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Abstract—We investigate the recovery of partially sparse signals
with regularization of the signal part for which no sparsity prior is
known, to overcome the complete loss of recoverability by previous
approaches without such modifications. For certain mixed `1-`2-norms
and Luxemburg norms, we present optimality conditions for recovery
and some numerical experiments.

I. INTRODUCTION

We consider the problem of reconstructing a vector x from
underdetermined measurements Ax = b when we only know that a
part of x is sparse. To fix notation, let x ∈ Rn and A ∈ Rm×n and
assume that x = [x>1 x>2 ]

> with x1 ∈ Rs and x2 ∈ Rn−s, where x1

is supposed to be sparse and x2 is expected to be dense. Problems
of this type may appear in the context of compressed sensing or
sparse recovery when the sparsity assumption fails for a part of the
variable x. Indeed, the problem of partial sparse recovery appeared
previously in the literature, see, e.g., [1], [4], [5], [6]. There, the
focus is on the problem of minimizing the `1-norm of x1 under the
constraint A1x1 + A2x2 = b, where the partition A = [A1 A2]
complies with the partition of x into a sparse and a dense part. The
sparsity assumption on x1 is naturally incorporated in terms of the
`1-norm penalty, whereas the objective function includes no further
regularization of the dense part x2. Studies of this problem were
motivated by the situation when one has partial knowledge of the
support of the sought solution.

Note that, whenever A2 has full row rank, this approach cannot
recover a nonzero x1, since A2x2 = b then always has a solution
and thus, choosing x1 = 0 is optimal. To overcome this restriction,
we propose to include a regularization term for x2 in the objective.
Specifically, we consider related approaches

min
x∈Rn

f(x1,x2) s.t. A1x1 +A2x2 = b, (1)

where the function f depends on both the sparse and the dense part
of x and is either a weighted `1-`2-norm or a Luxemburg norm. Both
are introduced in the following section before we investigate recovery
conditions for the respective versions of (1).

II. MIXED NORMS

One way to penalize also the dense part x2 is to use a weighted
`1-`2-norm

‖x‖M,α := ‖x1‖1 + α‖x2‖2, (2)

where α > 0 is a tuning parameter. This is a special case of the
group lasso [3] where each entry in x1 is in a single group and the
full vector x2 forms another group. Note that replacing ‖ · ‖2 by its
squared version, as one might consider for the benefit of increased
smoothness, does not yield a norm due to lacking homogeneity. As
a consequence, the recovery problem is not homogeneous, i.e. if we

would recover x from some given b, we would not recover λx from
λb for any λ 6= 1. By contrast, like (2), the related Luxemburg norm

‖x‖L,β := inf
{
λ > 0 :

∥∥x1
λ

∥∥
1
+ β

∥∥x2
λ

∥∥2
2
≤ 1
}

= ‖x1‖1
2

+

√
‖x1‖21

4
+ β‖x2‖22

(3)

is indeed a norm in the mathematical sense, see [2]. Prior to a valid
comparison of (2) and (3) we have to discuss how the parameter β
should be chosen in relation to α. To that end, we first observe that
both norms are equal in case x1 = 0 and β = α2. Based on that
idea, we can further deduce that β = α2 also minimizes the ratio
of the largest and smallest values of ‖ · ‖L,β on the unit sphere of
‖·‖M,α. Moreover, this choice leads to the desirable property that the
unit spheres of both considered norms intersect specific coordinate
axes at the same points, as illustrated in Fig. 1. Therefore, we use
the setting β = α2 in the following section in order to compare the
respective recovery conditions.

III. RECOVERY CONDITIONS

Similarly to the pure `1 case, recovery conditions for the mixed
and the Luxemburg norm are based on optimality conditions for the
respective minimization problems. We have the following result:

Theorem 1: A point x∗ with x∗2 6= 0 is a solution of

min
Ax=Ax∗

‖x‖M,α

if and only if there exists w∗ ∈ Rm such that

(A1)
>w∗ ∈ ∂‖x∗1‖1 (4)

and (A2)
>w∗ = α

‖x∗
2‖2
· x∗2. (5)

For the Luxemburg norm, we have a similar result:
Theorem 2: A point x∗ 6= 0 is a solution of

min
Ax=Ax∗

‖x‖L,α2

if and only if there exists w∗ ∈ Rm such that

(A1)
>w∗ ∈

(
1

2
+

‖x∗
1‖1

4
√

1
4
‖x∗
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2
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2‖x∗
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2
2

)
∂‖x∗1‖1 (6)

and (A2)
>w∗ =

(
α2√

1
4
‖x∗

1‖
2
1+α

2‖x∗
2‖

2
2

)
· x∗2. (7)

One difference between these theorems becomes apparent in the
case s = 1: Then, the mixed norm is equal to the `1-norm and hence,
exact recovery depends on the sign of x only, but the same is not
true for the Luxemburg norm. Numerical experiments with s = n−1
confirm this: For some random A1 ∈ R60×200, A2 ∈ R60 being the
vector of all ones, some sparse x∗1 ∈ R200 (with 15 nozero entries)
and some α, the mixed norm ‖·‖M,α recovers x2 = 0 regardless of
the value of x∗2, while the Luxemburg norm ‖·‖L,α2 does recover
the whole x exactly for a broad range of x2 6= 0, cf. Figures 4, 5,
and 6.
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Fig. 1. A comparison of the unit spheres of ‖ · ‖M,α (black sphere) and
‖ · ‖L,α2 (outer white sphere) for α = 2 shows that both have identical
intersection points with the coordinate axes (black dots). If we use the
parameter β = α2 in the Luxemburg norm, then the radius of the largest
‖ · ‖L,β sphere intersecting the ‖ · ‖M,α unit sphere is always 1 and the
radius of the smallest such sphere (inner white sphere) is always 4/5. The
ratio 5/4 is minimal among all possible choices for β. Both unit spheres
intersect at all locations where either ‖x1‖1 = 0 or ‖x2‖2 = 0. The unit
sphere of ‖ · ‖M,α and the 4/5-sphere of ‖ · ‖L,α2 intersect at all points
where ‖x2‖2 = 2/(5α) (white dots).
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Fig. 2. The unit ball of the mixed norm ‖·‖M,1 in three dimensions where
x1 = x1 and x2 = [x2 x3]
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Fig. 3. The unit ball of the Luxemburg norm ‖·‖L,1 in three dimensions
where x1 = x1 and x2 = [x2 x3]
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Fig. 4. Reconstruction from A1x1 + A2t = b with gaussian A1 ∈
R60×200, A2 ∈ R60 vector of all ones, some sparse x∗1 (left plot), and t = 2.
Middle: recovered x1 by the Luxemburg norm ‖·‖L,α2 , right: recovered x1

by the mixed norm ‖·‖M,α with α = 4.
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Fig. 5. Recovery error in the setting of Figure 4: Left: error ‖x∗1 − x1‖2
recovered with the Luxemburg norm (blue circles) and the mixed norm (red
stars) as a function of t∗. Right: error |t∗− t| as a function of t∗ (same color
coding). We conclude that the Luxemburg norms recovers x∗1 and t∗ exactly
for t∗ large enough, the mixed norm for t∗ = 0 only.
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Fig. 6. Same as Figure 5, but with α = 3: Left: error ‖x∗1−x1‖2 recovered
with the Luxemburg norm (blue circles) and the mixed norm (red stars) as a
function of t∗. Right: error |t∗ − t| as a function of t∗ (same color coding).
We conclude that the Luxemburg recovers x∗1 and t∗ exactly for t∗ large
enough; the mixed norm for all t∗


