant µ, then it even holds that

⟨p1 − p2, x1 − x2⟩ ≥ µ∥x1 − x2∥2
2.

Proof. The first claim follows by adding the two subgradient in-
equalities f (x2) ≥ f (x1) + ⟨p1, x2 − x1⟩ and f (x1) ≥ f (x2) +
⟨p2, x1 − x2⟩. For the second claim, apply the first one to the con-
vex function g(x) = f (x)− µ

2 ∥x∥2
2 with pi − µxi ∈ ∂g(xi).

Lemma 12.2. The proximal mapping proxλ f for a convex and lsc func-
tion and any λ > 0 is Lipschitz continuous with constant 1, i.e. it holds

∥proxλ f (x)− proxλ f (y)∥2 ≤ ∥x − y∥2.

Proof. The subgradient characterization from Theorem 11.2 for
x̂ = proxλ f (x) and ŷ = proxλ f (y) gives that

x−x̂
λ ∈ ∂ f (x̂), and y−ŷ

λ ∈ ∂ f (ŷ).

The monotonicity of the subgradient (Proposition 12.1) then gives

1
λ ⟨x − x̂ − (y − ŷ), x̂ − ŷ⟩ ≥ 0.

This is equivalent to

∥x̂ − ŷ∥2
2 ≤ ⟨x − y, x̂ − ŷ⟩

which, by Cauchy-Schwarz, proves the claim.
If f is assume to be µ-strongly convex,
the same proof shows that proxλ f is
Lipschitz with constant 1/(1 + µ), i.e.
it even is a contraction.

We now present a simple algorithm to solve a convex mini-
mization problem minx f (x). The algorithm is, in this very simple
form, not practically useful, but will be good to know, since it can
be used as a building block for further methods. The method is
called the proximal point method and simply iterates

xk+1 = proxtk f (xk)

for some sequence tk > 0 of stepsizes.

Lemma 12.3. The sequence (xk) from the proximal point method fulfills

f (xk+1) ≤ f (xk)− 1
tk
∥xk+1 − xk∥2

2.
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Proof. The subgradient characterization (Theorem 11.2) gives that

xk−xk+1

tk
∈ ∂ f (xk+1).

Hence, for every y it holds that

f (y) ≥ f (xk+1) + 1
tk
⟨xk − xk+1, y − xk+1⟩. (*)

Setting y = xk proves the claim.

This can be used to show convergence of the method:

Theorem 12.4. Let f be proper, convex and lsc and let f ∗ = f (x∗) =
minx f (x). Then it holds that the sequence (xk) generated by the proximal
point method fulfills

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 and

f (xN+1)− f ∗ ≤ ∥x0−x∗∥2
2

2 ∑N
k=0 tk

.

Proof. We start by taking y = x∗ in (*) to get

f (xk+1) ≤ f ∗ − 1
tk
⟨xk − xk+1, x∗ − xk+1⟩

Now we use ⟨a, b⟩ = 1
2 (∥a∥2

2 + ∥b∥2
2 − ∥a − b∥2

2) with a = xk −
xk+1 and b = x∗ − xk+1xs to get

f (xk+1) ≤ f ∗ + 1
2tk

(
∥xk − xk+1∥2

2 + ∥xk+1 − x∗∥2
2 − ∥xk − x∗∥2

2

)
≤ f ∗ + 1

2tk

(
∥xk − x∗∥2

2 − ∥xk+1 − x∗∥2
2

)
.

Since f ∗ ≤ f (xk+1) we get, on the one hand, ∥xk+1 − x∗∥2 ≤
∥xk − x∗∥2 and, on the other hand, summing up the estimates
from k = 0, . . . , N we get

2
N

∑
k=0

tk( f (xk+1)− f ∗)) ≤ ∥x0 − x∗∥2
2.

Since we already know that f (xk+1)− f ∗ ≥ f (xN+1)− f ∗ we get

2
( N

∑
k=0

tk

)
( f (xN+1)− f ∗) ≤ ∥x0 − x∗∥2

2

as claimed.

Hence, we see that larger stepsizes make f (xk) decrease faster.
One should emphasize that the proximal point method is merely
a theoretical algorithm, as each step needs the evaluation of the
proximal map for the objective and this may be no simpler than
the original problem. In fact in can be simpler, since the ob-

jective in the minimization problem for
the prox is strongly convex even if f is
just convex.
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Now we come to a more practical algorithm and this relies on
a very fruitful idea: If the objective function in our optimization
problem is the sum of two convex function, i.e.

min
x∈Rd

f (x) + g(x)

we may try to treat both terms differently, depending on their
properties. Methods that are derived from splitting the objective
additively into different parts go under the name splitting methods.
Two different properties that will be useful are the following:

• L-smoothness: g : Rd → R is convex and differentiable and,
moreover, that the gradient ∇g is Lipschitz-continuous with
constant L, i.e. ∥∇g(y)−∇g(x)∥2 ≤ L∥y − x∥2.

• proximability: f is of the form that proxλ f is simple to evaluate
for every λ > 0. This is the case, for example for the 1-norm
∥x∥1 or indicator functions iC of convex sets if the projection
onto these sets is simple (e.g. positivity constraints, hyper-
planes, balls).

We have just seen in Lemma 12.3 that the proximal map reduces
the objective (for this part) and the next lemma shows that one can
also get a guaranteed descent of the objective by doing gradient
steps for L-smooth functions:

Lemma 12.5 (Descent lemma). If g : Rd → R is L-smooth, then it
holds that

|g(y)− g(x)− ⟨∇g(x), y − x⟩| ≤ L
2 ∥x − y∥2

2.

Proof. By the fundamental theorem of calculus we get

|g(y)− g(x)− ⟨∇g(x), y − x⟩| =
∣∣∣∣∫ 1

0
⟨∇g(x + τ(y − x))−∇g(x), y − x⟩dτ

∣∣∣∣
≤

∫ 1

0
∥∇g(x + τ(y − x))−∇g(x)∥2∥y − x∥2dτ

≤
∫ 1

0
L∥τ(y − x)∥2∥y − x∥2dτ

≤ L
2 ∥x − y∥2

2.

The name “descent lemma” comes from the fact, that this
lemma allows to guarantee a reduction of the value of g(x) by
making a gradient step x+ = x − λ∇g(x): We use Lemma 12.5
with y = x+ and the fact that x+ − x = −λ∇g(x) to get

g(x+) ≤ g(x) + ⟨∇g(x), x+ − x⟩+ L
2 ∥x+ − x∥2

2

= g(x)− λ∥∇g(x)∥2
2 +

Lλ2

2 ∥∇g(x)∥2
2

= g(x)− λ(1 − L
2 λ)∥∇g(x)∥2

2.
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Hence, we get a guaranteed descent if both λ > 0 and 1 − L
2 λ > 0,

i.e. if 0 < λ < 2/L.
How can we use these two ingredients to come up with a

method that can mininize the objective f + g? One idea is, to
replace the differentiable part of the objective by a simpler up-
per bound at some current iterate xk: Inspired by Lemma 12.5 we
define xk+1 by

xk+1 = argmin
x

[
f (x) + g(xk) + ⟨∇g(xk), x − xk⟩+ 1

2λ∥x − xk∥2
2

]
.

We can drop the terms in the objective which do not depend on x
and multiply by λ to get

xk+1 = argmin
x

[
λ f (x) + ⟨λ∇g(xk), x − xk⟩+ 1

2∥x − xk∥2
2

]
.

We complete the square to see that

⟨λ∇g(xk), x − xk⟩+ 1
2∥x − xk∥2

2

= 1
2∥λ∇g(xk)∥2 + ⟨λ∇g(xk), x − xk⟩+ 1

2∥x− xk∥2
2 − 1

2∥λ∇g(xk)∥2

= 1
2∥x − (xk − λ∇g(xk))∥2

2 − 1
2∥λ∇g(xk)∥2

2.

Again dropping terms that do not affect the minimizer, we finally
get that

xk+1 = argmin
x

λ f (x) + 1
2∥x − (xk − λ∇g(xk))∥2

2

= proxλ f (xk − λ∇g(xk)).

This method does a gradient step for the smooth part and a proxi-
mal step for the proximable part.
Example 12.6 (Regularized least squares for inverse problems). One
example for which the proximal gradient method gained popu-
larity is the case of regularized least squares problems: For some
A ∈ Rm×n and b ∈ Rm one can consider the least squares problem
minx

1
2∥Ax − b∥2

2. This is used in many contexts, e.g. in statistics
for regression but also in the context of signal processing or in-
verse problems where some quantity of interest x† ∈ Rn can only
be measured indirectly, namely one can only observe bδ = Ax† + η
where A is a (known) linear map which models the measurement
process, and η is an unknow error (e.g. due to measurement noise
or modelling errors). Since bδ is also affected by noise, it is point-
less to solve Ax = bδ exactly and a least squares approach seems
more reasonable. In addition it may also happen than n > m, i.e.
we do not have enough measurements to reconstruct x† even from
a noise-free bδ. More precisely, the minimizers of the least squares
problem are characterized by the equation AT Ax = ATbδ, but
since AT A does not have full rank, there are still multiple solu-
tions, but due to noise, none of these seems to be reasonable. In
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this case one uses prior knowledge on the unknown solution, and
this is done by specifying a regularization functional R : Rn → R̄

which gives small values R(x) to “reasonable” x and large values
R(x) for “undesired” x. The regularization functional is also called
penalty function since is penalizes undesired vectors. Together, we
end with the regularized least squares problem

min
x

1
2∥Ax − bδ∥2

2 + αR(x)

where α is a positive regularization parameter that can emphasize
the regularization (large α) or tone it down (small α).

If R is convex, lsc and proximable, one can use the proximal
gradient method to solve this minimization problem: We take
g(x) = 1

2∥Ax − bδ∥2
2 and f (x) = αR(x) and since ∇g(x) =

AT(Ax − bδ) is Lipschitz continuous with constant L = ∥AT A∥
one iterates

xk+1 = proxλαR(xk − λAT(Axk − bδ))

with some λ ∈ ]0, 2/∥AT A∥[.
△
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13 Convex conjugation

There is an important notion of duality for convex functions,
namely, the one of convex conjugation (and this duality is related
to the characterization of closed, convex set as intersection of half-
spaces).This leads to the following definition:

Definition 13.1. For a function f : Rd → R̄ we define the (Fenchel)
conjugate f ∗ : Rd → R̄ as

f ∗(p) = sup
x∈Rd

[
⟨p, x⟩ − f (x)

]
Moreover, the biconjugate is

f ∗∗(x) = sup
p∈Rd

[
⟨p, x⟩ − f ∗(p)

]
.

If f is proper, then f ∗ is the pointwise supremum of affine
functions and hence, it is always convex and lower semicontinuous
(even when f has none of these properties).

We consider a few one-dimensional examples:
Example 13.2. 1. Let f (x) = αx2 for α > 0. Then the conjugate

is

f ∗(p) = sup
x
[px − αx2].

To calculate the supremum we take the derivative with re-
spect to x, set it to zero and plug it in:

p − 2αx = 0 =⇒ x = p
2α

=⇒ sup
x
[px − αx2] = p p

2α − α
p2

4α2 = 1
4α p2,

hence,

f ∗(p) = 1
4α p2.

Similarly, one observes that f ∗∗(x) = f (x). (Note that f ∗ = f
for α = 1

2 , i.e. for f (x) = x2/2.)

2. Let f (x) = exp(x). We consider different cases:

• If p < 0, then px − exp(x), is unbounded from above
and we get f ∗(p) = ∞.

• If p = 0, then − exp has the supremum 0 (which is not
attained) and we have f ∗(0) = 0.

• If p > 0, then px − exp(x) is bounded from above and
we calculate as in the previous example

p − exp(x) = 0 =⇒ x = log(p)
=⇒ sup

x
[px − exp(x)] = p log(p)− p.
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Hence, the conjugate is

f ∗(p) =


∞, if p < 0
0, if p = 0
p log(p)− p, if p > 0.

One may verify in a similar way that f ∗∗(x) = exp(x) =
f (x).

3. For f (x) = |x| we have f ∗(x) = supx px − |x| and we see
by direct inspection that

f ∗(x) =


∞, if p > −1
0, if −1 ≤ p ≤ 1
∞, if p > 1

i.e. f ∗(x) = i[−1,1](x). Again, we get f ∗∗(x) = |x| = f (x).

4. For a non-convex example, consider

f (x) =

{
∞, if |x| > 1
1 − x2, if |x| ≤ 1.

In this case one has f ∗(x) = |x| and by the previous exam-
ple, f ∗∗(x) = i[−1,1](x) ̸= f (x). However, f ∗∗ is the largest
function which is below f and convex and lsc.

△

We will see later that the observed behavior f ∗∗ = f for convex
and lsc functions and f ∗∗ equal the largest convex and lsc function
below f in general.

Lemma 13.3. Let f , g : Rd → R̄. Then:

i) If f ≥ g, then f ∗ ≤ g∗.

ii) For all p, x where f (x) or f ∗(p) are finite we have Fenchel’s inequal-
ity

f (x) + f ∗(p) ≥ ⟨x, p⟩.

iii) It holds Fenchel’s equality

p ∈ ∂ f (x) ⇐⇒ f (x) + f ∗(p) = ⟨p, x⟩.

iv) It holds f ∗∗ ≤ f .

Proof. i) If f ≥ g, then

g∗(p) = sup
x
[⟨p, x⟩ − g(x)]

≥ sup
x
[⟨p, x⟩ − f (x)] = f ∗(p).
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ii) Follows directly from the definition of the conjugate by re-
placing the supremum by any value of the argument.

iii) By rearranging the subgradient inequality, we have p ∈ ∂ f (x)
exactly if for all y it holds ⟨x, p⟩ − f (x) ≥ ⟨p, y⟩ − f (y). Tak-
ing the supremum over all y shows ⟨x, p⟩ − f (x) ≥ f ∗(p) and
by Fenchel’s inequality, we get equality. Since this argument
works both ways, the claim is proven.

iv) We consider

f ∗∗(x) = sup
p
[⟨p, x⟩ − f ∗(p)]

and use ii) to estimate the term in the supremum by f (x)
(which is then idependent from p).

Lemma 13.4. Let f : Rd → R̄. Then it holds:

i) If f is not proper, then f ∗ ≡ ∞ or ≡ −∞.

ii) If f is proper, then f ∗ > −∞.

iii) If f is proper and convex, then f ∗ is proper and moreover we have
(cl f )∗ = f ∗ and f ∗∗ = cl f .

Proof. i) For non-proper f we have two cases. In the first case
there is x0 such that f (x0) = −∞. But then there is no affine
function below f and hence f ∗ ≡ ∞. In the second case f ≡ ∞,
and then f ∗ ≡ −∞.

ii) Now let f be proper. If we had f ∗(p0) = −∞ for some p0, then
we would have for every x that −∞ ≥ ⟨p0, x⟩ − f (x), but this
implies f (x) ≥ ∞ for all x.

iii) • We show that f ∗ is proper: By Proposition 5.4, we know
that there exist p0 ∈ Rd and α ∈ R such that f (x) ≥
⟨p0, x⟩+ α for all x, and hence f ∗(p0) ≤ −α.

• Since f is proper, we have to show ( f̄ )∗ = f ∗ and by
Lemma 13.3 i) we deduce from f̄ ≤ f the inequality
( f̄ )∗ ≥ f ∗. For the lsc envelope we have by the Fenchel
inequality that

f̄ (x0) = lim inf
x→x0

f (x) ≥ lim inf
x→x0

[⟨p, x⟩ − f ∗(p)] = ⟨p, x0⟩ − f ∗(p).

This leads to f ∗(p) ≥ ⟨p, x0⟩ − f̄ (x0) and taking the
supremum over all x0 shows f ∗ ≥ ( f̄ )∗.

The statement f ∗∗ = cl f follows from the next theorem.

The theorem says that f = f ∗∗ exactly if f is convex and
lsc, and hence f ∗∗ = ( f ∗)∗ = ((cl f )∗)∗ = cl f since cl f
is convex and lsc.
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Theorem 13.5 (Fenchel-Moreau). A proper function f : Rd → Rd is
convex and lsc exactly if f = f ∗∗

Proof. Since any conjugate is always convex and lsc, the reverse
implication is clear.

Now let f be proper, convex and lsc. We already know that f ∗

is proper, convex and lsc as well and that f ∗∗ ≤ f . Now we show
the following claim:

If f (x) > α for some x and α, then f ∗∗(x) ≥ α.

Once, the claim is proven, the theorem follows: If x /∈ dom( f ),
then we can choose α arbitrarily large and see that f ∗∗(x) = ∞ as
well. If x ∈ dom( f ), and f ∗∗(x) = f (x)− ϵ for some ϵ > 0, then
we could chose α = f (x)− ϵ/2 and would get f ∗∗(x) < α which
would contradict f ∗∗(x) ≥ α.

Now we prove the claim: If (x, α) /∈ epi( f ), we can, since epi( f )
is closed and convex, strictly separate (x, α) from epi( f ), i.e. there
is (p, a) ∈ Rd+1 and ϵ > 0 such that

sup
(y,β)∈epi( f )

⟨
[

p
a

]
,
[

y
β

]
⟩ ≤ ⟨

[
p
a

]
,
[

x
α

]
⟩ − ϵ.

which says that for all (y, β) ∈ epi( f ) we have

⟨p, y⟩+ aβ ≤ ⟨p, x⟩+ aα − ϵ (*)

If we had a > 0 we would get a contradiction with β → ∞.
Hence we have a ≤ 0. If a < 0, we divide (*) by −a > 0 and set

p̄ = −p/α to get

⟨ p̄, y⟩ − β ≤ ⟨ p̄, x⟩ − α + ϵ
a

We set β = f (y) and take the supremum over all y on the left-hand
side to get

f ∗( p̄) ≤ ⟨ p̄, x⟩ − α + ϵ
a < ⟨ p̄, x⟩ − α.

We rearrange and use the Fenchel inequality (Lemma 13.3) to get

α < ⟨ p̄, x⟩ − f ∗( p̄) ≤ f ∗∗(x).

In the remaining case a = 0 the inequality (*) turns into

⟨p, y⟩ ≤ ⟨p, x⟩ − ϵ (**)

and still holds for all y ∈ dom( f ). If we had x ∈ dom( f ) we would
get a contradiction by choosing y = x, so we have x /∈ dom( f ) if
a = 0. So we have f (x) = ∞ in this case and for all q we have by
Fenchel’s inequality again

⟨q, y⟩ − f (y) ≤ f ∗(q). (***)
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Multiplying (**) by µ > 0 and adding (***) gives

⟨q + µp, y⟩ − f (y) ≤ f ∗(q) + µ⟨p, x⟩ − µϵ.

Taking the supremum over y gives

f ∗(q + µp) ≤ f ∗(q) + µ⟨p, x⟩ − µϵ,

which leads to

⟨q, x⟩ − f ∗(q) + µϵ ≤ ⟨q + µp, x⟩ − f ∗(q + µp) ≤ f ∗∗(x).

Since the left hand side goes to ∞ for µ → ∞, this shows f ∗∗(x) =
∞, as desired.

As a corollary from the Fenchel-Moreau theorem and the
Fenchel equality we get the subgradient inversion formula:

Corollary 13.6 (Subgradient inversion). If f is proper, convex and lsc,
one has

p ∈ ∂ f (x) ⇐⇒ x ∈ ∂ f ∗(p).

By Lemma 13.3 iii) we have that p ∈ ∂ f (x) exactly if f (x) +
f ∗(p) = ⟨p, x⟩. By the Fenchel-Moreau Theorem, the lat-
ter is equivalent to f ∗∗(x) + f ∗(p) = ⟨p, x⟩ and invoking
Lemma 13.3 iii) again proves the claim.
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14 Conjugation calculus

Proposition 14.1. If f : Rd → R̄ is proper, then f ∗ = f it and only if
f (x) = 1

2∥x∥2
2.

Proof. We have seen in the previous lecture that αx2 has the conju-
gate 1

4α p2 so with a = 1
2 they are equal. Applying this component-

wise we see that the conjugate of 1
2∥x∥2

2 is the function itself.
For the converse, assume f = f ∗. By Fenchel’s inequality

we have f (x) + f ∗(p) ≥ ⟨x, p⟩ and with p = x we get f (x) ≥
1
2∥x∥2

2 =: h(x). By Lemma 13.3 i) we know that f (x) = f ∗(x) ≤
h∗(x) = 1

2∥x∥2
2 which proves the claim.

Lemma 14.2. Let f : Rd → R̄, A ∈ Rd×d be invertible, a ∈ R,
b ∈ Rd and λ ∈ R \ {0}. Then it holds that

i) If φ(x) = f (x) + a, then φ∗(p) = f ∗(p)− a.

ii) If φ(x) = f (λx), then φ∗(p) = f ∗(λ−1 p).

iii) If φ(x) = λ f (x), λ > 0, then φ∗(p) = λ f ∗(λ−1 p).

iv) If φ(x) = f (x)− ⟨b, x⟩, then φ∗(p) = f ∗(p + b).

v) If φ(x) = f (Ax + b), then φ∗(p) = f ∗(A−T p)− ⟨A−T p, b⟩.

Proof. These are straightforward calculations:

i) φ∗(p) = supx
[
⟨p, x⟩ − f (x)− a

]
= f ∗(p)− a.

ii) This is a special case of v).

iii) φ∗(p) = supx
[
⟨p, x⟩−λ f (x)

]
= λ supx

[
⟨λ−1 p, x⟩− f (x)

]
=

λ f ∗(λ−1 p).

iv) φ∗(p) = supx
[
⟨p, x⟩− ( f (x)−⟨b, x⟩)

]
= supx

[
⟨p + b, x⟩−

f (x)
]
= f ∗(p + b).

v) φ∗(p) = supx
[
⟨p, x⟩− f (Ax+ b)

]
= supy

[
⟨p, A−1(y − b)⟩−

f (y)
]
= supy

[
⟨A−T p, y − b⟩− f (y)

]
= f ∗(A−T p)−⟨A−T p, b⟩.

By these rules one immediately sees that for f (x) = 1
2∥x − b∥2

2
one has f ∗(p) = 1

2∥p∥2
2 + ⟨p, b⟩, for example.

The conjugation of the infimal convolution is readily calcu-
lated:

Lemma 14.3. If f1, f2 : Rd → R̄ are proper, then it holds that

( f1 □ f2)
∗ = f ∗1 + f ∗2 .
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Proof. This can be seen as follows:

( f1 □ f2)
∗(p) = sup

x

[
⟨p, x⟩ − inf

x1+x2=x
( f1(x1) + f2(x2))

]
= sup

x
sup

x1+x2=x

[
⟨p, x⟩ − f1(x1)− f2(x2)

]
= sup

x1,x2

[
⟨p, x1⟩+ ⟨p, x2⟩ − f1(x1)− f2(x2)

]
= f ∗1 (p) + f ∗2 (p).

One would be tempted to assume that one also has that ( f1 +
f2)∗ = f ∗1 □ f ∗2 but this does not hold without further assumptions.

Here is a counterexample:
Example 14.4. Let f , g : R2 → R̄ defined by

f (x) =

{
−√

x1x2, x1, x2 ≥ 0
∞, else

, g(x) = i{x1=0}(x).

The sum is ( f + g)(x) = i{x1=0, x2≥0}(x) and has the conjugate

( f + g)∗(p) = sup
x1=0, x2≥0

[
p1x1 + p2x2

]
= i{p2≤0}(p).

The individual conjugates are

g∗(p) = sup
x1=0

[
p1x1 + p2x2

]
= i{p2=0}(p)

f ∗(p) = sup
x1,x2≥0

[
p1x2 + p2x2 +

√
x1x2

]
The conjugate of f is

f ∗(p) = i{p1 p2≥1/4,p1,p2<0}(p).

Hence, the infimal convoluiton is (cf. Example 10.2) This is probably easier to see the other
way round: Calculate

i∗{p1 p2≥1/4,p1,p2<0}(p)

= sup
p1 p2≥1/4,p1,p2<0

x1 p2 + x2 p2

= f (x)

using, e.g., Lagrange multipliers.

( f ∗ □ g∗)(p) =
(

i{p2=0} □ i{p1 p2≥1/4,p1,p2<0}

)
(p)

= i{p2=0}+{p1 p2≥1/4,p1,p2<0}(p) = i{p2<0}(p).

Note that ( f + g)∗ ̸= ( f ∗ □ g∗) and that the latter is not even lsc.
△

We show a very general result which is due to Attouch and
Brezis from 1986: Let f , g : Rd → R̄ be two proper and convex
functions and assume that⋃

λ≥0

λ(dom( f )− dom(g)) is a subspace of Rd. (Q)

Note that in Example 14.4 we have
dom( f ) = {x1, x2 ≥ 0} and
dom(g) = {x2 = 0} and hence
dom( f ) − dom(g) = {x2 ≥ 0}.
Thus, (Q) is not fulfilledConvex Analysis | TU Braunschweig | Dirk Lorenz | WiSe 2022/23
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Theorem 14.5. If f , g : Rd → R̄ are proper, convex, and lsc and satisfy
condition (Q), then

( f + g)∗ = f ∗ □ g∗

and the inf-convolution on the right is exact.

Proof. Step 0: First we note that for any decomposition p = p1 + p2
we get

( f + g)∗(p) = sup
x

[
⟨x, p⟩ − f (x)− g(x)

]
= sup

x

[
⟨x, p1⟩+ ⟨x, p2⟩ − f (x)− g(x)

]
≤ sup

x

[
⟨x, p1⟩ − f (x)

]
+ sup

x

[
⟨x, p2⟩ − g(x)

]
= f ∗(p1) + g∗(p2).

Taking the infimum over all such decomposition on the right
hand side shows

( f + g)∗ ≤ f ∗ □ g∗.

Step 1: Now we claim that if the more restrictive condition⋃
λ≥0

λ(dom( f )− dom(g)) = Rd (Q’)

holds, then f ∗ □ g∗ is lsc on Rd. Let µ ∈ R and

C := levµ( f ∗ □ g∗) = {p ∈ Rd | ( f ∗ □ g∗)(p) ≤ µ}

and aim to show that C is closed. For ϵ > 0 consider

Cϵ := {q + r ∈ Rd | f ∗(q) + g∗(r) ≤ µ + ϵ}.

By definition of the infimal convolution we have ( f ∗□ g∗)(p) ≤ µ
exactly if p = q + r such that for all ϵ > 0 it holds that f ∗(q) +
g∗(r) ≤ µ + ϵ. In other words: It holds that

C =
⋂
ϵ>0

Cϵ

and hence, it is enough, to prove that all the Cϵ are closed. To that
end, we consider the sets

K = Cϵ ∩ Bt(0)

= {q + r ∈ Rd | f ∗(q) + g∗(r) ≤ µ + ϵ, ∥q + r∥ ≤ t}.

If all these K are closed, then Cϵ is closed. Let

H = {(q, r) ∈ Rd × Rd | f ∗(q) + g∗(r) ≤ µ + ϵ, ∥q + r∥ ≤ t}.

Since the map (q, r) 7→ f ∗(q) + g∗(r) is closed (both f ∗ and g∗ are
lsc), we see that H is closed.
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We show that H is bounded: To show this, we show that there
is a constant C(x, y) such that for all (q, r) ∈ H it holds that
⟨x, q⟩+ ⟨y, r⟩ ≤ C(x, y). By assumption (Q’) we can write every
(x, y) as

x − y = λ(u − v)

with some u ∈ dom( f ), v ∈ dom(g) and λ ≥ 0. Then (using the
inequality by Fenchel and Cauchy-Schwarz)

⟨x, q⟩+ ⟨y, r⟩ = λ⟨u, q⟩+ λ⟨v, r⟩+ ⟨y − λv, q + r⟩
≤ λ( f ∗(q) + f (u) + g∗(r) + g(v)) + ∥q + r∥∥y − λv∥
≤ λ(µ + ϵ + f (u) + g(v)) + t∥y − λv∥ = C(x, y).

This shows that H is bounded, and hence, compact. It remains to
note that K is the image of H under the linear map (q, r) 7→ q + r
and hence, K is also compact, hence closed.

Step 2: Now we prove that if condition (Q’) is fulfilled, we
have ( f + g)∗ = f ∗ □ g∗ and that the inf-convolution is exact.
By Lemma 14.3 we have ( f ∗ □ g∗)∗ = f ∗∗ + g∗∗ = f + g and
another conjugation shows

( f + g)∗ = ( f ∗ □ g∗)∗∗,

But our previous step showed that f ∗ □ g∗ is lsc and hence ( f ∗ □
g∗)∗∗ = f ∗ □ g∗.

To see that the inf-convolution is exact, we note that we can see
(similar to he first step) that for each µ the set {q | f ∗(q) + g∗(p −
q) ≤ µ} is closed and hence, the infimum in the definition of the
inf-convolution is attained.

Step 3: In the last step we get rid of the restrictive assump-
tion (Q’). We use the following fact: If A ⊂ Rd is convex and⋃

λ≥0 λA is a subspace, then 0 ∈ A and hence
⋃

λ>0 λA =
⋃

λ≥0 λA.

Let a ∈ A. Since a ∈ ⋃
λ≥0 λA and the latter set is a vector

space, there is b ∈ A such that −a = λb. But then we have
that

1
1+λ a + λ

1+λ b ∈ A

but the convex combination on the right hand side is 0.

From Assumption (Q) and the previous observation it follows
that dom( f ) ∩ dom(g) ̸= ∅ and we may assume without loss of
generality that 0 ∈ dom( f ) ∩ dom(g). We define the subspace
V =

⋃
λ≥0 λ(dom( f ) − dom(g)) and note dom( f ) ⊂ V and

dom(g) ⊂ V. Hence, we could have worked in V from the start
and since V is isomorophic to Rn, the proof is complete.

As a consequence, the subgradient sum-rule also holds if (Q)
is fulfilled:
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Corollary 14.6. Let f and g be proper, convex and lsc and fulfull condi-
tion (Q). Then it holds that

∂( f + g) = ∂ f + ∂g.

As we have seen, the inclusion ∂ f + ∂g ⊂ ∂( f + g) always
holds. For the reverse inclusion let p ∈ ∂( f + g)(x). By Fenchel’s
equality (Lemma 13.3) we get

( f + g)(x) + ( f + g)∗(p) = ⟨p, x⟩.

Theorem 14.5 shows ( f + g)∗ = f ∗ □ g∗ and that the inf-
convolution is exact, i.e. we have ( f + g)∗(p) = f ∗(p − q) +
g∗(q) for some q. We get

f (x) + g(x) + f ∗(p − q) + g∗(q) = ⟨p − q, x⟩+ ⟨q, x⟩.

We conclude p − q ∈ ∂ f (x) and q ∈ ∂g(x) (since q /∈ ∂g(x)
would imply g(x) + g∗(q) > ⟨x, q⟩ from which we would get
f (x) + f ∗(p − q) < ⟨p − q, x⟩ which contradict Fenchel’s
inequality). Hence, we have p ∈ ∂ f (x) + ∂g(x).

Finally, let us note that condition (Q) is more general than the
assumption in Theorem 8.4 namely that

∃x ∈ dom( f ) ∩ dom(g), f continuous at x =⇒ (Q) fulfilled.

If there is x ∈ dom( f ) ∩ dom(g) and f is continuous at
f , then x ∈ int dom( f ), i.e. Bϵ(x) ⊂ dom( f ) for some ϵ.
Hence dom( f )− dom(g) ⊃ Bϵ(x)− {x} = Bϵ(0) and we
see that

⋃
λ≥0 λ(dom( f )− dom(g)) = Rd while for (Q) we

only need that the union is a subspace.
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15 Fenchel-Rockafellar duality

The Fenchel equality states that

p ∈ ∂ f (x) ⇐⇒ f (x) + f ∗(p) = ⟨p, x⟩ ⇐⇒ x ∈ ∂ f ∗(p).

Hence, we see that if x∗ is a minimizer of f , then we know that x∗ ∈
∂ f ∗(0). In other words: The subgradient of the conjugate at zero
shows us, where minimizers of f are. Hence, knowing conjugate
functions is quite helpful to treat minimization problems.

In this section, we use conjugate functions to derive a quite
general notion of duality between optimization problem (which
includes the notion of duality of linear programs, for example).

The problems which we will treat in this section are of the
form

min
x∈Rn

f (x) + g(Ax)

where A ∈ Rm×n and f : Rn → R̄ and g : Rm → R̄ are two
proper, convex and lsc functions. We have seen examples for this,
e.g. in Example 12.6 where we minimized 1

2∥Ax − b∥2
2 + αR(x),

i.e. we could take f = R and g(y) = 1
2∥y − b∥2

2.
To motivate the duality, we express g via its conjugate and get

min
x∈Rn

f (x) + g(Ax) = min
x∈Rn

f (x) + sup
y∈Rm

⟨y, Ax⟩ − g∗(y)

= min
x∈Rn

sup
y∈Rm

f (x) + ⟨y, Ax⟩ − g∗(y).

If we would know that the supremum was a maximum and that
we could swap minimum and maximum, this would be equal to

max
y∈Rn

min
x∈Rn

f (x) + ⟨y, Ax⟩ − g∗(y) = max
y∈Rm

min
x∈Rn

[
f (x) + ⟨ATy, x⟩

]
− g∗(y)

= max
y∈Rm

−
[

max
x∈Rn

⟨−ATy, x⟩ − f (x)
]
− g∗(y)

= max
y∈Rm

− f ∗(−ATy)− g∗(y).

The problem in the last line is called the (Fenchel-Rockafellar) dual
problem. Note that the problem is a concave maximization problem,
but since it is equivalent to

min
y∈Rm

f ∗(−ATy) + g∗(y)

it is of exactly the same type as the problem we started with (and
this problem is called primal problem in this context).

Let us explore the relation of the primal and dual problem in
general. We start from middle ground, namely with a so-called
saddle point problem, i.e. we have a function L : Rn × Rm → R̄ and

Convex Analysis | TU Braunschweig | Dirk Lorenz | WiSe 2022/23
Please submit errors to d.lorenz@tu-braunschweig.de

63

mailto:d.lorenz@tu-braunschweig.de


20.12.2022, VL 15-2

want to find a pair (x∗, y∗) such that

x∗ ∈ argmin
x∈Rn

L(x, y∗)

y∗ ∈ argmax
y∈Rm

L(x∗, y).

Any such pair will be called saddle point of L. Put differently, saddle
points of L are points (x∗, y∗) that satisfy

∀x, y : L(x∗, y) ≤ L(x∗, y∗) ≤ L(x, y∗). (*)

Proposition 15.1. For any L it holds the min-max inequality

inf
x

sup
y

L(x, y) ≥ sup
y

inf
x

L(x, y).

Moreover, (x∗, y∗) is a saddle point of L exactly if

min
x

sup
y

L(x, y) = max
y

inf
x

L(x, y). (**)

Proof. For all x̄, ȳ it holds that

sup
y

L(x̄, y) ≥ L(x̄, ȳ) ≥ inf
x

L(x, ȳ).

Taking the infimum over all x̄ on the left and the supremum over
all ȳ on the right shows the inequality.

Now, let (x∗, y∗) be a saddle point. From the formulation (*)
above and the min-max inequality we get that

L(x∗, y∗) ≥ sup
y

L(x∗, y) ≥ inf
x

sup
y

L(x, y)

≥ sup
y

inf
x

L(x, y) ≥ inf
x

L(x, y∗) = L(x∗, y∗).

Hence, we have equality everywhere and we also see that supy L(x∗, y)
is attained at y∗ and infx L(x, y∗) is attained at x∗.

Conversely, assume that (**) holds. Hence, there exist x̂ and ŷ
such that

inf
x

L(x, ŷ) = sup
y

inf
x

L(x, y) = inf
x

sup
y

L(x, y) = sup
y

L(x̂, y).

We always have infx L(x, ŷ) ≤ L(x̂, ŷ) ≤ supy L(x̂, y) but because
of the above we have equality in both cases. This shows that x̂ is a
minimizer of supy L(x, y) and ŷ is a maximizer of infx L(x, y).

One can show more, if one assume “convex-concavity” of L, i.e.
if the maps x 7→ L(x, y) are convex for every y and y 7→ L(x, y)
are concave for every x. In this case one can show that (x∗, y∗) is a
saddle point of L exactly if

0 ∈ ∂xL(x∗, y∗), 0 ∈ ∂y[−L](x∗, y∗)

(where ∂x, ∂y denote the subgradients with respect to x and y,
respectively).
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Example 15.2. In many cases, one only has the min-max inequality,
but no saddle points exist, even though maxima and minima exist.
The simplest example may be

L(x, y) = sin(x + y).

It holds that

inf
y

sup
x

sin(x + y) = 1 > −1 = sup
x

inf
y

sin(x + y)

even though the infima and suprema are attained. △

Definition 15.3. For a saddle-point problem with function L de-
fine F(x) = supy L(x, y) and G(y) = infx L(x, y). Then the corre-
sponding primal and dual problem are

min
x

F(x) and max
y

G(y),

respectively.

One sees that if (x∗, y∗) is a saddle point of L, then x∗ solves
the primal problem and y∗ solves the dual problem and one has
the that F(x∗) = G(y∗), i.e. the primal and dual optimal values
coincide.

A little more terminology: If we have

inf
x

sup
y

L(x, y) = sup
y

inf
x

L(x, y)

we say that strong duality holds for the saddle point problem, while
the min-max inequality shows that one always has weak duality. In
terms of primal and dual problems: The primal and dual problems
of a saddle point problem always obey weak duality i.e. it always
holds that infx F(x) ≥ supy G(y) and if infx F(x) = supy G(y),
even strong duality holds. Note that strong duality does not imply
that the infimum or supremum are attained.

If a saddle point problem does not obey strong duality, we say
that there is a duality gap and the difference infx supy L(x, y) −
supy infx L(x, y) is called value of the duality gap.

Coming back to the problem

min
x

f (x) + g(Ax)

from the beginning of the section we see that this is the primal
problem of the saddle point problem for

L(x, y) = f (x) + ⟨Ax, y⟩ − g∗(y)

and the respective dual problem is

max
y

− f ∗(−ATy)− g∗(y).
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In this context, the function L is also called Lagrangian of the
problem. Weak duality

inf
x

f (x) + g(Ax) ≥ sup
y

− f ∗(−ATy)− g∗(y)

always holds. Moreover, we will denote the primal objective by F(x) =
f (x) + g(Ax) and the dual objective by G(y) = − f ∗(−ATy) −
g∗(y).

The knowledge of the dual problem is useful, to get cheap
estimates on the distance to optimality:

Proposition 15.4. For convex, proper and lsc function f and g and
matrix A define the gap function

gap(x, y) := f (x) + g(Ax) + f ∗(−ATy) + g∗(y) = F(x)− G(y).

Moreover, denote the primal and dual objective by F and G as above.
Then it holds for any pair (x̄, ȳ) where G(ȳ) > −∞ that

gap(x̄, ȳ) ≥ F(x̄)− inf
x

F(x).

Proof. By weak duality one has F(x̄) ≥ infx F(x) ≥ supy G(y) ≥
G(ȳ) and especially infx F(x) ≥ G(ȳ). Hence, we have

F(x̄)− inf
x

F(x) ≤ F(x̄)− G(ȳ) = gap(x̄, ȳ).

What is the corresponding statement
for the distance to dual optimality?

Theorem 15.5 (Fenchel-Rockafellar duality). Let f : Rn → R̄,
g : Rm → R̄ be proper, convex and lsc and let A ∈ Rn×m. If⋃

λ≥0

λ(dom(g)− A dom( f )) = Rm

then strong duality holds, i.e.

inf
x∈Rn

f (x) + g(Ax) = max
y∈Rm

− f ∗(−ATy)− g∗(y)

(and especially the max on the right hand side is attained).

Proof. We define Φ : Rn × Rm → R̄ by Φ(x, y) = f (x) + g(y)
and let M = {(x, Ax) | x ∈ Rn} (i.e. M is the graph of A).

We aim to show that⋃
λ≥0

λ(dom(Φ)− M) = Rn × Rm.

To that end, let (x, y) ∈ Rn × Rm. By assumption, there exists
λ ≥ 0, u ∈ dom( f ) and v ∈ dom(g) such that

y − Ax = λ(v − Au)
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and one can show (as in the beginning of Step 3 in Theorem 14.5)
that one can even choose λ > 0. If we set a = u − x/λ we get

x = λ(u − a), y = λ(v − Aa)

and this shows that indeed (x, y) ∈ ⋃
λ≥0 λ(dom(Φ)− M).

Now we define Ψ(x, y) = iM(x, y) and note that we have just
shown that condition (Q) is fulfilled for Φ and Ψ. Thus we have
by Theorem 14.5

(Φ + Ψ)∗ = Φ∗ □ Ψ∗

and the infimal convolution is exact. Actually, we only need this
equality at 0 since

(Φ + Ψ)∗(0) = sup
(x,y)

−Φ(x, y)− Ψ(x, y) = sup
y=Ax

− f (x)− g(y)

= − inf
x

f (x) + g(Ax)

and

(Φ∗ □ Ψ∗)(0) = min
(x,y)

Φ∗(x, y) + Ψ∗(−(x, y)) = min
x=−ATy

f ∗(x) + g∗(y)

= min
y

f ∗(−ATy) + g∗(y).
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16 Examples of duality and optimality systems

Example 16.1 (LP duality). A linear program is an optimization prob-
lem where the objective function is linear and where there are
linear equality and inequality constraints. The standard form of a
linear program is: Given c ∈ Rn, A ∈ Rm×n and b ∈ Rm solve

min
x∈Rn

⟨c, x⟩ subject to Ax ≤ b

where the inequality is understood componentwise. In other words

min
x∈Rn

{⟨c, x⟩ | Ax ≤ b}.

We rewrite this in the context of Fenchel-Rockafellar duality
as

min
x∈Rn

f (x) + g(Ax)

with f (x) = ⟨c, x⟩, g(v) = iRm
≤0
(v − b). The conjugates are

f ∗(p) = sup
x
⟨p − c, x⟩ =

{
0, if p − c = 0
∞, else,

= i{c}(p),

g∗(y) = sup
v−b≤0

⟨v, y⟩ =
{
⟨b, y⟩, if y ≥ 0
∞, else.

Hence, the dual problem is

max
y∈Rm

− f ∗(−ATy)− g∗(y) = max
y

{−⟨b, y⟩ | −ATy = c, y ≥ 0}

Hence, the (Fenchel-Rockafellar) dual of a linear problem is an-
other linear program, namely

max
y∈Rm

−⟨b, y⟩ subject to ATy + c = 0
y ≥ 0.

If m < n, then the dual problem has fewer variables (but more
constraints). △

Example 16.2 (Equality constrained norm minimization). We con-
sider the primal problem

min
x∈Rn

∥x∥ subject to Ax = b

with A ∈ Rm×n, b ∈ Rm and ∥·∥ denoting any norm on Rn. With
f (x) = ∥x∥ and g(v) = i{b}(v) this is of the form minx f (x) +
g(Ax). The conjugate of g is simply

g∗(y) = ⟨b, y⟩

and the conjugate of f is

f ∗(p) = sup
x
⟨p, x⟩ − ∥x∥.
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With the notion of dual norm, defined by

∥p∥∗ = sup
∥x∥≤1

⟨p, x⟩

which fulfills ⟨p, x⟩ ≤ ∥x∥∥p∥∗ we can express the conjugate of f
as

f ∗(p) = i{∥·∥∗≤1}(p).

Hence, the dual problem is

max
y∈Rm

−⟨b, y⟩ subject to ∥ATy∥∗ ≤ 1.

In the case of the 1-norm (whose dual is the ∞-norm), the primal

min
Ax=b

∥x∥1

has the dual

max
∥ATy∥∞≤1

−⟨b, y⟩

which can be written as a linear program By the previous example, we know that
the primal should also be a linear pro-
gram, can you see how to write it a
such?

max
y∈Rm

−⟨b, y⟩ subject to ATy ≤ 1

−ATy ≤ 1.

△

If both the subgradient sum-rule and the subgradient chain-
rule hold for the objective

min
x

f (x) + g(Ax)

an optimal x∗ is characterized by the inclusion

0 ∈ ∂ f (x∗) + AT∂g(Ax∗).

Fenchel-Rockafellar duality allows for an alternative optimality
system that uses the dual variable:

Proposition 16.3. Let f , g be proper, convex and lower semicontinuous
and assume strong duality is fulfilled and that the primal problem has a
solution, i.e. we have

min
x

f (x) + g(Ax) = max
y

− f ∗(−ATy)− g∗(y)

then a pair (x∗, y∗) is a saddle point of f (x) + ⟨Ax, y⟩ − g∗(y) exactly
if By the subgradient inversion theorem

(Lemma 13.3), the primal dual optimality
system is also equivalent to

−ATy∗ ∈ ∂ f (x∗)
Ax∗ ∈ ∂g∗(y∗).

−ATy∗ ∈ ∂ f (x∗)
y∗ ∈ ∂g(Ax∗).

This primal-dual optimality system (or Fenchel-Rockafellar duality sys-
tem) is also equivalent to x∗ begin a solution to the primal problem and
y∗ being a solution to the dual problem.
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Proof. A pair (x∗, y∗) is optimal exactly if

− f ∗(−ATy∗)− g∗(y∗) = f (x∗) + g(Ax∗)

of which we subtract ⟨y∗, Ax∗⟩ to get after reordering

⟨−ATy∗, x∗⟩ − f ∗(−ATy∗)− f (x∗) = g(Ax∗) + g∗(y∗)− ⟨y∗, Ax∗⟩.

By Fenchel’s inequality we have ⟨−ATy∗, x∗⟩ ≤ f (x∗)+ f ∗(−ATy∗)
and ⟨y∗, Ax∗⟩ ≤ g(Ax∗) + g∗(y∗), and see that the previous equal-
ity if equivalent to

⟨−ATy∗, x∗⟩ = f (x∗) + f (−ATy∗) and ⟨y∗, Ax∗⟩ = g(Ax∗) + g∗(y∗)

which, by Fenchel’s equality, is equivalent to the primal-dual opti-
mality system.

Example 16.4 (Primal-dual optimality for LPs). Let us work out
the primal-dual optimality system for the LP from Example 16.1.
The subgradient of f is just ∂ f (x) = c (independent of x). The
subgradient of g fulfills

∂g(v) =


0, if v < b,
∅, if v ̸≤ b
?, else.

In the remaining (interesting) cases where some of the inqualities
vi ≤ bi are tight, we have for any w ∈ ∂g(v) that wi ∈ ]−∞, 0].
Hence, the primal-dual optimality system is The last condition is a so-called compli-

mentarity condition and it states that at
least one of the quantities yi or (Ax −
b)i has to be zero for every i.

−ATy∗ ∈ ∂ f (x∗) =⇒ −ATy∗ = c

y∗ ∈ ∂g(Ax∗) =⇒ Ax∗ ≤ b, and

{
y∗i = 0, if (Ax∗)i < bi

y∗i ≤ 0, if (Ax∗)i = bi.

△

Example 16.5 (Primal-dual optimality system for constrained norm
minimization). In the norm minimization example (Example 16.2),
we have that ∂g∗(v) is empty if v ̸= b, but equal to Rm for v = b.
In total we get as optimality system

−ATy∗ ∈ ∂ f (x∗) ⇐⇒ −ATy∗ = ∂∥x∗∥
y∗ ∈ ∂g(Ax∗) ⇐⇒ Ax∗ = b.

Let’s consider special cases:

• Let ∥x∥ = ∥x∥1. Then the subgradient fulfills

p ∈ ∂∥x∥1 ⇐⇒
{

pi = sign(xi), if xi ̸= 0
|pi| ≤ 1, if xi = 0.

Hence, the primal-dual optimality system is

Ax∗ = b,

|ATy|i ≤ 1,

(ATy)i = sign(xi) if xi ̸= 0.
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• In the case of the 2-norm one would rather take f (x) =
1
2∥x∥2

2 (with subgradient ∂ f (x) = {x}) and get the primal-
dual optimality system

−ATy∗ = x∗

Ax∗ = b.

△

In some cases the inclusion −ATy ∈ ∂ f (x) can help to recover
a primal solution from a dual solution: By subgradient inversion
(Lemma 13.3) the inclusion is equivalent to x ∈ ∂ f ∗(−ATy). If
∂ f ∗ is single valued, this even leads to a single primal solution
correspoding the any dual solution. The next proposition shows
that this is the case, for example, when f is strongly convex.

Proposition 16.6. If f : Rd → R̄ is proper, strongly convex with
constant µ and lsc, then:

i) dom( f ∗) = Rd,

ii) f ∗ is 1/µ-smooth and moreover ∇ f ∗(p) = argmaxx⟨p, x⟩ − Recall that f ∗ is L-smooth if it is dif-
ferentiable with ∇ f ∗ being Lipschitz
continuous with constant L.f (x),

Proof. i) Since f ∗(p) = supx⟨x, p⟩ − f (x), we see that strong
convexity of f ensures existence of maximizers for every p,
and this gives a finite value for the supremum for every p.

ii) By Fermat’s principle, some x maximizes ⟨p, x⟩ − f (x) exactly
if p ∈ ∂ f (x) which is, by subgradient inversion, equivalent
to x ∈ ∂ f ∗(p). By strong convexity of f , the maximizer x is
unique for every p, which shows that ∂ f ∗(p) is a singleton and
Proposition 7.7 implies differentiablity of f ∗ and

∂ f ∗(p) = {∇ f ∗(p)} = {x}.

This also implies that ∇ f ∗(p) = argmaxx⟨p, x⟩ − f (x).
Proposition 12.1 shows for p ∈ ∂ f (x) and p′ ∈ ∂ f (x′) that

⟨p − p′, x − x′⟩ ≥ µ∥x − x′∥2.

Subgradient inversion gives x = ∇ f ∗(p) and x′ = ∇ f ∗(p′)
and this gives

⟨p − p′,∇ f ∗(p)−∇ f ∗(p′)⟩ ≥ µ∥∇ f ∗(p)−∇ f ∗(p′)∥2
2.

Applying Cauchy-Schwarz’s inequality shows ∥∇ f ∗(p)−∇ f ∗(p′)∥2 ≤
1
µ∥p − p′∥2 as claimed.
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17 Classes of optimization problems and worst
case analysis of L-Lipschitz convex problems

We are going to develop a theory that will allow us to say how hard
a certain class of optimization problems is. To that end we will
have to pin down some ingredients:

• The problem class: How do we describe a problem from a
class? What properties do we assume for a problem?

• The algorithm: What information of the problem can be used
by the algorithm? We will model this by the notion of an
oracle which, having an iterate xk, gives us some information
of the objective function at this point. We also have to specify,
what the algorithm can do with this information.

• A notion of approximate solution: How do we measure how
good some approximate solution is?

We will analyze iterative algorithms and our goal is, to quantify
how many steps are needed to get an answer with a given accuracy.

Here are some problems classes that we will deal with:

Convex and L-Lipschitz.

Problem class: f : Rn → R̄, proper, convex and L-Lipschitz with
respect to the 2-norm and the problem is

min
x∈Rn

f (x).

Oracle: At a given point xk we are able to query one subgradient
pk ∈ ∂ f (xk).

Method: The iterates will only move in the set

xk ∈ x0 + span{p0, . . . , pk−1}

i.e. in each step we can only move into directions of subgra-
dients which we have already encountered.

Aim: We aim for some x such that f (x)− inf f < ϵ.

Convex and L-smooth.

Problem class: f : Rn → R convex and differentiable with L-
Lipschitz gradient and the problem is

min
x∈Rn

f (x).

Oracle: At a given point xk we are able to query the gradient gk =
∇ f (xk).
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Method: The iterates will only move in the set

xk ∈ x0 + span{g0, . . . , gk−1}

i.e. in each step we can only move into directions of gradients
which we have already encountered.

Aim: We aim for some x such that f (x)− inf f < ϵ.

Convex, L-smooth and µ-strongly convex. Same as before, and
we additionally assume that f is strongly convex with constant
µ > 0. However, since solutions exist and are unique (due to strong
convexity), we can also aim to find some x, such that it holds that
∥x − x∗∥ < ϵ for the optimal solution x∗.

Now we will apply the concept of worst case analysis by con-
structing “annoying problems”. We start with the class of convex
and L-Lipschitz functions, i.e. we do not assume differentiability
or strong convexity and can only use subgradients in each iteration.
Here is the result on worst case analysis:

Theorem 17.1. For every k ∈ {0, . . . , n} there exists some convex
function fk : Rn → R̄ which is Lipschitz contiuous with constant L,
and has a minimum f ∗k = fk(x∗) at some x∗ with ∥x∗∥2 ≤ R and an
oracle that gives a subgradient p ∈ ∂ f (x) such that any sequence xk

that fulfills xk ∈ x0 + span{p0, . . . , pk−1} fulfills

fk(xk−1)− f ∗k ≥ LR
2(1+

√
k)

.

Proof. For some constant µ, γ > 0 (to be defined later) we set

fk(x) = γ max
1≤i≤k

xi +
µ
2 ∥x∥2

2.

The subdifferential is

∂ fk(x) = γ conv{ei | i ∈ I(x)}+ µx

where I(x) := {j ∈ {1, . . . , k} | xj = max1≤i≤k xi}. This function
is Lipschitz continuous on any ball Bρ(0), since by the subgradient
inequality we have for all pk(y) ∈ ∂ fk(y) that

fk(y)− fk(x) ≤ ⟨pk(y), y − x⟩ ≤ ∥pk(y)∥2∥x − y∥2 ≤ (µρ + γ)∥x − y∥2

and hence L = µρ + γ is a Lipschitz constant.
Solving the inclusion 0 ∈ ∂ fk(x) we see that a minimizer is at

xk∗ given by

(xk∗)i =

{
− γ

µk , if 1 ≤ i ≤ k

0, else.
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The norm of the minimizer and the optimal value are

Rk := ∥xk∗∥2 =

√
k
( γ

µk

)2
= γ

µ
√

k
, f ∗k := fk(xk∗) = −γ2

µk +
µ
2 R2

k = − γ2

2µk .

Let us initialize the method with x0 = 0 and see what we can get.
We aim to show that there is some oracle, such that the j-th iterate
(j ≤ k) xj has all entries with indices i = j + 1, . . . , n equal to
zero. In the first step, our oracle gives us the subgradient p0 = γe1
(others would be possible, but this is the worst choice) and hence,
x1 has all entries x1

i equal to zero with the only possible exception
of i = 1 and this proves the case j = 1.

For an induction assume that xj fulfills the assumption. Our
oracle gives the subgradient pj = µxj + γei∗ with i∗ ≤ j + 1 (note
that the first j entries may all be negative so that i∗ = j + 1 is
possible), and this shows the claim.

Hence, in the first k − 1 steps, the objective value fulfills

fk(xi) ≥ max
1≤j≤k

xi
j ≥ 0

Now we choose our constants as

γ =
√

kL
1+

√
k
, µ = L

(1+
√

k)R

and observe that

f ∗k = − γ2

2µk = − LR
2(1+

√
k)

k, hence fk(xk−1)− f ∗k ≥ LR
2(1+

√
k)

k

and ∥x0 − x∗∥2 = γ

µ
√

k
= R. Finally, we compute that the function

is indeed Lipschitz continuous on the ball BR(0) with constant
µR + γ = L as desired.

Hence, we conclude that no algorithm that only uses subgradi-
ent steps is able to solve all optimization problems with Lipschitz-
continuous convex objective with less than O(1/

√
k) operations.

One says: The iterations complexity of convex optinization is
O(1/

√
k).

Now we collect a few more facts about smooth and strongly
convex functions:

Theorem 17.2. Let f : Rd → R be differentiable.
Then

0) f is convex and L-smooth

is equivalent to the following conditions (each holding for all x, y and
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λ ∈ [0, 1]):

i) 0 ≤ f (y)− f (x)− ⟨∇ f (x), y − x⟩ ≤ L
2 ∥x − y∥2

ii) f (x) + ⟨∇ f (x), y − x⟩+ 1
2L∥∇ f (x)−∇ f (y)∥2 ≤ f (y)

iii) 1
L∥∇ f (x)−∇ f (y)∥2 ≤ ⟨∇ f (x)−∇ f (y), x − y⟩

iv) 0 ≤ ⟨∇ f (x)−∇ f (y), x − y⟩ ≤ L∥x − y∥2

v) λ f (x) + (1 − λ) f (y) ≥ f (λx + (1 − λ)y) + λ(1−λ)
2L ∥∇ f (x)−∇ f (y)∥2

vi) f (λx + (1 − λ)y) ≤ λ f (x) + (1 − λ) f (y) ≤ f (λx + (1 − λ)y) + λ(1−λ)L
2 ∥x − y∥2

The property in iii) is called cocoerciv-
ity of the gradient ∇ f . It is not to be
confused with strong convexity where
one has a lower bound of the form
µ∥x − y∥2

2.

Proof. 0) =⇒ i): Convexity implies the left inequality and the
right inequality follows from Lemma 12.5.

i) =⇒ ii): Fix x0 and consider φ(y) = f (y) − ⟨∇ f (x0), y⟩
which has its minimum at y∗ = x0. By i) we have

φ(y∗) ≤ φ(y − 1
L∇φ(y)) ≤ φ(y) + L

2 ∥
1
L∇φ(y)∥2 + ⟨∇φ(y),− 1

L∇φ(y)⟩
= φ(y)− 1

2L∥∇φ(y)∥2

which shows ii) since∇φ(y) = ∇ f (y)−∇ f (x0).
ii) =⇒ iii): Inequality iii) follows from ii) by adding two copies

of ii) with x and y swapped.
iii) =⇒ 0): We use Cauchy-Schwarz in iii) to get L-smoothness

from iii). Since the left hand side in iii) is non-negative, iii) also
implies ⟨∇ f (x)−∇ f (y), x − y⟩ ≥ 0 which, by Theorem 5.2 ii),
implies convexity of f .

i) ⇔ iv): Inequality iv) follows from i) by adding two copies of i)
with x and y swapped. Vice versa the right inequality in iv) implies
the right inequality in i) by

f (y)− f (x)− ⟨∇ f (x), y − x⟩ =
∫ 1

0
⟨∇ f (x + τ(y − x))−∇ f (x), y − x⟩dτ

≤ L
2 ∥y − x∥2.

That the left inequality in iv) implies the left inequality in i) has
been shown in Theorem 5.2.

ii) ⇔ v): To get v) from ii) set xλ = λx + (1 − λ)y and note
that by ii) we get

f (x) ≥ f (xλ) + ⟨∇ f (xλ), (1 − λ)(x − y)⟩+ 1
2L∥∇ f (x)−∇ f (xλ)∥2

f (y) ≥ f (xλ)− ⟨∇ f (xλ), λ(y − x)⟩+ 1
2L∥∇ f (y)−∇ f (xλ)∥2.

Multiplying by λ and (1 − λ), respectively, and adding we get v). Here we used the inequality
λ∥u − w∥2 + (1 − λ)∥v − w∥2 ≥
λ(1 − λ)∥u − v∥2 which follows
from Young’s inequality: ∥u − v∥2 =
∥u − w∥2 + 2⟨u − w, w − v⟩+ ∥w −
v∥2 ≤ ∥u − w∥2 + ∥u − w∥2/ϵ +
ϵ∥w − v∥2 + ∥w − v∥2 = (1 +
1/ϵ)∥u − w∥2 + (1 + ϵ)∥v − w∥2

mit ϵ = (1 − λ)/λ.

Conversely, we get ii) from v) by starting from v) and rearrange to

(1 − λ) f (y) ≥ f (λx + (1 − λ)x)− f (x) + (1 − λ) f (x)

+ λ(1−λ)
2L ∥∇ f (x)−∇ f (y)∥2
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dividing by 1 − λ, writing λx + (1 − λ)y = x + (1 − λ)(y − x)
inside of f and letting λ → 1 leads to ii).

i) ⇔ vi): That the left inequalities in i) and vi) are equivalent
has been shown in Theorem 5.2.

To show that the right inequality in i) implies the right in-
equality in vi) we use the same trick as the previous step: Set
xλ = λx + (1 − λ)y and note that by ii) we get

f (x)− f (xλ)− ⟨∇ f (xλ), (1 − λ)(x − y)⟩ ≤ L
2 ∥x − xλ)∥2 = L(1−λ)2

2 ∥x − y∥2

f (y)− f (xλ)− ⟨∇ f (xλ), λ(y − x)⟩ ≤ L
2 ∥y − xλ∥2 = Lλ2

2 ∥x − y∥2.

Multiplying the first inequality by λ and the second by 1 − λ and
adding leads to

λ f (x) + (1 − λ) f (x)− f (xλ) ≤ L
2

[
(1 − λ)2λ + (1 − λ)λ2] ∥x − y∥2

= Lλ(1−λ)
2 ∥x − y∥2

as desired.
Conversely, to go from the right inequality in vi) to the right

inequality in i) we rearrange vi) to

f (λx+(1−λ)y)− f (x)
1−λ + λL

2 ∥x − y∥2 ≥ f (y)− f (x)

and the claim follows with λ → 1.

Lemma 17.3. A differentiable function f : Rn → R̄ is µ-strongly convex
exactly if for all x, y we have

f (y) ≥ f (x) + ⟨∇ f (x), y − x⟩+ µ
2 ∥y − x∥2

2.

Proof. Just apply Theorem 5.2 iii) to the convex function g(x) =
f (x)− µ

2 ∥x∥2
2 with gradient ∇g(x) = ∇ f (x)− µx.

Theorem 17.4. Let f be differentiable and µ-strongly convex. Then it
holds for all x, y that

f (y) ≤ f (x) + ⟨∇ f (x), y − x⟩+ 1
2µ∥∇ f (x)−∇ f (y)∥2

2

⟨∇ f (x)−∇ f (y), x − y⟩ ≤ 1
µ∥∇ f (x)−∇ f (y)∥2

2.

Proof. For the first inequality we fix x and tilt f by defining φ(y) =
f (y)− ⟨∇ f (x), y⟩. Note that ∇φ(x) = 0 and thus φ is minimal at
x. Since φ is still µ-strongly convex, we have φ(x) ≥ minz φ(z) ≥
minz

[
φ(y) + ⟨∇φ(y), z − y⟩+ µ

2 ∥z − y∥2
2
]
. We calculate that the

minimum on the right as attained at z = y − 1
µ∇φ(y) and has the

value φ(y)− 1
2µ∥∇φ(y)∥2

2 which is exactly the first inequality.
For the second inequality just swap the roles of x and y in the

first and add both of them.

Theorem 17.5. Let f be µ-strongly convex and L-smooth with L ≥ µ.
Then it holds for all x, y that

⟨∇ f (x)−∇ f (y), x − y⟩ ≥ µL
µ+L∥x − y∥2

2 +
1

µ+L∥∇ f (x)−∇ f (y)∥2
2.
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Proof. We define the function φ(x) = f (x)− µ
2 ∥x∥2

2 which is still
convex. The gradient is ∇φ(x) = ∇ f (x) − µx and since f is
L-smooth, we get from Theorem 17.2 iv) that

⟨∇φ(x)− λφ(y), x − y⟩ = ⟨∇ f (x)−∇ f (y)− µ(x − y), x − y⟩
≤ (L − µ)∥x − y∥2

which, again by Theorem 17.2 iv), shows that φ is L − µ-smooth.
In the special case L = µ we see from Theorem 17.2, iv) and

Proposition 12.1 that ⟨∇ f (x)−∇ f (y), x − y⟩ = µ∥x − y∥2
2 from

which we conclude f (x) = µ
2 ∥x∥2

2 + ⟨g, x⟩+ c for some g and c.

This can be seen as follows: Set g = ∇ f (0) and c = f (0). Then
we have that ⟨∇ f (x)−∇ f (0), x⟩ = µ∥x∥2 which implies
⟨∇ f (x), x⟩ = µ∥x∥2 + ⟨g, x⟩. Since d

dt f (tx) = ⟨∇ f (tx), x⟩
we have that

f (x)− f (0) =
1∫

0

⟨∇ f (tx), x⟩dt =
1∫

0

1
t ⟨∇ f (tx), tx⟩dt

=

1∫
0

1
t

[
µ∥tx∥2 + ⟨g, tx⟩

]
dt = µ

2 ∥x∥2 + ⟨g, x⟩

which proves the claim.

Hence the theorem holds in this case by direct inspection.
For µ < L we get from Theorem 17.2 iii) that

⟨∇φ(x)−∇φ(y), x − y⟩ ≥ 1
L−µ∥∇φ(x)−∇φ(y)∥2

2.

The left hand side evaluates to

⟨∇ f (x)−∇ f (y), x − y⟩ − µ∥x − y∥2
2

while the right hand side is

1
L−µ

(
∥∇ f (x)−∇ f (y)∥2

2 − 2µ⟨∇ f (x)−∇ f (y), x − y⟩+ µ2∥x − y∥2
2
)
.

Plugging this in and cleaning up proves the result.
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18 Worst case analysis for L-smooth convex prob-
lems

Now let us analyze the next class of problems: Convex and L-
smooth objectives. At each iteration xk we can query the gradient
gk = ∇ f (xk) and the k-th iterate is assumed to be in the set

x0 + span{g0, . . . , gk−1}.

We will call any method that fulfills this
assumption a first order method.Here is an annoyoing objective that is difficult for all such

methods: For given L > 0 and 0 ≤ k ≤ n let fk : Rn → R be
defined by

fk(x) = L
4

[
1
2

(
(x1)

2 +
k

∑
i=1

(xi − xi+1)
2 + (xk)

2)− x1

]
. (*)

We rewrite this objective with the matrix

Dk =



−1
1 −1

. . . . . . 0k+1,n−k
1 −1

1
0n−k−1,k 0n−k−1,n−k


.

as

fk(x) = L
4

( 1
2∥Dkx∥2

2 − ⟨e1, x⟩
)

and we have

∇ fk(x) = L
4 (DT

k Dkx − e1) and ∇2 f (x) = L
4 DT

k Dk.

One sees

Ak = DT
k Dk =


2 −1

−1 2
. . .

. . . −1 0k,n−k
−1 2

0n−k,k 0n−k,n−k


and hence, we get

0 ≤ L
4 ∥Dks∥2 = ⟨∇2 fk(x)s, s⟩

= L
4

(
(s(1))2 +

k−1

∑
i=1

(s(i) − s(i+1))2 + (s(k))2
)

≤ L
4

(
(s(1))2 +

k−1

∑
i=1

2
(
(s(i))2 + (s(i+1))2)+ (s(k))2

)
≤ L

n

∑
i=1

(s(i))2 = L∥s∥2.

This shows 0 ≼ ∇2 fk(x) ≼ LI and we have proven the fk is convex
and L-smooth. Recall that for symmetric M and N the

symbol M ≽ N means that M − N
is positive definite. Since ∇2 f is the
derivative of ∇ f and ∇2 fk(x) ≼ LI
means that ∥∇2 f (x)∥ ≤ L, the proved
inequality means that ∇ f has deriva-
tives bounded by L which implies L-
Lipschitzness of ∇ f .
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Proposition 18.1. The function fk has a minimizer x∗ given by

x∗i =

{
1 − i

k+1 , if i = 1, . . . , k
0, if i = k + 1, . . . , n.

with corresponding optimal value and norm

f ∗k = fk(x∗) = L
8 (−1 + 1

k+1 ) and ∥x∗∥2
2 ≤ k+1

3 , respectively.
Note that the entries of the minimizer
(and hence also f ∗k and its norm as well)
depend on the value k. We will make
use of this in the following.

Proof. The optimality condition is

0 = ∇ fk(x) = L
4 (Akx − e1)

which is
2 −1

−1 2
. . .

. . . −1 0k,n−k
−1 2

0n−k,k 0n−k,n−k




x1
...
...

xn

 =


1
0
...
0


The values xi for i = k+ 1, . . . , n are not constrained by this system
and hence, we can choose xi = 0 for i = k + 1, . . . , n. The first
equation is 2x1 − x2 = 1, which gives

x2 = 2x1 − 1.

Plugging this is the second equation −x1 + 2x2 − x3 = 0 gives

x3 = 3x1 − 2.

Proceeding in this way, we get for i = 2, . . . , k from the i − 1th
equation that

xi = ix1 − (i − 1). (**)

The k-th equation −xk−1 + 2xk = 0 is then

0 = −(k − 1)x1 + (k − 2) + 2(kx1 − (k − 1)) = (k + 1)x1 − k.

which shows x1 = 1 − 1/(k + 1). Plugging this in (**) shows the
formula for the minimizer.

For the minimal value we just plug in and get

f ∗k = fk(x∗) = L
4

( 1
2∥Dx∗∥2 − ⟨x∗, e1⟩

)
= L

4

( 1
2 ⟨Akx∗︸ ︷︷ ︸

e1

, x∗⟩ − ⟨x∗, e1⟩
)
= − L

8 ⟨x∗, e1⟩

= L
8 (−1 + 1

k+1 ).
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Finally, we estimate

∥x∗∥2 =
n

∑
i=1

(x∗i )
2 =

k

∑
i=1

(
1 − i

k+1

)2
=

k

∑
i=1

(
1 − 2i

k+1 +
i2

(k+1)2

)
= k − 2

k+1

k

∑
i=1

i︸︷︷︸
=

k(k+1)
2

+ 1
(k+1)2

k

∑
i=1

i2

︸︷︷︸
≤ (k+1)3

3

≤ k+1
3 .

We used the estimate (k + 1)3 =

∑k
i=0[(i+ 1)3 − i3] = ∑k

i=0[3i2 + 3i+
1] ≥ 3 ∑k

i=1 i2. The exact sum would
be ∑k

i=1 i2 = k(k+1)(2k+1)
6 (which we

will use in the next section).

Now let us analyze how methods according to our definition
perform for this particular function.

Lemma 18.2. Let 1 ≤ p ≤ n and x0 = 0. Then it holds for every
sequence xk with

xk ∈ Lk := span{∇ fp(x0), . . . ,∇ fp(xk−1)}

and k ≤ p that xk = (∗, . . . , ∗, 0 . . . , 0), i.e. only the first k entries can
be different from zero.

Proof. Recall that ∇ fp(x) = L
4 (Apx − e1), and hence we see that

∇ fp(x0) = − L
4 e1, and hence, x1 fulfills the claim.

No proceed inductively: if xk only has the first k entries non-
zero, then, since Ap is tridiagonal, gk+1 = ∇ fp(xk) has only the
first k + 1 entries different zero and the same holds for xk+1.

Corollary 18.3. For every sequence xk, k = 0, . . . , p with x0 = 0 and
xk ∈ Lk it holds that fp(xk) ≥ f ∗k .

We only observe that since xk ∈ Lk, it only has the first k
components non-zero and thus, that fp(xk) = fk(xk) ≥ f ∗k .

Now comes the main theorem on the complexity of first order
method for convex and L-smooth functions.

Theorem 18.4. Let k be such that 1 ≤ k ≤ 1
2 (n − 1) and x0 ∈ Rn.

Then there exists a convex and L-smooth f : Rn → R such that any
first order method produces iterates such that

f (xk)− f ∗ ≥ 3L∥x0−x∗∥2
2

32(k+1)2

∥xk − x∗∥2
2 ≥ 1

8∥x0 − x∗∥2
2.

Proof. Without loss of generality, we assume x0 = 0 (otherwise use
f̃ (x) = f (x + x0)). For the first inequality, fix k and consider f =
f2k+1 (the one which we defined in (*)). We know from Corollary 18.3
and Proposition 18.1

f (xk) = f2k+1(xk) = fk(xk) ≥ f ∗k = L
8 (−1 + 1

k+1 )
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and get
Note that f ∗ = f ∗2k+1 = L

8 (−1 +
1

2k+2 ) (again by Proposition 18.1).

f (xk)− f ∗

∥x0 − x∗∥2
2
≥

L
8

(
− 1 + 1

k+1 − (−1 + 1
2k+2 )

)
1
3 (2k + 2)

=
3L
8

1
k+1 −

1
2(k+1)

2(k + 1)
=

3L
32(k + 1)2 .

For the second inequality we use that xk is zero in the last
components and that we know the extries of x∗ by Proposition 18.1
to estimate

∥xk − x∗∥2 ≥
2k+1

∑
i=k+1

(x∗i )
2 =

2k+1

∑
i=k+1

(
1 − i

2k+2

)2

=
2k+1

∑
i=k+1

(
1 − i

k+1 +
i2

4(k+1)2

)
.

We calculate

Recall the famous ∑n
i=1 i = n(n+1)

2 .
2k+1

∑
i=k+1

i =
2k+1

∑
i=1

i −
k

∑
i=1

i = 1
2

(
(2k + 1)(2k + 2)− k(k + 1)

)
= 1

2 (3k + 2)(k + 1)

and

Here we use ∑k
i=1 i2 = k(k+1)(2k+1)

6 .
2k+1

∑
i=k+1

i2 =
2k+1

∑
i=1

i2 −
k

∑
i=1

i2

= 1
6

(
(2k + 1)(2k + 2)(4k + 3)− k(k + 1)(2k + 1)

)
= 1

6 (k + 1)(2k + 1)(7k + 6).

Combining this, we get (again using Proposition 18.1)

∥xk − x∗∥2 ≥ k + 1 − 1
k+1

(3k+2)(k+1)
2 + 1

4(k+1)2
(k+1)(2k+1)(7k+6)

6

= − k
2 +

(2k+1)(7k+6)
24(k+1)

= (2k+1)(7k+6)−12k(k+1)
24(k+1)

= 2k2+7k+6
24(k+1)

≥ 2k2+7k+6
24(k+1)

3
2(k+1)∥x0 − x∗∥2

= 2k2+7k+6
16(k+1)2 ∥x0 − x∗∥2

≥ 2(k2+2k+1)
16(k+1)2 ∥x0 − x∗∥2

= 1
8∥x0 − x∗∥2.

Some interpretation of the above theorem:

• The result only holds for roughly the first k ≤ 1
2 (n − 1)

iterates. However, if the problem size n get large, 1
2 (n − 1)

may already be more iterations than one wants to perform.
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• Although, the result is somehow dependent on the dimen-
sion, it still says, that we can’t get better results without using
anything that is specific for the case of dimension n.

• Roughly, we see that the distance to the optimal function
value goes down like 1/k2. Put differently: To guarantee
f (xk)− f ∗ ≤ ϵ we need at least

k ≥
√

3L
32

∥x0−x∗∥√
ϵ

− 1

iterations. Another way to see it: If a method would be this
fast, we would need to multiply the number of iterations by√

2 to cut the distance to optimality in half.

• The iterates themself may converge arbitrarily slow.
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19 Worst case analysis for L-smooth and µ-strongly
convex functions

Now, let’s move on to a more restrictive family of problems: L-
smooth and µ-strongly convex functions. In this case we still get
to evaluate the gradient of the objective at the current iterate and
move in the span of the previous gradients but we will be a bit
more ambitios and aim to get some x̄, such that

f (x̄)− f ∗ ≤ ϵ, and ∥x̄ − x∗∥2
2 ≤ ϵ.

We will state the annoying obective in infinite dimensions. Since Note that this aim makes sense, since
for strongly convex objectives, there is
only one minimizer x∗.we aim to obtain a dimensionless result, the dimension should

not enter anyway and we could work with infinite dimensions as
well. The simplest infinite dimensional Hilbert space is ℓ2 = {x =
(xi) ∈ RN | ∑∞

i=1 x2
i < ∞} with inner product ⟨x, y⟩ = ∑∞

i=1 xiyi

and norm ∥x∥ =
(

∑∞
i=1 x2

i
)1/2.

Here is the annoying objective for this class of functions: For
constants µ > 0, κ > 1 define

fµ,κ(x) = µ(κ−1)
8

[
(x1)

2 +
∞

∑
i=1

(xi − xi+1)
2 − 2x1

]
+ µ

2 ∥x∥2.

With

D =


−1

1 −1

1
. . .
. . .


this is

fµ,κ(x) = µ(κ−1)
8

[
∥Dx∥2 − 2⟨x, e1⟩

]
+ µ

2 ∥x∥2

and we have with

A = D∗D =


2 −1

−1 2
. . .

. . . . . .


that ∇2 fµ,Q(x) = µ(κ−1)

4 A + µI (where I denotes the identity
operator on ℓ2). Similarly to the annoying function in the class of
convex and L-smooth functions one gets 0 ≼ A ≼ 4I and hence

µI ≼ ∇2 fµ,Q(x) ≼ (µ(κ − 1) + µ)I = µκ I.

This shows that fµ,Q is indeed µ-strongly convex and L-smooth
with L = µκ. The number

κ = L/µ

is also called condition number of the objective.
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Lemma 19.1. The function f = fµ,κ has the unique minimizer x∗ with
entries x∗k = qk with q =

√
κ−1√
κ+1 .

Proof. The optimality condition is

0 = ∇ fµ,κ(x) =
(

µ(κ−1)
4 A + µI

)
x − µ(κ−1)

4 e1 = 0,

i.e., the minimizer fulfills(
A + 4

κ−1 I
)

x = e1.

The first and the kth equation (k ≥ 2) are(
2 + 4

κ−1

)
x1 − x2 = 1

−xk−1 +
(

2 + 4
κ−1

)
xk − xk+1 = 0

and after reformulation we get

2 κ+1
κ−1 x1 − x2 = 1

xk−1 − 2 κ+1
κ−1 xk + xk+1 = 0.

These equations have a solution of the form x∗k = qk, where q is
the smallest solution of Just check that the first equation

2 κ+1
κ−1 q − q2 = 1

and is fulfilled by construction. The sec-
ond equation is

0 = qk−1 − 2 κ+1
κ−1 qk + qk+1

= qk−1
(

1 − 2 κ+1
κ−1 q + q2

)
and hence, is fulfilled as well.

q2 − 2 κ+1
κ−1 q + 1 = 0

and this is

q = κ+1
κ−1 −

√(
κ+1
κ−1

)2
− 1

= κ+1
κ−1 −

√
κ2+2κ+1−κ2+2κ−1

(κ−1)2

= κ+1−2
√

κ
κ−1 = (

√
κ−1)2

(
√

κ+1)(
√

κ−1)

=
√

κ−1√
κ+1 < 1

Theorem 19.2. For every x0 ∈ ℓ2, L ≥ µ > 0 there exists a µ-strongly
convex and L-smooth function f (with condition number κ = L/µ) with
minimum f ∗ = f (x∗) such that every first order method for f fulfills

∥xk − x∗∥2 ≥
(√

κ−1√
κ+1

)2k
∥x0 − x∗∥2

f (xk)− f ∗ ≥ µ
2

(√
κ−1√
κ+1

)2k
∥x0 − x∗∥2

Proof. Without loss of generality we assume x0 = 0 and choose
f = fµ,κ . Then

∥x0 − x∗∥2 =
∞

∑
i=1

|x∗i |2 =
∞

∑
i=1

q2i = q2

1−q2 .
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Since ∇2 fµ,κ(x) is tridiagonal and we have f ′µ,κ(0) = e1, we con-
clude (as we did previously) that xk has non-zero entries only in
the first k entries. This shows the first estimate:

∥xk − x∗∥2 ≥
∞

∑
i=k+1

|x∗i |2 =
∞

∑
i=k+1

q2i

=
∞

∑
i=0

q2i −
k

∑
i=0

q2i = 1
1−q2 − 1−q2(k+1)

1−q2

= q2(k+1)

1−q2 = q2k∥x0 − x∗∥2.

Lemma 17.3 with x = x∗ and y = xk gives

f (xk)− f (x∗) ≥ µ
2 ∥xk − x∗∥2 ≥ µ

2 q2k∥xk − x∗∥2

which shows the second estimate.
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20 Subgradient method and gradient descent

In the case of convex and Lipschitz continuous functions on bounded
domains, we have already analyzed the subgradient method in Ex-
ample 9.4. Here we just recall the facts. The method is as follows.
Initialize x0 and iterate for some stepsize γk > 0

pk ∈ ∂ f (xk),

xk+1 = PC(xk − γkxk).

The fundamental estimate we got was: if we denote by f k
best the

smallest objective value among the first k iterates and denote by
D2 = 1

2∥x0 − x∗∥2
2 for any solution x∗, then it holds

f k
best − f ∗ ≤

D2 + L2

2 ∑k
i=1 γ2

i

∑k
i=0 γi

.

From this one deduces (using further estimates from Exam-
ple 9.4):

Theorem 20.1. If we choose the stepsize γi = C/
√

k + 1 for some
C > 0 and i = 0, . . . , k, then we get

f k
best − f ∗ = Ok→∞(1/

√
k + 1).

If we choose γi = C/
√

i + 1 for all i, then it holds for all k that

f k
best − f ∗ = Ok→∞(log(k + 1)/

√
k + 1).

Comparing this to our worst case result from Theorem 17.1 we
see that the very simple subgradient method can already be made
optimal up to constants. On the one hand, this is a lucky case, but The notion “optimal up to constants” is

sometimes called “order optimal”.on the other hand, the optimal rate is bad and the simplest idea is
good enough, so we may also say that this class is just too broad
to allow for a general and practical method.

Let us test our luck with the simplest method for convex and
smooth problems: gradient descent. We start with the L-smooth
case:

Theorem 20.2. Let f : Rn → R be convex and L-smooth with mini-
mum f ∗ = f (x∗) and let xk be defined by

xk+1 = xk − h∇ f (xk)

for 0 < h < 2/L. Then it holds that

f (xk)− f ∗ ≤ 2( f (x0)− f ∗)∥x0−x∗∥2
2

2∥x0−x∗∥2
2+kh(2−Lh)( f (x0)− f ∗)
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Proof. We denote rk = ∥xk − x∗∥ and estimate

r2
k+1 = ∥xk − x∗ − h∇ f (xk)∥2

2

= r2
k − 2h ⟨∇ f (xk), xk − x∗⟩︸ ︷︷ ︸

=⟨∇ f (xk)−∇ f (x∗),xk−x∗⟩

+h2∥∇ f (xk)∥2
2

≤ r2
k − 2h

L ∥∇ f (xk)−∇ f (x∗)∥2
2 + h2∥∇ f (xk)∥2

2
(Thm. 17.2 iii))

= r2
k − h( 2

L − h)∥∇ f (xk)∥2
2.

We see that rk ≤ r0 and by Theorem 17.2 i) we get (denoting ω =
h(1 − L

2 h))

f (xk+1) ≤ f (xk) + ⟨∇ f (xk), xk+1 − xk⟩+ L
2 ∥xk+1 − xk∥2

2

= f (xk)− ω∥∇ f (xk)∥2
2

(*)

By convexity of f we get f (x∗) ≥ f (xk) + ⟨∇ f (xk), x∗ − xk⟩. We
further abbreviate ∆k = f (xk)− f ∗ and get by Cauchy-Schwarz

∆k = f (xk)− f ∗ ≤ ⟨∇ f (xk), xk − x∗⟩ ≤ rk∥∇ f (xk)∥ ≤ r0∥∇ f (xk)∥.

We use this in (*) to obtain

f (xk+1) ≤ f (xk)− ω
∆2

k
r2

0
.

Subtracting f ∗ on both sides we get the recurrence ∆k+1 ≤ ∆k −
ω
r2

0
∆2

k = ∆k(1 − ω
r2

0
∆k) which implies ∆k+1 ≤ ∆k and can also be

rearranged to Some intuition about why this recur-
rence should imply a decay of ∆k like
1/k: It is equivalent to the difference
equation ∆k+1 −∆k ≤ −C∆2

k . A corre-
sponding differential equation is y′ =
−cy2 which has solutions of the form
y(t) = 1/(c1 + ct).

1
∆k+1

≥ 1
∆k

+
ω

r2
0

∆k

∆k+1
≥ 1

∆k
+

ω

r2
0
≥ · · · ≥ 1

∆0
+

ω

r2
0
(k + 1).

This finally gives

∆k ≤
1

1
∆0

+ ω
r2

0
k
=

∆0r2
0

r2
0 + ∆0ωk

.

To get a cleaner bound, we optimize the constant h( 2
L − h) over

h and get the following corollary.

Corollary 20.3. Let f : Rn → R be convex and L-smooth with mini-
mum f ∗ = f (x∗) and let xk be defined by

xk+1 = xk − 1
L∇ f (xk).

Then it holds that

f (xk)− f ∗ ≤ 2L∥x0−x∗∥2
2

k+4 .
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We want to make h(2 − Lh) as large as possible, and this
is the case for h∗ = 1/L. Then h∗(2 − Lh∗) = 1/L. Fur-
thermore, use L-smoothness and ∇ f (x∗) = 0 to estimate
f (x0)− f ∗ ≤ L

2 ∥x0 − x∗∥2
2. This simplifies the upper bound

from Theorem 20.2 to 2L∥x0−x∗∥2
2

k+4 .

Reading the result in a different way, we see that we need about
O(1/ϵ) iterations to reach a guaranteed accuracy of f (xk)− f ∗ ≤
ϵ. Thus, to cut the distance to optimality in half, we need twice as
many iterations.

For the strongly convex case, we can do much better:

Theorem 20.4. Let f : Rn → R be µ-strongly convex and L-smooth
(i.e. with condition number κ = L/µ) with minimum f ∗ = f (x∗) and
let xk be defined by

xk+1 = xk − h∇ f (xk)

fulfills

∥xk − x∗∥2
2 ≤ (1 − 2hµL

µ+L )
k∥x0 − x∗∥2

2

for 0 < h ≤ 2/(L + µ). The right hand side is minimal for the step-size
h = 2

L+µ and in this case we get

∥xk − x∗∥2 ≤
(κ − 1

κ + 1

)k
∥x0 − x∗∥2,

f (xk)− f ∗ ≤ L
2

(κ − 1
κ + 1

)2k
∥x0 − x∗∥2

2.

Proof. Similar to the proof in the L-smooth case we arrive at

r2
k+1 = ∥xk − x∗ − h∇ f (xk)∥2

2

= r2
k − 2h⟨∇ f (xk)−∇ f (x∗), xk − x∗⟩+ h2∥∇ f (xk)∥2

2,

but now we use Theorem 17.5 to bound

r2
k+1 ≤ r2

k −
2hµL
µ+L r2

k − 2h
µ+L∥∇ f (xk)∥2

2 + h2∥∇ f (xk)∥2
2

=
(
1 − 2hµL

µ+L

)
r2

k + h
(
h − 2

µ+L

)
∥∇ f (xk)∥2

2.

Since 0 ≤ h ≤ 2/(µ+ L)we get r2
k+1 ≤

(
1− 2hµL

µ+L

)
r2

k . To minimize
the factor on the right hand, we simply need to choose h as large
as possible, and this is h = 2/(L + µ). In this case we get

1 − 2hµL
µ + L

= 1 − 4µL
(L + µ)2 =

(L + µ)2 − 4µL
(L + µ)2

=
(L − µ)2

(L + µ)2 =
(κ − 1

κ + 1

)2
.
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Reading this result in a different way: To guarantee f (xk)−
f ∗ ≤ ϵ we need to iteration for at most k iterations where k
fulfills Cλk ≤ ϵ for λ =

(
κ−1
κ+1

)2
< 1. This is equivalent to

k ≥ log(ϵ/C)/ log(λ). Thus, to cut the distance to optimality
in half, we just need to add a constant number of iterations (and
this number depends on the size of the contraction factor ((κ −
1)/(κ + 1))2). A similar claim is true for the distance to optimum
∥xk − x∗∥2

If we compare our performance bounds to the wort case analy-
sis from previous sections, we see:

• For the convex and L-smooth case, the worst case bound and
bound for the gradient method combine to the sandwich
inequality

3L∥x0−x∗∥2
2

32(k+1)2 ≤ f (xk)− f ∗ ≤ 2L∥x0−x∗∥2
2

k+4 .

The most notable difference is, that the lower bound isO(k−2)
while the upper bound is only O(k−1), and hence, of worse
order. There could be different reasons for this. For exam-
ple, our annoying function was not the worst possible or
our analysis of the gradient method could be improved. But
in fact, something else is true: The gradient method is not
optimal for this class, but a slight adaptation of the method
is!

• For the µ-strongly convex and L-smooth case, the worst case
bound and the bound for the gradient method for the dis-
tance to optimum give(√κ − 1√

κ + 1

)2k
∥x0 − x∗∥2

2 ≤ ∥xk − x∗∥2
2 ≤

(κ − 1
κ + 1

)2k
∥x0 − x∗∥2

2

Both bounds are geometrically convergent, but since κ > 1
and the function t 7→ (t− 1)/(t+ 1) is stricly increasing, the
constant if the lower bound is always much better than the
one in the upper bound. For large values of κ, the difference
get notably large. Here we ask ourselves as well: What is For κ = 100, we get (κ − 1)/(κ +

1) ≈ 0.98, i.e. a 2% improvement
of ∥xk − x∗∥ in every iteration, while
(
√

κ − 1)/(
√

κ + 1) ≈ 0.82 which is
an 18% improvement. For κ = 10000
the improvement is 0.02% vs. 2%.

the reason for this discrepancy. Again it will turn out that
there is simple adaption of the gradient method that will be
optimal order.

We will see the accelerated gradient methods in both cases in the
next section.
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21 Accelerated gradient descent

As we have seen, the gradient method does not match our lower
bound both in the L-smooth and the µ-strongly convex and L-
smooth case. Surprisingly, there are two very simple adaptions of
the method that do at least match the optimal order. The methods
are due to Nesterov and are of the following form: Initialize with
x−1, x0 ∈ Rn and iterate

yk = xk + αk(xk − xk−1)

xk+1 = yk − hk∇ f (yk) (*)

for some extrapolation parameters αk and step-sizes hk. Note that the first step is not a convex
combination of xk and xk+1, but an ex-
trapolation. From the place xk of the
kth iterate, we move some more in the
direction of where we came from.

This method will not be a descent method (i.e. f (xk) is not
decreasing in every step), but the next lemma will help us to show
convergence nonetheless.

Lemma 21.1. If f is convex and L-smooth, 0 < h ≤ 1/L and x+ =
x − h∇ f (x) is a gradient step, then it holds for all y that

f (x+) + ∥x+−y∥2
2

2h ≤ f (y) + ∥x−y∥2
2

2h .

Proof. Since x+ is a gradient step, we know from previous proofs
that it holds for L-smooth functions that f (x+) ≤ f (x)− h(1 −
Lh
2 )∥∇ f (x)∥2

2 ≤ f (x)− h
2∥∇ f (x)∥2

2. Using this we get

f (x+) + ∥x+−y∥2
2

2h = f (x+) +
∥x − y∥2

2
2h

− ⟨∇ f (x), x − y⟩+ h
2∥∇ f (x)∥2

2

≤ f (x) + ⟨∇ f (x), y − x⟩+ ∥x − y∥2
2

2h

≤ f (y) +
∥x − y∥2

2
2h

.

Moreover, we write the extrapolation step as

yk = xk + tk−1
tk+1

(xk − xk−1) (**)

which will simplify the proofs.

Proposition 21.2. Let f : Rn → R be convex and L-smooth with
minimum f ∗ = f (x∗), x0, x−1 ∈ Rn, 0 < h ≤ 1/L and tk such
that t1 = 1, tk ≥ 1 and t2

k − t2
k+1 + tk+1 ≥ 0. Then it holds that the

sequence xk generated by the accelerated gradient method (**), (*) fulfills

f (xk)− f ∗ ≤ ∥x0 − x∗∥2
2

2ht2
k

.

Proof. We use Lemma 21.1 with the special points x = yk, x+ =
xk+1 and y = (1 − 1

tk+1
)xk + 1

tk+1
x∗ and get

f (xk+1) +
∥xk+1−(1− 1

tk+1
)xk− 1

tk+1
x∗∥2

2h

≤ f
(
(1 − 1

tk+1
)xk + 1

tk+1
x∗
)
+

∥yk−(1− 1
tk+1

)xk− 1
tk+1

x∗∥2

2h .
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We define the auxiliary variable

uk+1 = xk + tk+1(xk+1 − xk)

and get

xk+1 − (1 − 1
tk+1

)xk − 1
tk+1

x∗ = 1
tk+1

(uk+1 − x∗)

and

yk − (1 − 1
tk+1

)xk − 1
tk+1

x∗ = xk + tk−1
tk+1

(xk − xk−1)− (1 − 1
tk+1

)xk − 1
tk+1

x∗

= 1
tk+1

(
(xk + (tk − 1)(xk − xk−1)− x∗)

)
= 1

tk+1
(uk − x∗).

We plug this in the first equality, use convexity of f (recall that
tk ≥ 1, i.e. 1/tk ≤ 1) and get

f (xk+1) + ∥uk+1−x∗∥2

2ht2
k+1

≤ (1 − 1
tk+1

) f (xk) + 1
tk+1

f (x∗) + ∥uk−x∗∥2

2ht2
k+1

.

We rearrange to

f (xk+1)− f ∗ − (1 − 1
tk+1

)( f (xk)− f ∗) ≤ ∥uk−x∗∥2

2ht2
k+1

− ∥uk+1−x∗∥2

2ht2
k+1

.

Using the abbreviations

fk = f (xk)− f ∗, vk = ∥uk − x∗∥2

we get, multiplying by t2
k+1

t2
k+1 fk+1 − (t2

k+1 − tk+1) fk ≤
vk − vk+1

2h
.

We sum these inequalities and obtain

t2
K+1 fK+1 +

K

∑
k=0

(t2
k − t2

k+1 + tk+1) fk ≤
v0 − vK+1

2h
.

Since the coefficients in the sum are, by assumption, non-negative
and vK ≥ 0, we have (using t1 = 1)

f (xK+1)− f ∗ ≤ v0

2ht2
K+1

=
∥u0 − x∗∥2

2ht2
K+1

=
∥x0 − x∗∥2

2ht2
K+1

,

which proves the claim.

We notice that the result needs the inequality t2
k − t2

k+1 + tk+1 ≥
0 and that the upper bound decays faster, the quicker the sequence
tk grows. Hence, we would like the tk to grow as fast as possible
and hence we choose it such that the above inequality is always
strict. This gives

tk+1 =
√

t2
k +

1
4 +

1
2 .
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It’s simple to implement this strategy in practice and one can show
that tk ≥ k+1

2 . If one wants a simpler value for the tk, one could try
to do a little worse in the inequality and omit the + 1

4 , leading to
tk+1 = tk +

1
2 .

Here is a result which gives a simple choice of tk which directly
translates to a choice of αk:

Corollary 21.3. The iterates of the accelerated gradient method (*) with
αk =

k−1
k+a and a ≥ 2 and stepsize 0 < h ≤ 1/L fulfill

f (xk)− f ∗ ≤ a2∥x0 − x∗∥2
2

2h(k + a − 1)2 .

Proof. The choice tk =
k+a−1

a gives αk =
k−1
k+a and also fulfills

t2
k − t2

k+1 + tk+1 =
( k + a − 1

a

)2
−

( k + a
a

)2
+

k + a
a

= 1
a2

(
(k + a − 1)2 − (k + a)2 + a(k + a)

)
= 1

a2

(
(k + a)2 − 2(k + a) + 1 − (k + a)2 + a(k + a)

)
= 1

a2

(
(a − 2)(k + a) + 1

)
which is non-negative for a ≥ 2. Plugging things into the result
of Proposition 21.2 gives the result.

The optimal values for h and α in the upper bound in this
results are the largest possible h and the smallest possible a, i.e.
h = 1/L and a = 2, i.e. αk =

k−1
k+2 leading the upper bound

f (xk)− f ∗ ≤ 2L∥x0 − x∗∥2
2

(k + 1)2 .
This upper bound is actually pretty close
to our lower bound 3L∥x0−x∗∥2

2
32(k+1)2 .

Now we turn to the case of L-smooth and µ-strongly convex
functions. In this case a constant value for αk works well:

Theorem 21.4. Let f : Rn → R be convex, L-smooth and µ-strongly
convex (i.e. the condition number is κ = L/µ) with minimum f ∗ =
f (x∗). Then it holds that for any initialization x0, y0 ∈ Rn the iterates
of the accelerated gradient method

xk+1 = yk − 1
L∇ f (yk),

yk+1 = xk+1 +
√

κ−1√
κ+1 (xk+1 − xk),

fulfill

f (xk)− f ∗ ≤
(
1 − 1√

κ

)k µ+L
2 ∥x0 − x∗∥2

2,

∥xk − x∗∥2 ≤
(
1 − 1√

κ

)k/2√
κ + 1∥x0 − x∗∥2.

Proof. The proof is quite technical and consists of several steps.

Convex Analysis | TU Braunschweig | Dirk Lorenz | WiSe 2022/23
Please submit errors to d.lorenz@tu-braunschweig.de

92

mailto:d.lorenz@tu-braunschweig.de


24.01.2023, VL 21-4

1) We define
Φ0(x) = f (y0) + µ

2 ∥x − y0∥2

and proceed recursively as

Φk+1(x) =
(

1− 1√
κ

)
Φk(x)+ 1√

κ
( f (yk)+ ⟨∇ f (yk), x − yk⟩+ µ

2 ∥x− yk∥2)

Since f is µ-strongly convex we get

Φk+1(x) ≤
(

1 − 1√
κ

)
Φk(x) + 1√

κ
f (x).

2) We claim that

Φk(x) ≤ f (x) +
(

1 − 1√
κ

)k
(Φ0(x)− f (x)).

The case k = 0 is clear and to show the claim by induction we
calculate

Φk+1(x) ≤
(

1 − 1√
κ

)
Φk(x) + 1√

κ
f (x)

≤
(

1 − 1√
κ

)[
f (x) +

(
1 − 1√

κ

)k
(Φ0(x)− f (x))

]
+ 1√

κ
f (x)

= f (x) +
(

1 − 1√
κ

)k+1
(Φ0(x)− f (x)).

3) Now we claim that f (xk) ≤ minx Φk(x) and show this by in-
duction again:
For k = 0 it holds Φ0(x) = f (y0) + µ

2 ∥x − y0∥2 which is mini-
mal for x = y0 = x0.
Now denote Φ∗

k = minx Φk(x) and since xk+1 is a gradient step
from yk with stepsize 1/L we get

f (xk+1) ≤ f (yk)− 1
2L∥∇ f (yk)∥2

=
(

1 − 1√
κ

)
f (xk)︸ ︷︷ ︸
≤Φ∗

k

+
(

1 − 1√
κ

)
( f (yk)− f (xk)︸ ︷︷ ︸
≤⟨∇ f (yk),yk−xk⟩

) + f (yk)√
κ

− 1
2L∥∇ f (yk)∥2

Hence, we need to show that

Φ∗
k+1 ≥

(
1− 1√

κ

)
Φ∗

k +
(

1− 1√
κ

)
⟨∇ f (yk), yk − xk⟩+ f (yk)√

κ
− 1

2L∥∇ f (yk)∥2

(1)
We show this is several steps:

a) For all x and k we have ∇2Φk(x) = µIn: For k = 0 this is clear
by definition and a close look on the recursive definition
shows that this property stays true for Φk as well.

b) Hence, Φk can be written as Φk(x) = Φ∗
k +

µ
2 ∥x − vk∥2 with

some vk. One can see that
We take the derivative of Φk+1 to get

∇Φk+1(x) =
(

1 − 1√
κ

)
∇Φk(x) + 1√

κ
∇ f (yk)

+
µ√
κ
(x − yk)

=
(

1 − 1√
κ

)
µ(x − vk) + 1√

κ
∇ f (yk)

+
µ√
κ
(x − yk)

The condition 0 = ∇Φk+1(vk+1) im-
plies the recursion for vk.

vk+1 =
(

1 − 1√
κ

)
vk + 1√

κ
yk − 1

µ
√

κ
∇ f (yk).
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By the recursive definition of Φk+1 we get

Φ∗
k+1 +

µ
2 ∥yk − vk+1∥2 = Φk+1(yk)

=
(

1 − 1√
κ

)(
Φ∗

k +
µ
2 ∥yk − vk∥2

)
+ 1√

κ
f (yk)

=
(

1 − 1√
κ

)
Φ∗

k +
µ
2

(
1 − 1√

κ

)
∥yk − vk∥2 + 1√

κ
f (yk) (2)

and the recursion for vk+1 gives

∥yk − vk+1∥2 = ∥
(

1 − 1√
κ

)
(yk − vk)− 1

µ
√

κ
∇ f (yk)∥2

=
(

1 − 1√
κ

)2
∥yk − vk∥2 + 1

µ2κ
∥∇ f (yk)∥2

− 2
µ
√

κ

(
1 − 1√

κ

)
⟨∇ f (yk), vk − yk⟩.

We plug this into (2) and get

Here we used (1 − 1√
κ
) − (1 −

1√
κ
)2 = 1√

κ
(1 − 1√

κ
).

Φ∗
k+1 =

(
1 − 1√

κ

)
Φ∗

k +
1√
κ

f (yk) + µ
2

(
1 − 1√

κ

)
∥yk − vk∥2

− µ
2

(
1 − 1√

κ

)2
∥yk − vk∥2 − 1

2µκ∥∇ f (yk)∥2

+ 1√
κ

(
1 − 1√

κ

)
⟨∇ f (yk), vk − yk⟩

=
(

1 − 1√
κ

)
Φ∗

k +
1√
κ

f (yk) + µ

2
√

κ

(
1 − 1√

κ

)
∥yk − vk∥2

− 1
2L∥∇ f (yk)∥2 + 1√

κ

(
1 − 1√

κ

)
⟨∇ f (yk), vk − yk⟩.

c) We claim that vk − yk =
√

κ(yk − xk). For k = 0 both sides
are zero and recursively we get

We used xk+1 = yk − 1
L∇ f (yk) and

(
√

κ − 1)xk = 2
√

κxk+1 − (
√

κ −
1)yk+1 which we get from the extrapo-
lation step.

vk+1 − yk+1 =
(

1 − 1√
κ

)
vk + 1√

κ
yk − 1

µ
√

κ
∇ f (yk)− yk+1

=
(

1 − 1√
κ

)
(yk +

√
κ(yk − xk)) + 1√

κ
yk −

√
κ

L ∇ f (yk)− yk+1

=
√

κ(yk+1 − xk+1).

This shows

Φ∗
k+1 =

(
1 − 1√

κ

)
Φ∗

k +
1√
κ

f (yk) + µ
√

κ
2

(
1 − 1√

κ

)
∥yk − xk∥2

− 1
2L∥∇ f (yk)∥2 +

(
1 − 1√

κ

)
⟨∇ f (yk), yk − xk⟩.

This finally shows the inequality (1) and hence

f (xk) ≤ Φ∗
k .

4) Using step 2), the definition of Φ0 and that ∇ f is L-Lipschitz
(more concretely, we use f (y0)− f ∗ ≤ L

2 ∥y0 − x∗∥2)

f (xk)− f ∗ ≤ Φ∗
k − f ∗ ≤ Φk(x∗)− f ∗

≤ f (x∗) +
(

1 − 1√
κ

)k
(Φ0(x∗)− f (x∗))− f ∗

=
(

1 − 1√
κ

)k(
f (y0) + µ

2 ∥x∗ − y0∥2 − f ∗
)

≤
(

1 − 1√
κ

)k
µ+L

2 ∥y0 − x∗∥2.
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5) The second inequality simply follows since f is µ-strongly con-
vex and thus

∥xk − x∗∥2 ≤ 2
µ ( f (xk)− f ∗).

We note the slightly different upper and lower bound here: We
have(√κ − 1√

κ + 1

)2k
∥x0 − x∗∥2

2 ≤ ∥xk − x∗∥2
2 ≤

(
1 − 1√

κ

)k√
κ + 1∥x0 − x∗∥2

2

However, since One the one hand, we can raise (1 +
t) ≤ exp(t) to the k-th power and
set t = −1/r to get (1 − 1/r)k ≤
exp(−k/r), and on the other hand,
we rearrange to exp(−t) ≤ 1/(1 +
t) and set t = 2/(

√
κ − 1) to

get exp(−2/(
√

κ − 1) ≤ 1/(1 +
2/(

√
κ − 1)) = (

√
κ − 1)/(

√
κ + 1).

(
1 − 1√

κ

)k
≤ exp(− k√

κ
),(√κ − 1√

κ + 1

)2k
≥ exp(− 4k√

κ−1 ),

both bounds are quite close.
We have seen that a simple extrapolation step turns the gra-

dient method into a method that is of optimal order in both the
convex and L-smooth case and the L-smooth and µ-strongly con-
vex case. However, one needs to choose the extrapolation step
differently in both cases.
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22 Analysis of the proximal gradient method and
its acceleration

In this section we analyze the convergence of the proximal gradient
method. We recall the setup for this method: For some convex
and lsc f : Rd → R and a convex and L-smooth g we consider the
problem

min
x

f (x) + g(x).

We assume that we can evaluate the proximal operator proxh f of f
for any h > 0 and the gradient ∇g at some point in every iteration.
The proximal gradient method alternates a gradient step for g and
a proximal step for f :

xk+1 = proxh f (xk − h∇g(xk)).

To analyze the method we introduce the map

Gh(x) = 1
h

(
x − proxh f (x − h∇g(x))

)
and call it the gradient map of the proximal gradient method. By
definition we have

proxh f (x − h∇g(x)) = x − hGh(x)

and hence, the gradient map is the “(additive) step of the proximal
gradient method”.

Lemma 22.1. For all h > 0 it holds that

Gh(x)−∇g(x) ∈ ∂ f (x − hGh(x))

and if g is L-smooth, then for 0 < h ≤ 1/L it holds that

g(x − hGh(x)) ≤ g(x)− h⟨∇g(x), Gh(x)⟩+ h
2∥Gh(x)∥2.

Proof. We recall that u = proxh f (x) iff and only if (x − u)/h ∈
∂ f (u). Using this with x − hGh(x) for u and x − h∇g(x) for x
shows the first claim. For the second claim we use Lemma 12.5
with y = x − hGh(x) to get

g(x − hGh(x)) ≤ g(x)− h⟨∇g(x), Gh(x)⟩+ h2L
2 ∥Gh(x)∥2

2

from which the inequality follows.

Lemma 22.2. Let f be convex and lsc and g be convex and L-smooth.
Then it holds for F = f + g, 0 < h ≤ 1/L and all z that

F(x − hGh(x)) ≤ F(z) + ⟨Gh(x), x − z⟩ − h
2∥Gh(x)∥2

2.

Convex Analysis | TU Braunschweig | Dirk Lorenz | WiSe 2022/23
Please submit errors to d.lorenz@tu-braunschweig.de

96

mailto:d.lorenz@tu-braunschweig.de


26.01.2023, VL 22-2

Proof. By the second point in Lemma 22.1, we get the estimate

F(x − hGh(x)) = f (x − hGh(x)) + g(x − hGh(x))

≤ f (x − hGh(x)) + g(x)− h⟨∇g(x), Gh(x)⟩+ h
2∥Gh(x)∥2

2

and by the first point of the same lemma we know (by the subgra-
dient inequality) that

f (z) ≥ f (x − hGh(x)) + ⟨Gh(x)−∇g(x), z − x + hGh(x)⟩
= f (x − hGh(x)) + h∥Gh(x)∥2

2 + ⟨Gh(x)−∇g(x), z − x⟩ − h⟨∇g(x), Gh(x)⟩.

Combining these inequalities we get (using convexity of g in the
second inequality)

F(x − hGh(x)) ≤ f (z) + g(x) + ⟨Gh(x)−∇g(x), x − z⟩ − h
2∥Gh(x)∥2

2

≤ f (z) + g(z) + ⟨Gh(x), x − z⟩ − h
2∥Gh(x)∥2

2

as claimed.

Proposition 22.3. Let f be convex and lsc and g be convex and L-
smooth. Then it holds for F = f + g, x∗ = argmin F, F∗ = F(x∗),
and x+ = proxh f (x − h∇g(x)) and 0 < h ≤ 1/L that

i) For all y we have F(x+) + 1
2h∥x+ − y∥2

2 ≤ F(y) + 1
2h∥x − y∥2

2. Note that this is exactly the same in-
equality than the one for the gradient
step in Lemma 21.1ii) F(x+) ≤ F(x)− h

2∥Gh(x)∥2
2.

iii) F(x+)− F∗ ≤ 1
2h (∥x − x∗∥2

2 − ∥x+ − x∗∥2
2).

iv) ∥x+ − x∗∥2 ≤ ∥x − x∗∥2.

Proof. We have x+ = x − hGh(x) and by Lemma 22.2 we have by
completing the square

F(x+) ≤ F(y) + ⟨Gh(x), x − y⟩ − h
2∥Gh(x)∥2

2

= F(y)− 1
2h∥x − hGh(x)− y∥2

2 +
1

2h∥x − y∥2
2

and point i) follows. Point ii) follows with y = x, point iii) with
y = x∗ and point iv) follows from iii) since the left hand side is
non-negative.

Theorem 22.4. Let f be convex and lsc and g be convex and L-smooth.
Then it holds for F = f + g, x∗ = argmin F, F∗ = F(x∗), that the
iterates xk+1 = proxh f (xk − h∇g(xk) with h = 1/L fulfill

F(xk)− F∗ ≤ L∥x0−x∗∥2
2

2k .

Proof. Using point iii) in Proposition 22.3 with x+ = xk+1 and
x = xk we get

F(xk+1)− F∗ ≤ L
2

(
∥xk − x∗∥2

2 − ∥xk+1 − x∗∥2
2
)
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and summing this inequality we get

k+1

∑
i=1

(
F(xi)− F∗) ≤ L

2

(
∥x0 − x∗∥2

2 − ∥xk+1 − x∗∥2
2
)

Since F(xi) is decreasing (Proposition) 22.3 ii)) we have

F(xk+1)− F∗ ≤ 1
k+1

k+1

∑
i=1

(
F(xi)− F∗) ≤ L

2(k+1)

(
∥x0 − x∗∥2

2 − ∥xk+1 − x∗∥2
2
)

Interestingly, the same acceleration that works for the gradient
method also works for the proximal gradient. This generalization
is due to Amir Beck and Marc Teboulle and it goes as follows:
Initialize with x−1 = x0 ∈ Rd and iterate

yk = xk + αk(xk − xk−1)

xk+1 = proxhk f (y
k − hk∇g(yk)).

for some sequence αk of positive extrapolation parameters and
some stepsizes hk > 0. We will use the following reformulation
(which we already used in the proof of Proposition 21.2) of the
method: We initialize with y0 = x0 ∈ Rd and iterate

xk = proxhk f (y
k−1 − hk∇g(yk−1))

uk = tkxk + (1 − tk)xk−1

yk = (1 − 1
tk+1

)xk + 1
tk+1

uk.

(*)

Lemma 22.5. If αk =
tk−1
tk+1

, then the iterates of the sequence xk generated
by (*) are equal to the iterates of the accelerated proximal gradient method.

Proof. We take the iteration (*) and plug uk in the definition of yk

and obtain

yk = (1 − 1
tk+1

)xk + 1
tk+1

(
tkxk + (1 − tk)xk−1

)
= xk + tk−1

tk+1
(xk − xk−1)

as desired.

Proposition 22.6. Let f convex and lsc, g be convex and L-smooth,
F = f + g and let x∗ be a minimizer of F and F∗ = F(x∗). For the
sequences xk, uk, yk generated by (*) with hk = h ∈ ]0, 1/L] and t1 = 1
it holds that

t2
k+1(F(xk+1)− F∗) +

k

∑
i=1

(t2
i − t2

i+1 + ti+1)(F(xi)− F∗) ≤ 1
2h (∥u0 − x∗∥2

2 − ∥uk+1 − x∗∥2
2).
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Proof. We start with Proposition 22.3 i) with x = yk, x+ = xk+1

and the special point y = (1 − 1
tk+1

)xk + 1
tk+1

x∗ to get

F(xk+1) + 1
2h∥xk+1 −

(
1 − 1

tk+1

)
xk − 1

tk+1
x∗∥2

2

≤ F
((

1 − 1
tk+1

)
xk + 1

tk+1
x∗
)
+ 1

2h∥yk −
(
1 − 1

tk+1

)
xk + 1

tk+1
x∗∥2

2

= F
((

1 − 1
tk+1

)
xk + 1

tk+1
x∗
)
+ 1

2h∥
1

tk+1
(uk − x∗)∥2

2.

Convexity of F gives

F
((

1 − 1
tk+1

)
xk + 1

tk+1
x∗
)
≤

(
1 − 1

tk+1

)
F(xk) + 1

tk+1
F(x∗)

and since 1
tk+1

uk+1 = xk+1 − (1 − 1
tk+1

)xk we get(
F(xk+1)− F∗)− (

1 − 1
tk+1

)(
F(xk)− F∗) ≤ 1

2ht2
k+1

(
∥uk − x∗∥2

2 − ∥uk+1 − x∗∥2
2
)
.

Multiplying by t2
k+1 and summing up this inequalities for k =

0, . . . , K gives the assertion.

We again see that the quantity t2
i − t2

i+1 + ti+1 plays an impor-
tant role here. Similarly to the accelerated gradient method from
the previous section we can deduce (since u0 = x0)

F(xk+1)− F∗ ≤ ∥x0−x∗∥2
2

2ht2
k+1

.

as soon as t2
i − t2

i+1 + ti+1 ≥ 0. We’ve seen that, for example tk =
(k + 1)/2 is a valid choice which leads to:

Theorem 22.7. If we choose h = 1/L, and tk = (k + 1)/2 in the
previous proposition, we have

F(xk+1)− F∗ ≤ 2L∥x0−x∗∥2
2

(k+2)2 .

Note that this estimate is significantly better than the one for
the standard proximal gradient method, which only guaranteed
that F(xk+1)− F∗ ≤ L∥x0−x∗∥2

2
2(k+1) . Another way of phrasing this, is to

ask, how many iterations one needs to guarantee that F(xk)− F∗ ≤
ϵ holds. For the proximal gradient method, this holds if

k ≥ Cϵ−1

while for Nesterov’s accelerated proximal gradient method, we get
this for

k ≥ Cϵ−1/2

(with a different constant) and ϵ−1/2 grows notably slower than
ϵ−1 for ϵ → 0.
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23 Monotone operators

From this point on, we will formulate the theory in the context of
general real and finite dimensional Hilbert space X. That means
that X is a real vector space, equipped with an inner product ⟨x, y⟩
and which is complete with respect to the induced norm ∥x∥ =√
⟨x, x⟩. Everything which we did so far still holds true and we will

consider the finite dimensional case throughout. Note that finite In the infinite dimensional case, several
things need to be adapted due to the
reason that closed and bounded sets
will in general not be compact anymore.
Moreover, one has to use the notion
of weak convergence and some argu-
ments will get more involved.

dimensional Hilbert spaces are all isomorphic to Rd equipped with
an inner product of the form ⟨x, y⟩ = xT My for some symmetric
positive definite M ∈ Rd×d.

One of the main differences between the usual gradient of a
differentiable function and the subgradient of a convex, lsc func-
tion is, that the subgradient is, in general, a set and not a singleton.
Hence, it seems natural, to consider set-valued maps and we will
introduce such maps now.

A set valued map on X would be

A : X → P(X),

i.e. A(x) is a subset of X. However, we will have a different view on
set valued maps: A set valued map is fully described, by its graph

gr A := {(x, y) ∈ X × X | y ∈ A(x)}

and, vice versa, every subset A ⊂ X × X gives rise to a set valued
map f (x) = {y ∈ X | (x, y) ∈ A}.

Definition 23.1. A set valued map A : X ⇒ X is characterized by
its graph

gr A ⊂ X × X,

and we write y ∈ A(x) if (x, y) ∈ gr A.
The domain of A is

dom A := {x | A(x) ̸= ∅}.

The inverse of a set value map always exists and is defined by

gr A−1 := {(y, x) ∈ X × X | y ∈ A(x)},

in other words

x ∈ A−1(y) ⇐⇒ y ∈ A(x).

Beware that some rules we are used to
do not holds anymore. For example it
is not true that AA−1 or A−1 A have
to be the identity. For one, the domain
need not to be full and another reason is
that AA−1y is usually not a singleton.

Algebraic operators of set valued maps are defined in the usual
way: If A, B : X ⇒ X and α ∈ R we define

(A + B)(x) := A(x) + B(x) = {y + y′ | y ∈ A(x), y′ ∈ B(x)}
(αA)(x) := αA(x) = {αy | y ∈ A(x)}

(B ◦ A)(x) :=
⋃

y∈A(x)

B(y)
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One further notion that can be extended to set valued map, is Even though we always have an inverse
of a set valued map and composition
of set valued maps, one does not have
A ◦ A−1 = I in general ( just consider
A = ∅).

the one of monotonicity: Recall that a function f : R → R is
monotone, if (x − y)( f (x)− f (y)) always has the same sign (if
the expression is non-negative, we have an increasing function, if
it is non-positive, we have a decreasing function). For set valued
operators one always chooses the increasing case and defines: We will often omit the parentheses and

write Ax instead of A(x), even though
A is set-valued and non-linear.Definition 23.2. A set valued map A : X ⇒ X is monotone, if for

all y ∈ A(x) and y′ ∈ A(x′) it holds that

⟨y − y′, x − x′⟩ ≥ 0.

The map A is called strongly monotone with constant µ > 0
if A − µI is monotone, or, put differently, for all y ∈ A(x) and
y′ ∈ A(x′) it holds that By I we denote the identity mapping,

the Ix = x, e.g, (A − µI)(x) is the set
A(x)− µx.⟨y − y′, x − x′⟩ ≥ µ∥x − x′∥2.

Finally, A is called maximally monotone, if there is no mono-
tone map with a larger graph, i.e. for all (x, y) /∈ gr A there exists
(x′, y′) ∈ gr A such that

⟨x − x′, y − y′⟩ < 0.

Lemma 23.3. A mulivalued monotone map A is maximally monotone,
exactly if it holds that whenever ⟨x − y, u − v⟩ ≥ 0 holds for all (y, v) ∈
gr A, then (x, u) ∈ gr A (i.e. u ∈ A(x)).

Proof. Let A be maximally monotone and assume that whenever
v ∈ Ay holds, we have ⟨x − y, u − v⟩ ≥ 0. But then u /∈ A(x)
would contradict the maximality, since we could enlarge the graph
gr A by adding the element (x, u) without destroying monotonic-
ity.

For the reverse implication assume that A is monotone, but
not maximally so. Then there is another monotone operator Ã
with a larger graph, i.e. there exist (x, u) ∈ gr Ã but (x, u) /∈
gr A. But then (since u ∈ Ãx and Ã is monotone) we still have
⟨x − y, u − v⟩ ≥ 0 for all (y, v) ∈ gr A ⊂ gr Ã, but not (x, u) ∈
gr A.

Example 23.4. Examples of a multivalued monotone maps arise as
sign-functions. The ordinary sign-function

sign(x) =


−1, x < 0
0, x = 0
1, x > 0

(when considered as a multivalued function with value {sign(x)})
is monotone. However, it is not strongly monotone and not max-
imally monotone. The latter is true, since the multivalued sign
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Sign : R ⇒ R defined by

Sign(x) =


{−1}, x < 0
[−1, 1], x = 0
{1}, x > 0

has a graph that contains the graph of sign but is still monotone.

Note that Sign(x) = ∂|x|.The multivalued sign is maximally monotone, though. △

Arguing that a monotone map is maximal using the definition
of maximal monotonicity is not straightforward. The following
proposition is sometimes easier to use.

Proposition 23.5. If A is monotone and I + A is onto, then A is maxi-
mally monotone.

The reverse implication is also true and
known as Minty’s theorem, and we will
prove it in the next section.Proof. Assume that A is monotone and I + A is onto. We aim to

prove maximality of A by using the characterization in Lemma 23.3.
Fix (x, u) such that for all (y, v) ∈ gr A it holds that

⟨x − y, u − v⟩ ≥ 0.

If we can show that u ∈ A(x) follows, the assertion follows from
Lemma 23.3. Since I + A is onto, there is a solution y of the in-
clusion x + u ∈ (I + A)(y) = y + A(y). In other words, there
exists a v ∈ A(y) such that x + u = y + v. Since (u, x) fulfills our
assumption, we know that

0 ≤ ⟨x − y, u − v︸ ︷︷ ︸
=y−x

⟩ = −∥x − y∥2

and hence, x = y and also u = v. Thus u ∈ A(x) as claimed.

Maximal monotonicity implies a certain closedness of the
graph:

Lemma 23.6. Let A : X ⇒ X be maximally monotone. Then it holds
that gr A is closed, i.e. if un ∈ Axn and xn → x and un → u, then
u ∈ Ax.

Proof. For any (y, v) ∈ gr A we have that ⟨xn − y, un − v⟩ ≥ 0.
Hence, this also holds in the limit, i.e. we have for all (y, v) ∈ gr A
that ⟨x − y, u − v⟩ ≥ 0 and Lemma 23.3 shows that u ∈ Ax.

Proposition 23.7. Let f : X → R̄ be proper and convex. Then ∂ f is a
monotone map. If f is also lsc., then ∂ f is maximally monotone.

Proof. If f is proper and convex and we have x, x′ with subgra-
dients p ∈ ∂ f (x), p′ ∈ ∂ f (x′), we can evaluate the subgradient
inequalities at the other points and get

f (x′) ≥ f (x) + ⟨p, x′ − x⟩
f (x) ≥ f (x′) + ⟨p′, x − x′⟩.
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Adding these inequalities gives

0 ≥ ⟨p − p′, x′ − x⟩

which is equivalent to 0 ≤ ⟨p − p′, x − x′⟩.
If f is lsc, then by Theorem 11.2 1

2∥y − x∥2 + f (y) has a min-
imizer z = prox f (x). Since ∥y − x∥2 is continuous and defined
everywhere, the subgradient sum rule gives

0 ∈ z − x + ∂ f (z)

which we rearrange to

x ∈ z + ∂ f (z) = (I + ∂ f )(z).

This shows that (I + ∂ f ) is onto, and hence, by Proposition 23.5
∂ f is maximally monotone.

The fact that subgradients of proper, convex and lsc functions
are maximally monotone shows: A convex optimization problem

min
x∈X

f (x)

for a proper, convex and lsc function f is equivalent to the monotone
inclusion

0 ∈ Ax

with A = ∂ f . Hence, the study of monotone inclusions is worth-
while, since any algorithm which can be used to solve monotone
inclusions can (in priciple) be turned into an algorithm for convex
optimization problems. Note that, however, not every maximally

monotone operator is a subgradient.
(Try to find an example. Hint: Consider
linear maps on R2.) Hence, the class
of monotone inclusions is in fact larger
than the class of convex optimization
problems.

To see that the Proposition 23.7 need not to hold for functions
that aren’t lsc, consider the function f (x) = i]0,∞[(x). The subgra-
dient is

∂ f (x) =

{
∅, x ≤ 0
{0}, x > 0

which is monotone. But it is not maximally monotone, since one
can enlarge it’s graph without destroying monotonicity. In fact,
this can be done in different ways. Two extreme ways would be to
consider the single-valued function

x 7→ {0}

which is the subgradient of the zero function, of the multi-valued
function

x 7→


∅, x < 0
]−∞, 0], x = 0
{0}, x > 0
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which is the subgradient of i[0,∞].
Recall from Section 11, that the proximal map of a proper,

convex and lsc function f : X → R̄ is defined as

prox f (x) = argmin
y

1
2∥x − y∥2 + f (x).

Using Fermat’s characterization of minimizers, the sum-rule for
subgradient, and our notion of inverse for multivalued function
we can characterize z = prox f (x) as

z = argmin
y

1
2∥y − x∥2 + f (y)

⇐⇒ 0 ∈ z − x + ∂ f (z)
⇐⇒ x ∈ z + ∂ f (z) = (I + ∂ f )(z)

⇐⇒ z = (I + ∂ f )−1(x),

i.e. we have

prox f (x) = (I + ∂ f )−1(x).

This is a handy way to figure out proximal mappings of one-
dimensional functions graphically.
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24 Resolvents and non-expansive operators

Here are few more useful facts about maximally monotone opera-
tors:

Proposition 24.1. For every monotone operator A : X ⇒ X, there exists
a maximally monotone extension Ā : X ⇒ X.

Proof. We set

A = {A′ : X ⇒ X | A′ monotone, gr A ⊂ gr A′}.

This set is partially ordered by graph inclusion and by Zorn’s
lemma there is a maximal ordered subset A0. We now define Ā =⋃

A′∈A0
A′ which is monotone and also maximal by definition. This line of argument is also called

Hausdorff maximal principle.
Proposition 24.2. If a continuous map A : X → X is monotone, then
it is maximally monotone.

Proof. Assume that for some (x′, v′) ∈ X×X it holds that ⟨v′ − Ax, x′ − x⟩ ≥
0 for all x. We have to show that v′ = Ax′. Then we take x = x′− ϵu
for some ϵ > 0 and some u ∈ X. Then we have ⟨v′ − A(x′ − ϵu), u⟩ ≥
0 since A(x′ + ϵu) → Ax′ for ϵ → 0 by continuity, we get that
⟨v′ − Ax′, u⟩ ≥ 0. Since we can do this for all u, we conclude that
v′ − Ax′ = 0 as desired.

We have just seen in the last section that prox f = (I + ∂ f )−1

and we already know that the proximal map is quite helpful when it
comes to minimization problems. Hence, we define for monotone
operators:

Definition 24.3. Let A : X ⇒ X be monotone. Then the resolvent
of A is

JA = (I + A)−1.

Hence we can write J∂ f = prox f .

Proposition 24.4. Let A : X ⇒ X be a monotone map with dom A ̸=
∅. Then JA is (at most) single-valued.

Proof. Assume that JA is has more than one value, i.e. there exist
x1, x2 suchthat xi ∈ (I + A)−1(y), i.e. y ∈ (I + A)(xi) for i = 1, 2.
This means that

y − x1 ∈ A(x1), y − x2 ∈ A(x2).

But since A is monotone, we obtain

0 ≤ ⟨x1 − x2, y − x1 − (y − x2)⟩ = −∥x1 − x2∥2

which shows x1 = x2.

Convex Analysis | TU Braunschweig | Dirk Lorenz | WiSe 2022/23
Please submit errors to d.lorenz@tu-braunschweig.de

105

mailto:d.lorenz@tu-braunschweig.de


02.02.2023, VL 24-2

Definition 24.5. A map T : X → X is called non-expansive if for all
x1, x2 it holds that

∥T(x1)− T(x2)∥ ≤ ∥x1 − x2∥.

The map T is called a contraction, if Non-expansiveness is the same as be-
ing Lipschitz continuous with constant
one.∥T(x1)− T(x2)∥ ≤ q∥x1 − x2∥

for some q < 1.
Similarly, a set valued mapping S is non-expansive, if for y1 ∈

S(x1), y2 ∈ S(x2) it holds that ∥y1 − y2∥ ≤ ∥x1 − x2∥.
We will see shortly, that the non-
expansive set-valued mappings are ac-
tually always single valued.

(Maximally) monotone maps are related to non-expansive maps
in several ways.

Proposition 24.6 (Minty parametrization). Let J : X × X → X × X
be defined by

J(x, v) =
[

x + v
−x + v

]
=

[
I I
−I I

] [
x
v

]
, J−1(z, w) = 1

2

[
z − w
z + w

]
.

For two set-value mappings A, B : X ⇒ X assume that their graphs are For n = 1, the map J is a clockwise
rotation by π/4 (and a scaling by

√
2)

of the plane R×R in which the graphs
live.

A

B (not scaled…)

related by

gr B = J(gr A), gr A = J−1(gr B).

Then it holds

i) A is monotone exactly if B is non-expansive.

ii) We have

B = I − 2I ◦ (I + A)−1, A = (I − B)−1 ◦ 2I − I.

Proof. For (zj, wj) = J(xj, vj) = (xj + vj, vj − xj), j = 1, 2 it holds
that zj + wj = 2vj and zj − wj = 2xj and hence,

∥z2 − z1∥2 − ∥w2 − w1∥2

= ⟨(z2 − z1) + (w2 − w1), (z2 − z1)− (w2 − w1)⟩
= ⟨(z2 + w2)− (z1 + w1), (z2 − w2)− (z1 − w1)⟩

= ⟨2v2 − 2v1, 2x2 − 2x1⟩ = 4⟨v2 − v1, x2 − x1⟩.

We conclude

∥w2 − w1∥ ≤ ∥z2 − z1∥ ⇐⇒ ⟨v2 − v1, x2 − x1⟩ ≥ 0.

This shows that B is non-expansive, exactly if A is monotone, i.e.
i) is proven.

To prove ii), note that the condition gr B = J(gr A) means
that if (z, w) ∈ gr B, then for some v ∈ Ax one has z = v + x and
w = v − x. This is equivalent to z ∈ (I + A)x and w = (z − x)−
x = z − 2x, Hence, we have w ∈ Bz exactly if w = z − 2x for some
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x ∈ (I + A)−1z which says that B = I − 2I ◦ (I + A)−1. For the
second equality, we start with u ∈ ((I − B)−1 ◦ 2I − I)(x) = (I −
B)−1(2x)− x which is equivalent to 2x ∈ (I − B)(u + x). Since
B = I − 2I ◦ (I + A)−1 we have (I − B)(u + x) = 2(I + A)−1(u +
x) which gives 2x ∈ 2(I + A)−1(u + x). This leads to u + x ∈
(I + A)x = x + Ax and we see that u ∈ Ax as desired. This shows
gr((I − B)−1 ◦ 2I − I) ⊂ gr A and the other inclusion holds as
well, since we argue exactly the same in the other direction.

Theorem 24.7 (Minty). If A is maximally monotone, then I + λA is
onto for every λ > 0. Moreover, (I +λA)−1 is also maximally monotone
and single valued.

Proof. Of course, we can restrict to λ = 1. Since A is maximally
monotone, the map B from Proposition 24.6 is non-expansive and
also maximal in the sense that we can’t enlarge its graph with-
out destroying the non-expansiveness. Now we use the following
result:

Let X ⊂ Rn and F : X → Rm be Lipschitz continuous.
Then F has an extension F̄ : Rn → Rm which has the
same Lipschitz constant.

(The proof is fairly technical and uses Zorn’s Lemma and can be
found in “Variational Analysis” by Rockafellar and Wets as Theo-
rem 9.58.)

By this result, we know that B has full domain (i.e. dom B = X)
because otherwise we could extend it and it would not be maximal.
However this is the case exactly if dom(I + A)−1 = X, i.e. if I + A
is onto. That (I + A)−1 is maximally monotone follows since I + A
is maximally monotone, and we have just proven single-valuedness
in Proposition 24.4.

There is another graphical interpretation of the resolvant: For
λ > 0 consider the map

Mλ : X × X → X × X, Mλ(x, v) =
[

x + λv
x

]
.

Since we have x = JλAz (i.e. (z, x) ∈ gr JλA) exactly if z−x
λ ∈ Ax

(i.e (x, (z − x)/λ) ∈ gr A). And since Mλ(x, (z − x)/λ) = (z, x)
we see that

gr JλA = Mλ gr A.

Resolvents have special properties which make them useful to
build algorithms, one of which is their non-expansiveness:

Definition 24.8. A map A : X → X is called firmly non-expansive if

∥A(x1)− A(x2)∥2 + ∥(I − A)(x1)− (I − A)(x2)∥2 ≤ ∥x1 − x2∥2.
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Obviously, a firmly non-expansive operator is also non-expansive,
but there is more:

Proposition 24.9. Let D ⊂ X be non-empty and A : D → X. Then
the following are equivalent:

i) A is firmly non-expansive.

ii) I − A is firmly non-expansive.

iii) 2A − I is non-expansive.

iv) For all x, y ∈ D it holds that

∥Ax − Ay∥2 ≤ ⟨x − y, Ax − Ay⟩.

v) For all x, y ∈ D it holds that

0 ≤ ⟨Ax − Ay, (I − A)x − (I − A)y⟩.

vi) For all x, y ∈ D it holds that

∥Ax − Ay − 1
2 (x − y)x∥ ≤ ∥x−y∥

2 .

Here is a graphical interpretation
of non-expansiveness and firm non-
expansiveness: Consider linear non-
expansive maps and a point x ∈ R2.
Then the set of all values that can be
reached with Ax for any non-expansive
linear map is the ball of radius ∥x∥
around zero:

x

For a linear firmly non-expansive map
A we conclude from characterization vi)
that the set of points that can be reached
from x by a firmly non-expansive maps
is the ball of radius ∥x∥/2 around x/2:

x

Proof. The equivalence of i) and ii) is clear, since the defining in-
equality from Definition 24.8 stays the same if we replace A by
I − A.

For the equivalence of ii) and iii) we first observe the auxiliary
identity

∥2u − v∥2 = 2∥u − v∥2 + 2∥u∥2 − ∥v∥2.

(which can be verified, for example, by expanding both sides). With
v = x − y and u = Ax − Ay we arrive at

∥(2A − I)x − (2A − I)y∥2 = 2∥(A − I)x − (A − I)y∥2 + 2∥Ax − Ay∥2 − ∥x − y∥2

which shows the equivalence of ii) and iii).
For the equivalence of ii) and iv) use ∥(I − A)x− (I − A)y∥2 =

∥x − y∥2 − 2⟨x − y, Ax − Ay⟩+ ∥Ax − Ay∥ and the equivalence
of iv) and v) is clear.

For the equivalence of i) and vi) we start from the definition
and expand the square in the second norm on the left hand side
to get after collecting and canceling

∥Ax − Ay∥2 − ⟨x − y, Ax − Ay⟩ ≤ 0.

We complete the square by adding ∥ x
2∥2 to both sides and get the

claim.

Proposition 24.10. The resolvent JA of a maximally monotone operator
A is firmly non-expansive.
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Proof. By maximality of A we have that JA is onto and hence we
can get for every xi a yi = JA(xi), i = 1, 2. Then we have

x1 − y1 ∈ A(y1), x2 − y2 ∈ A(y2).

By monotonicity we get

⟨x1 − y1 − x2 + y2, y1 − y2⟩ ≥ 0

which leads to

0 ≤ ⟨y1 − y2, x1 − x2⟩ − ∥y1 − y2∥2.

Hence, we can conclude

∥JA(x1)− JA(x2)∥2 ≤ ⟨JA(x1)− JA(x2), x1 − x2⟩
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25 Relaxed Mann iterations and the proximal
point algorithm

We come back to the development of optimization algorithms and
their analysis. As we will see, we often arrive at iterative methods
that are just non-expansive (and not contractive) and hence, con-
vergence does not follow from the respective fixed point theorem.
We will develop a more refined theory to guarantee convergence.
The first thing is the following notion that will help to ease the
analysis.

Definition 25.1. Let C ⊂ X be non-empty. A sequence (xn) is
called Fejér monotone with respect to C if

∀x ∈ C : ∥xn+1 − x∥ ≤ ∥xn − x∥.

Proposition 25.2. Let C ⊂ X be non-empty and (xn) be Fejér monotone
with respect to C. Then it holds:

i) (xn) is bounded.

ii) For every x ∈ C it holds that sequence ∥xn − x∥ converges.

iii) The distance d(xn, C) is decreasing and converges.

iv) For m, n it holds hat ∥xn+m − xn∥ ≤ 2d(xn, C).

Proof. Assertion i) follows, since ∥xn − x∥ ≤ ∥x0 − x∥ for some
(even every) x ∈ C, and since ∥xn − x∥ is decreasing and bounded
from below it converges which is ii). For iii) note that for every
x ∈ C

d(xn+1, C) = inf
y∈C

∥xn+1 − y∥ ≤ ∥xn+1 − x∥ ≤ ∥xn − x∥.

Taking the infimum over x shows the claim. Finally, by the triangle
inequality

∥xn+m − xn∥ ≤ ∥xn+m − x∥+ ∥xn − x∥ ≤ 2∥xn − x∥

and taking the infimum over x shows the claim.

Definition 25.3. For a set X and a map T : X → X we denote by
Fix T the set of fixed points of T, i.e. Fix T = {x | Tx = x}.

The following fundamental result on fixed point iterations
states that we still get convergence of iterates from a non-expansive
map under mild additional assumptions:

Theorem 25.4 (Krasnosel‘skiĭ-Mann fixed point theorem). Let D ⊂
X be non-empty, closed and convex and T : D → D be non-expansive
such that Fix T is not empty. For x0 ∈ D define the Mann iteration

xn+1 = Txn, n = 0, 1, . . .

and assume that xn − Txn
n→∞−→ 0. Then it (xn) converges to a fixed

point of T. A sequence (xn) of iterates that fullfills
xn − Txn → 0 is called asymtotically
regular.
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Proof. For each x ∈ Fix T it holds that

∥xn+1 − x∥ = ∥Txn − Tx∥ ≤ ∥xn − x∥

and hence, (xn) is Fejér monotone with respect to Fix T and hence,
it’s bounded and has cluster points. Now assume that x∗ is any
cluster point of (xn), i.e. we have xnk

k→∞−→ x∗.
Now we work along this subsequence and get

∥x∗ − Tx∗∥2 = ∥xnk − Tx∗∥2 − ∥xnk − x∗∥2 − 2⟨xnk − x∗, x∗ − Tx∗⟩
= ∥xnk − Txnk∥2 + 2⟨xnk − Txnk , Txnk − Tx∗⟩

+ ∥Txnk − Tx∗∥2 − ∥xnk − x∗∥2 − 2⟨xnk − x∗, x∗ − Tx∗⟩
≤ ∥xnk − Txnk∥2 + 2⟨xnk − Txnk , Txnk − Tx∗⟩ − 2⟨xnk − x∗, x∗ − Tx∗⟩.

Using the assumption xnk − Txnk → 0, we get that all terms on
the right hand side vanish in the limit k → ∞ and this shows that
x∗ = Tx∗, i.e. x∗ ∈ Fix T.

By Proposition 25.2 iii) we know that d(xn, Fix T) converges,
but since xnk → x∗ ∈ Fix x, d(xn, Fix T) has to converge to 0.

It remains to prove that the full sequence (xn) converges. First
we prove that the sequence can have at most one cluster point: Let
x, y be two different cluster points, i.e. xnk → x and xnl → y (and
both have to be in Fix T by the above). But then Proposition 25.2 ii)
says that both ∥xn − x∥ and ∥xn − y∥ have to converge. It holds

⟨xn, x − y⟩ = ∥xn − x∥2 − ∥xn − y∥2 + ∥x∥2 − ∥y∥2

and the right hand side does converge. Hence, the left hand side
converges to something as well, say a = limn→∞⟨xn, x − y⟩. But
if we take the limits along the subsequences xnk and xnl we get
⟨x, x − y⟩ = a = ⟨y, x − y⟩ and subtracting these equalities we
see that ⟨x − y, x − y⟩ = 0, i.e. x = y. We have seen: Every subse-
quence of xn has a subsequence which converges to same x̂ ∈ Fix T.
By the “subsequence-subsequence-principle” we get that the full
sequence does converge to that x̂.

The following theorem shows that even for merely non-expansive
operators T we can get a method that converges towards a fixed
point of T by relaxation:

Theorem 25.5 (Krasnosel‘skiĭ-Mann iteration). Let D ⊂ X be non-
empty, closed and convex and T : D → D be non-expansive with
Fix T ̸= ∅. Let (λn) be a sequence in [0, 1] such that ∑∞

n=0 λn(1 − λn)
diverges. For some x0 ∈ D define the

xn+1 = xn + λn(Txn − xn) = λnTxn + (1 − λn)xn.

Then it holds that

i) (xn) is Fejér monotone with respect to Fix T,
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ii) Txn − xn
n→∞−→ 0,

iii) (xn) converges to some fixed point of T.

Proof. Since D is convex, the sequence of iterates is always well
defined.

For any y ∈ Fix T we use the equation ∥λu + (1 − λ)v∥2 +
λ(1 − λ)∥u − v∥2 = λ∥u∥2 + (1 − λ)∥v∥2 to get

∥xn+1 − y∥2 = ∥(1 − λn)(xn − y) + λn(Txn − y)∥2

= (1 − λn)∥xn − y∥2 + λn∥Txn − Ty∥2

− λn(1 − λn)∥Txn − xn∥2

≤ ∥xn − y∥2 − λn(1 − λn)∥Txn − xn∥2

and hence, (xn) is Fejér monotone with respect to Fix T. Summing
these inequalities for n = 0, . . . we get

∞

∑
n=0

λn(1 − λn)∥Txn − xn∥2 ≤ ∥x0 − y∥2.

Since the series over λn(1−λn) diverges, we get that lim infn→∞∥Txn −
xn∥2 = 0. However, since xn+1 − xn = λn(Txn − xn) we get from
the triangle inequality

∥Txn+1 − xn+1∥ = ∥Txn+1 − Txn + (1 − λn)(Txn − xn)∥
≤ ∥xn+1 − xn∥︸ ︷︷ ︸

=∥λn(Txn−xn)∥

+(1 − λn)∥Txn − xn∥

= ∥Txn − xn∥

and thus, ∥Txn − xn∥ → 0. The convergence of xn to a fixed point
now follows from Theorem 25.4.

Definition 25.6 (Averaged operators). Let D ⊂ X and α ∈ ]0, 1[.
A non-expansive map T : D → X is called α-averaged if there
exists another non-expansive operator R : D → X such that
T = (1 − α)I + αR. If T is α-averaged for some α ∈ ]0, 1[ we call
T averaged.

Note that every averaged operator is non-expansive but not
every non-expansive operator is averaged (consider T = −I).

Proposition 25.7. A firmly non-expansive operator is 1/2-averaged.

Proof. If T is firmly non-expansive, then, by Proposition 24.9, R :=
2T − I is non-expansive and hence T = 1

2 I + 1
2 R.

For averaged operators, we get a slightly stronger convergence
result for relaxed Mann iterations:
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Proposition 25.8. Let α ∈ ]0, 1[ and T : X → X be α-averaged with
Fix T ̸= ∅. Furthermore, let λn ∈ [0, 1/α] such that ∑∞

n=0 λn(1− αλn)
diverges. For some x0 ∈ X define the iteration

xn+1 = xn + λn(Txn − xn) = λnTxn + (1 − λn)xn.

Then it holds that

i) (xn) is Fejér monotone with respect to Fix T,

ii) Txn − xn
n→∞−→ 0,

iii) (xn) converges to some fixed point of T.

Proof. As T is α-averaged, we have T = (1 − α)I + αR with some
non-expansive R, i.e. R = (1− 1

α )I + 1
α T. Moreover, Tx = x holds

exactly if Rx = x, i.e. R has the same fixed points as T. With
µn = αλn we can rewrite the iteration as

xn+1 = xn + λn((1 − α)I + αR)xn − xn)

= xn + αλn(Rxn − xn) = xn − µn(Rxn − xn).

Now µn ∈ [0, 1] and ∑∞
n=0 µn(1 − µn) = ∞ by assumption and the

result follows from Theorem 25.5.

Hence, we get the following convergence result for the conver-
gence of relaxed iterations for firmly non-expansive maps:

Corollary 25.9. Let T : X → X be firmly non-expansive with Fix T ̸=
∅. Then it holds that the iterates xn+1 = xn + λn(Txn − xn) converge
to a fixed point of T if λn ∈ [0, 2] such that ∑∞

n=0 λn(2 − λn) diverges.
In particular, the iterates xn+1 = Txn converge to a fixed point of T

for a firmly non-expansive mapping T.

Follows from the previous proposition and the result that firmly
non-expansive operators and 1

2 averaged.

If we apply the Krasnosel‘skiĭ-Mann iteration (with λn ≡ 1)
to the resolvent of a monotone operator A, i.e. we iterate xn+1 =
JγAxn for some γ > 0, this is the so-called proximal point algo-
rithm.

Proposition 25.10. Let A be maximally monotone, γ > 0 and x0
arbitrary and consider the iterates of

xn+1 = JγAxn.

Then the iterates converge to a solution of 0 ∈ Ax if one exists.

Proof. First, a solution x∗ of 0 ∈ Ax∗ fulfills x∗ ∈ x∗ + γAx∗

for any γ > 0, i.e. x∗ = JγAx∗, which shows that solution of the
inclusion are exactly the fixed points of the iteration. Since by
Proposition 24.9 JγA is firmly non-expansive and Proposition 25.7
shows that JγA is 1/2-averaged. Now Proposition 25.8 shows the
convergence, since we can take λn ≡ 1, to a solution.
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We get a stronger result under additional assumptions on A.
The following notion is helpful:

Definition 25.11. Let D ⊂ X, T : D → X and β > 0. Then T is
called β-cocoercive if βT is firmly non-expansive, i.e for x, y ∈ D it
holds that

⟨x − y, Tx − Ty⟩ ≥ β∥Tx − Ty∥2.

By the Cauchy-Schwarz inequality we get that a β-cocoercive
operator fulfills

β∥Tx − Ty∥ ≤ ∥x − y∥

which means that T is Lipschitz-continuous with constant 1/β.

Proposition 25.12. Let A be monotone and β ≥ 0. Then A is strongly
monotone with constant β exactly if JA is (β + 1)-cocoercive.

Proof. Let A be strongly monotone with constant β and let u = JAx
and v = JAy. This means that x ∈ u + Au and y ∈ v + Av
or, put differently, x − u ∈ Au, y − v ∈ Av. Hence, by strong
monotonicity,

β∥u − v∥2 ≤ ⟨x − u − (y − v), u − v⟩ = ⟨x − y, u − v⟩ − ∥u − v∥2.

Hence (β + 1)∥u − v∥2 ≤ ⟨x − y, u − v⟩ which proves the claim.

Definition 25.13. Let xn be a sequence converging to x̄. We say that
xn converges linearly to x̄ if there is η ∈ ]0, 1[ such that for all n it
holds that ∥xn+1 − x̄∥ ≤ η∥xn − x̄∥. The constant η is also called Inductively, this shows that ∥xn − x̄∥ ≤

ηn∥x0 − x̄∥.rate of linear convergence.

From Proposition 25.12 we immediately get that the proxi-
mal point iteration xn+1 = JγAxn converges linearly with a rate
1/(γβ + 1) for β-strongly continuous A.

In the next section we will analyze the possibility of precon-
ditioning monotone inclusions and start with some preperations.
For some monotone inclusion 0 ∈ Ax we do not change the set
of solutions if we multiply from the left by some M−1 : X → X
(and we will consider only linear M here), i.e. we could equiva-
lently consider 0 ∈ M−1A. The proximal point method for this
preconditioned system would be

xn+1 = JM−1 Axn = (I + M−1A)−1xn.

The single-valuedness of (I + M−1A) can be shown for posi-
tive definite maps M and maximally monotone A. The key is to
use the inner product ⟨x, y⟩M := ⟨Mx, y⟩ induced by M.
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Proposition 25.14. If A : X ⇒ X is maximally monotone and M is
positive definite on X, then it holds that

(I + M−1A)−1 = (M + A)−1M,

and M−1 A is maximally monotone in (X, ⟨·, ·⟩M).

Proof. The equality follows from

x+ = (I + M−1A)−1x

⇐⇒ x+ + M−1Ax+ ∋ x
⇐⇒ Mx+ + Ax+ ∋ Mx

⇐⇒ x+ = (M + A)−1Mx.

Monotonicity of M−1A with respect to ⟨·, ·⟩M is clear since for yi ∈
M−1 Axi, i = 1, 2 we have Myi ∈ Axi and thus by monotonicity
of A (with respect to the standard inner product) we have

⟨y1 − y2, x1 − x2⟩M = ⟨My1 − My2, x1 − x2⟩ ≥ 0.
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26 Preconditioned proximal point methods

The relevance of the proximal point method comes from its flexi-
bility in combination with preconditioning. This can be illustrated
in the context Fenchel-Rockafellar duality. Recall from Section 15
and 16 that the primal problem Here we have K ∈ Rm×n, and f :

Rn → R̄, g : Rm → R̄ both proper,
convex and lsc.min

x
f (x) + g(Kx)

has the optimality system

−KTy ∈ ∂ f (x)
Kx ∈ ∂g∗(y).

We can rewrite this in block operator form as

0 ∈
[

∂ f KT

−K ∂g∗

] [
x
y

]
= Au

with

A :=
[

∂ f KT

−K ∂g∗

]
, u :=

[
x
y

]
.

Since the block operator decomposes as

A =

[
∂ f KT

−K ∂g∗

]
=

[
∂ f 0
0 ∂g∗

]
+

[
0 KT

−K 0

]
and both summands are monotone, we see that the full operator
is monotone as well. Maximal monotonicity of the sum of

maximally monotone operators is not
clear and not true in general - however,
we will not treat this topic here and al-
ways assume that maximal monotonicty
holds when needed.

However, the resolvent of the block-operator is not straight-
forward to evaluate, even when the proximal maps of f and g∗ are
known. Preconditioning can help: Let

M :=
[ 1

τ I −KT

−K 1
σ I

]
with appropriately sized identities and some constants σ, τ > 0.
Let us first examine the preconditioned iteration:

Lemma 26.1. Let K ∈ Rm×n, f : Rn → R̄, g : Rm → R̄ be both
proper, convex and lsc and define

u+ =

[
x+

y+

]
= (M+A)−1M

[
x
y

]
= (M+A)−1Mu.

Then it holds that

x+ = proxτ f (x − τKTy)

y+ = proxσg∗(y + σK(2x+ − x)).

Note that y+ depends on x+, but since
x+ only depends on x and y, we can still
compute (x+, y+) from (x, y) straigh-
forwardly.Convex Analysis | TU Braunschweig | Dirk Lorenz | WiSe 2022/23
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Proof. Note that

u+ = (M+A)−1Mu

⇐⇒
[ 1

τ I + ∂ f 0
−2K 1

σ I + ∂g∗

] [
x+

y+

]
∋
[ 1

τ I −KT

−K 1
σ I

] [
x
y

]
.

Multiplying the first line by τ gives

(I + τ∂ f )(x+) = x − τKTy

and solving for x+ gives x+ = proxτ f (x − τKTy). Multiplying the
second line by σ gives

−σ2Kx+ + (I + σ∂g∗)(y+) = −σKx + y

and solving this for y+ gives y+ = proxσg∗(y+ σK(2x+− x)).

Let us check if M is positive definite:

⟨u,Mu⟩ = ⟨
[

x
y

]
,
[ 1

τ x − KTy
−Kx + 1

σ y

]
⟩

= 1
τ∥x∥2 − ⟨x, KTy⟩ − ⟨y, Kx⟩+ 1

σ∥y∥2

= 1
τ∥x∥2 − 2⟨Kx, y⟩+ 1

σ∥y∥2

≥ 1
τ∥x∥2 − 2∥K∥∥x∥∥y∥+ 1

σ∥y∥2.

Using that a polynomial ax2 − 2bxy + cy2 is positive exactly if
a, c > 0 and 4ac − b2 > 0, we see that M is positive definite if
σ, τ > 0 and

∥K∥2 <
1

τσ
.

Hence we have proven:

Theorem 26.2. Let K ∈ Rm×n, f : Rn → R̄, g : Rm → R̄ be proper,
convex and lsc and let x0 ∈ Rn and y0 ∈ Rm. If the saddle point problem
minx maxy f (x) + ⟨Kx, y⟩ − g∗(y) has a solution, then the iteration

xn+1 = proxτ f (xn − τKTyn)

yn+1 = proxσg∗(y
n + σK(2xn+1 − xn))

converges to a solution if τσ < ∥K∥−2. Moreover, xn converges to
a solution of minx f (x) + g(Kx) and yn converges to a solution of
maxy − f ∗(−K∗y)− g∗(y).

This method is known as Chambolle-Pock method or primal dual
hybrid gradient method.

Note that the edge case τσ = ∥K∥−2 is not covered as this
would render the preconditioner M only semi-definite. As an
example: In the case of K = I we do not know if the step-sizes
τ = σ = 1 work.
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Now consider the case of so-called split monotone inclusions, i.e.
problems of the form

0 ∈ Ax + Bx

with two maximally monotone operators A, B : X ⇒ X. We as-
sume that the resolvents JγA and JγB are simple to evaluate, but
also that the same is not true for the resolvent of the sum. Split-
ting methods rely on the following reformulation: It holds that
0 ∈ Ax + Bx exactly if there exists y such that

y ∈ Bx, 0 ∈ Ax + y.

Since the first inclusion is equivalent to 0 ∈ −x + B−1y we can
rewrite both inclusions as a single one on the product space X :=
X × X, namely [

0
0

]
∈
[

A I
−I B−1

] [
x
y

]
= Au

with A : X ⇒ X , u ∈ X . We observe that the block operator can
be split up as

A =

[
A I
−I B−1

]
=

[
A 0
0 B−1

]
+

[
0 I
−I 0

]
and since both terms on the right hand side are monotone (the
latter since it is linear and skew symmetric), we see that the inclu-
sion is indeed monotone. Applying the proximal point method
to the inclusion 0 ∈ Au does not give any advantage over trying
to apply the proximal point method directly to 0 ∈ (A + B)x, but
using the idea of preconditioning helps again: We use

M =

[ 1
τ I −I
−I 1

σ I

]
(which is positive semi-definite, and positive definite if τσ < 1)
and consider the method given by

un+1 = (M+A)−1Mun

We rewrite this as

(M+A)un+1 ∋ Mun

⇐⇒
[ 1

τ I + A 0
−2I 1

σ I + B−1

] [
xn+1

yn+1

]
∋
[ 1

τ I −I
−I 1

σ I

] [
xn

yn

]
.

Since the block operator on the right hand side is block-lower
triangular, we can solve these two inclusions with the help of the
resolvents of A and B−1 as follows:

xn+1 = JτA(xn − τyn)

yn+1 = JσB−1(yn + σ(2xn+1 − xn)).
(*)

To implement this method we need the resolvent of B−1. For-
tunately, this can be expressed with the help of the resolvent of B
as follows:
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Proposition 26.3 (Moreau decomposition for monotone operators).
Let A be a monotone operator and σ > 0. Then it holds that

JσA−1(x) = x − σJσ−1 A(σ
−1x).

Proof. We set y = JσA−1(x) = (I + σA−1)−1(x) and rewrite

x ∈ y + σA−1y

⇐⇒ x−y
σ ∈ A−1y

⇐⇒ y ∈ A( x−y
σ )

⇐⇒ x ∈ A( x−y
σ ) + x − y

⇐⇒ x
σ ∈ 1

σ A( x−y
σ ) + x−y

σ = (I + σ−1A)( x−y
σ )

⇐⇒ x−y
σ ∈ Jσ−1 A(σ

−1x)

from which the claim follows.

Using A = ∂ f we can turn this result into a result about
proximal operators:

Corollary 26.4 (Moreau decomposition for proximal mappings).
If f is proper, convex and lsc it holds for every σ > 0 that

proxσ f ∗(x) = x − σ proxσ−1 f (σ
−1x).

Just recall that ∂ f ∗ = (∂ f )−1 by subgradient inversion (Lemma 13.3
iii).

Applying the Moreau decomposition to the iteration from (*)
we get

xn+1 = JτA(xn − τyn)

yn+1 = yn + σ(2xn+1 − xn)− σJσ−1B(
1
σ yn + (2xn+1 − xn))

which is guaranteed to converge to a solution of 0 ∈ (A + B)x if a
solution exists and 0 < στ < 1.

The case of σ = τ = 1 is on the edge and has a special property:
The iteration becomes

xn+1 = JA(xn − yn)

yn+1 = yn + (2xn+1 − xn)− JB(yn + (2xn+1 − xn)).

If we substitute wn = xn − yn (and replace yn = xn − wn) we get

xn+1 = JA(wn)

xn+1 − wn+1 = xn − wn + (2xn+1 − xn)− JB(xn − wn + (2xn+1 − xn))

= −wn + 2xn+1 − JB(−wn + 2xn+1).

We can cancel one xn+1 on both side and eliminate the variable
xn+1 = JA(wn) as well and get the iteration

wn+1 = wn − JA(wn) + JB(2JA(wn)− wn).
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This is known as the Douglas-Rachford method and it is known
that the sequence xn+1 = JA(wn) does converge to a solution of
0 ∈ (A + B)x, but we can’t derive this from our current results,
since the method corresponds to a preconditioned proximal point

method with the degenerate preconditioner M =

[
I −I
−I I

]
.
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