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Motivation
m |n acoustic sensor networks, transmitters must operate with very low istributed sensors Fusion center
computational complexity due to battery lifetime constraints, while | | |
. Sender B \\ \\\ Encoder SR \\ Decoder S\ \\ \\\ Receiver
some central decoders can consume much higher resources. ) i " AL
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to reconstruct associated ground truth frames §, € RN via learned | "2 |

m We use short frames s, € RN of uniformly quantized speech signals

sparse reconstruction. This is done by unrolling and learning the pa-
rameters of an iterative algorithm applied to the underlying convex

Original signal §, Encoded signal sy Decoded signal §;

optimization problem.

. . . e “B1 Limited capacit “F1 Powerfu
m The perceptual weighting filter from code-excited linear predictive rmied capacty Powertu

(CELP) speech coding is integrated into the loss function of the neu-

18 Low data rate! I Speech quality?

ral network, achieving perceptually improved reconstructed speech.

Real-time!

Network Architecture

m The residual ey = 8§y — sy is estimated in terms of the convex optimization problem é, € S(K,s;y) = arg min |Ke + Ksy||1 s.t. |[e]|co < %
eclR

m As opposed to an earlier approach where the use of K = DCT has been shown to lead to perceptually enhanced speech, the matrix K is not a
priori fixed but shall be learned from training data {(s1,51), ..., (sm,8m)} € RN x RN in this work.

m This gives rise to the bilevel optimization problem min —
KeRMxN m

m

Z Jo(8p,8y) st. VLl :8, € sy+ S(K,sy) where the original optimization
(=1
problem appears as a lower-level problem in the constraints. The loss functions ], are data-dependent and play a central role in our approach.

m As solving the bilevel problem directly is potentially hard due to various reasons, we approximate it by replacing S(K, s;) with eéK) which is

defined as the K-th iterate of the Chambolle-Pock algorithm applied to the lower-level problem: Initialize yéo) = 0 and eéo) = 0 and compute

k+1 : k k
y " = projg. (v + oK (e +))
(k+1) : (k) T. (k+1)
€/ = PrOJBZ"/z(eg - 1K'y, )
fork=1,..., K.
m Unrolling the first K iterates of this procedure can be considered a specific recurrent neural network with skip connections and output eéK)
1 m
which makes it possible to minimize the objective P Z Jo(sp+ eéK),ég) via gradient based optimization methods.
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A Loss Function Applying the Perceptual Weighting Filter

Joint Network FIR Convolutional Network Layer
FIR Convolutional Network [Layer

5(n) [Quanti-| s(n .| se S¢ , ‘ Sy
_(._),Q : ( )= Framing | Neural » Padding > 3k : 54(1)
zation Network o 3(n): Original speech
_ §4: Original speech frame
MSE Jo Overlap- = i §)': Original weighted speech frame
e min [ HH% < Addp < <> Sea(N-1) s(n): Quantized speech
Optimization 'y 5.(0) O<hg(0) 3¥(0) s¢: Quantized speech frame
FIR C lutional N KL 51 §/: Reconstructed speech frame
_ onvolutional Network Layer W 5(1) N . 8/ Reconstructed weighted speech frame
S¢ o Padding o 50 coos OO a;: LPC coefficients

hy: Finite impulse response (FIR) of the weighting filter

Framing :
5 (N-1) %hg(O)X( ) SY(N-1) N: Frame length
Lp ay h, 0 Tp(N—-1) - d(n):6(0) =1andé(n) =0ifn #£0

Analvsis [~~~ » Hy(z) < e . . OLA: Overlap-add operation
= - - o
m Perceptual weighting filter in CELP speech coding [1] = hy is obtained by filtering the delta function () with Hy(z).
= The weighting filter Hy(z) = ﬁﬁgzﬂg ; = Final loss function [,(8/,8,) = ||OLA((8; —§;) = hy)||5.
Ay(z/v) :Z}QO ay(i)y'z"" and y1 =0.94, 7, =0.6. m Less audible reconstruction error: Minimization of the weighted

= The inverse weighting filter has similarities to the structure of error — the weighted error becomes spectrally white — final

the clean speech spectral envelope. (unweighted) error follows the inverse weighting filter and is kept at

L . level bel loiting th ki fh :
= Loss function in neural network training some level below — exploiting the masking property of human ear

[1] 3GPP, Mandatory Speech Codec Speech Processing Functions; Adaptive Multi-Rate (AMR) Speech Codec; Transcoding Functions (3GPP TS 26.090, Rel. 14), 3GPP; TSG SA, Mar. 2017.

Experiments

: Bitrate = 4 bit/sample Bitrate = 5 bit/sample Bitrate = 6 bit/sample
m Ourtestsetincludes 108 sentences from the IEEE cor- . . . . .

pus consisting of male speech and sampled at 16 kHz. ' 185 135 %35

m We train networks with different numbers K of un- 3| 13

rolled iterations using 612 sentences from the same 25 pe—mm e m e —— 125

PESQ (MOS)

corpus. These are compared to plain Chambolle-Pock
with fixed K = DCT in terms of PESQ and SNR.
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In addition to K, we also learn the step sizes - and 7. w o ———)
m To learn the parameters, we experiment with two loss Lo | P e [
functions. On the one hand, we use the MSE and on ) o
~ L
the other hand the weighting filter based loss. = 15 e e 15| 115
N o —¥—— New: Weighting Filter
m To minimize the respective losses, we perform 3000 Chassbolle-Pock [
. . . /’ 110 - 110 - — — — Quantized Signal 110
epochs of stochastic gradient descent using Adam I iy I ey e N I O N D Y
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with standard parameters and learning rate 10~%.
Number of unrolled iterations K

Conclusions
m Networks trained with MSE loss are best in terms of SNR, while networks trained with the weighting filter based loss are best in terms of PESQ.
m Best results are already obtained when using K = 1 which is clearly favorable in terms of realtime applicability of the trained networks.

m The designed loss applying the weighting filter for neural network training is perceptually efficient to improve the reconstructed speech quality.



