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Motivation
In acoustic sensor networks, transmittersmust operate with very low

computational complexity due to battery lifetime constraints, while

some central decoders can consume much higher resources.

We use short frames sℓ ∈ R
N of uniformly quantized speech signals

to reconstruct associated ground truth frames s̃ℓ ∈ R
N via learned

sparse reconstruction. This is done by unrolling and learning the pa-

rameters of an iterative algorithm applied to the underlying convex

optimization problem.

The perceptual weighting filter from code-excited linear predictive

(CELP) speech coding is integrated into the loss function of the neu-

ral network, achieving perceptually improved reconstructed speech.
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The residual eℓ = s̃ℓ− sℓ is estimated in terms of the convex optimization problem êℓ ∈ S(K, sℓ) = arg min
e∈RN

‖Ke+ Ksℓ‖1 s.t. ‖e‖∞ ≤ ∆
2 .

As opposed to an earlier approach where the use of K = DCT has been shown to lead to perceptually enhanced speech, the matrix K is not a

priori fixed but shall be learned from training data {(s1, s̃1), . . . , (sm, s̃m)} ⊆ RN ×RN in this work.

This gives rise to the bilevel optimization problem min
K∈RM×N
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Jℓ(ŝℓ, s̃ℓ) s.t. ∀ℓ : ŝℓ ∈ sℓ + S(K, sℓ) where the original optimization

problem appears as a lower-level problem in the constraints. The loss functions Jℓ are data-dependent and play a central role in our approach.

As solving the bilevel problem directly is potentially hard due to various reasons, we approximate it by replacing S(K, sℓ) with e
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for k = 1, . . . , K.

Unrolling the first K iterates of this procedure can be considered a specific recurrent neural network with skip connections and output e
(K)
ℓ

which makes it possible to minimize the objective
1
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∑
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Jℓ(sℓ+ e
(K)
ℓ

, s̃ℓ) via gradient based optimization methods.
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A Loss Function Applying the Perceptual Weighting Filter
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s̃(n): Original speech
s̃ℓ: Original speech frame
s̃w
ℓ
: Original weighted speech frame

s(n): Quantized speech
sℓ: Quantized speech frame
ŝℓ: Reconstructed speech frame
ŝw
ℓ
: Reconstructed weighted speech frame

aℓ: LPC coefficients
hℓ: Finite impulse response (FIR) of the weighting filter
N: Frame length
δ(n): δ(0) = 1 and δ(n) = 0 if n 6= 0
OLA: Overlap-add operation

Perceptual weighting filter in CELP speech coding [1]

The weighting filter Hℓ(z) =
Aℓ(z/γ1)
Aℓ(z/γ2)

:

Aℓ(z/γ)=∑
16
i=0 aℓ(i)γ

iz−i and γ1=0.94, γ2=0.6.

The inverse weighting filter has similarities to the structure of

the clean speech spectral envelope.

Loss function in neural network training

hℓ is obtained by filtering the delta function δ(n) with Hℓ(z).

Final loss function Jℓ(ŝℓ, s̃ℓ) = ‖OLA
(

(ŝℓ− s̃ℓ) ∗ hℓ

)

‖2
2.

Less audible reconstruction error: Minimization of the weighted

error→ the weighted error becomes spectrally white→ final

(unweighted) error follows the inverse weighting filter and is kept at

some level below→ exploiting the masking property of human ear.

[1] 3GPP, Mandatory Speech Codec Speech Processing Functions; Adaptive Multi-Rate (AMR) Speech Codec; Transcoding Functions (3GPP TS 26.090, Rel. 14), 3GPP; TSG SA, Mar. 2017.

Experiments
Our test set includes 108 sentences from the IEEE cor-

pus consisting of male speech and sampled at 16 kHz.

We train networks with different numbers K of un-

rolled iterations using 612 sentences from the same

corpus. These are compared to plain Chambolle-Pock

with fixed K = DCT in terms of PESQ and SNR.

In addition to K, we also learn the step sizes σ and τ.

To learn the parameters, we experiment with two loss

functions. On the one hand, we use the MSE and on

the other hand the weighting filter based loss.

To minimize the respective losses, we perform 3000

epochs of stochastic gradient descent using Adam

with standard parameters and learning rate 10−4.
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Conclusions
Networks trained with MSE loss are best in terms of SNR, while networks trained with the weighting filter based loss are best in terms of PESQ.

Best results are already obtained when using K = 1 which is clearly favorable in terms of realtime applicability of the trained networks.

The designed loss applying the weighting filter for neural network training is perceptually efficient to improve the reconstructed speech quality.


