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Abstract—In image and signal processing and beyond, quantities of
interest are often reconstructed from noisy measurements by means of
suitable convex optimization problems. While model based approaches
usually assume that the ingredients of the problem are a priori known,
data driven approaches are motivated by situations where the objective
function or constraints of the problem are partially unknown and shall
be learned from data. This gives rise to bilevel optimization problems in
which the original convex problem (hereafter referred to as the lower-level
problem) appears as a constraint. Applying gradient based algorithms to
bilevel optimization problems poses the difficulty to differentiate through
the solution operator of the lower-level problem. In this contribution, we
consider the approach to unroll a fixed number of update steps of the
Chambolle-Pock algorithm applied to the lower-level problem in order to
accomplish this kind of differentiation approximately. We investigate the
asymptotic behavior of the resulting gradients and conclude that unrolling
ergodic averages instead of ordinary iterates can have a positive effect
upon the learning dynamics.

I. INTRODUCTION

We consider the task to recover a ground truth x† ∈ Rn from
degraded measurements x̃ ∈ Rn. To that end, we assume that there
exists an unknown analysis operator K ∈ Rm×n such that with

S(K, x̃) := argmin
x∈Rn

F (Kx) + G(x− x̃) (1)

x̂ ∈ S(K, x̃) is a good approxmation of x†, where F and G are
a priori chosen proper, convex and l.s.c. functions. In a supervised
learning environment, we have training data S available which
comprises a certain number of pairs (x̃t,x

†
t ) ∈ Rn×Rn. By means

of a smooth loss function L : Rn × Rn → R, we measure the
discrepancy L(x̂,x†) between a ground truth and the associated
reconstruction. Therewith, our goal is to choose K as a solution
of the following bilevel optimization problem [1]:

min
K∈Rm×n

∑
(x̃t,x

†
t )∈S

L(x̂t,x
†
t ) s.t. ∀t : x̂t ∈ S(K, x̃t) (2)

II. PLAIN UNROLLING SCHEME

After the change of variables r := x − x̃ the Chambolle-Pock
iteration [2] for the lower-level problem (1) can be written as

zkD = yk−1 + σK(x̃+ rk−1) yk = proxσF∗(z
k
D) (3)

zkP = rk−1 − τK>yk rk = proxτG(z
k
P ) (4)

rk = rk + θ(rk − rk−1) (5)

where we use r0 = r0 = 0 and y0 = 0, and σ, τ and θ are the
usual step size and extrapolation parameters of the Chambolle-Pock
algorithm. Additionally, we assume that both proximal operators are
at least semismooth. Now, the original constraint x̂ ∈ S(K, x̃) is
replaced by a relaxed version x̂ = x̃+rd(K, x̃) which is computed
according to (3)–(5) with some fixed d ∈ N. The relaxed version of
the bilevel problem then reads

min
K∈Rm×n

∑
(x̃t,x

†
t )∈S

L(x̃t + r
d
t (K, x̃t),x

†
t ) (6)

and because L is differentiable and the proximal operators are
semismooth, the derivative of (6) can be computed explicitly. To that
end, it is helpful to interpret the intermediate iterates yk and rk

as activations of a recurrent neural network rd with nonlinearities
proxσF∗ and proxτG and linear operator K. Given that both
proximal operators and the respective derivatives can be evaluated
element-wise, one can use a backpropagation scheme [3] or an adjoint
state method to derive the results presented in the next section.

III. THEORETICAL RESULTS

Lemma 1. Let L(x̂,x†) = 1
2
‖x̂ − x†‖22, δd+1

D = δ
d+1
D = 0 and

δd+1
P = x̃+rd(K, x̃)−r†. Moreover, consider the reverse iteration

δkP = prox′τG(z
k
P )� (δk+1

P + σK>δ
k+1
D ) (7)

δkD = prox′σF∗(z
k
D)� (δk+1

D − τKδkP ) (8)

δ
k
D = δkD + θ(δkD − δk+1

D ) (9)

for k = d, . . . , 1. Then, the gradient of L(x̃ + rd(K, x̃),x†) with
respect to K is given by

d∑
k=1

σδkD(x̃+ rk−1)> − τyk−1(δkP )
> . (10)

Lemma 1 shows that the sequence generating δkP and δkD is
almost another instance of Chambolle-Pock, except that the proxi-
mal operators are replaced by element-wise multiplication with the
respective derivatives. Assuming that these remain constant after a
certain number of iterations allows one to show convergence and draw
conclusions about limits via the underlying optimization problems.

Theorem 2. Let K, σ and τ satisfy στ‖K‖2 < 1 and let θ = 1.
Moreover, suppose that there exists a k0 such that prox′τG(z

k
P ) =

prox′τG(z
k0
P ) ∈ {0, 1}n and prox′σF∗(z

k
D) = prox′σF∗(z

k0
D ) ∈

{0, 1}m is true for all k ≥ k0. Then, it holds that

lim
d→∞

δk0P ∈ ker(K) and lim
d→∞

δk0D ∈ ker(K>) .

IV. MOTIVATION OF ERGODIC UNROLLING SCHEMES

Theorem 2 supports that δkP and δkD can vanish, especially in case
d is large enough to ensure convergence of (3)–(5). However, this
behavior may be undesirable, e.g. if we want to learn an operator K
that grants fast progress in early iterations of the forward scheme,
or because the minimization of (6) can get stuck in bad local
minima. This motivates us to adapt (6), this time using weighted
ergodic averages ed =

∑d
k=1 αkr

k instead of only the final iterate.
The effect on (7)–(9) can be considered a summation of several
backpropagation sequences starting at each iterate rk with k ≤ d.
This modification theoretically prevents from the behavior described
in Theorem 2, and our experiments show that it can also pay off in
terms of substantially lower loss values on the training data.
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Fig. 1. We take up the experimental setting introduced in [4], [5], [6] in the context of speech dequantization, where F ist the `1-norm, G is an indicator
function encoding the constraint ‖x− x̃‖∞ ≤ η, and the training data consists of 66.628 ground truth speech signal snippets form the IEEE corpus [7] and
associated quantized versions. Both proximal operators are then projections onto sup norm balls satisfying the assumptions for Lemma 1 and Theorem 2.
Throughout, we use stochastic gradient descent with decreasing step sizes to minimize the loss (6). For ergodic averaging we use weights αk = O(1/k). In
case d = 1, we set α1 = 1 such that the plain and the ergodic setting produce identical results. In the remaining cases with d ∈ {2, 4, 8} it can be observed
that an increasing number of unrolled iterations leads to increasing loss values in the plain setting, whereas ergodic averaging leads to decreasing loss values
induced by the learned analysis operators.
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Fig. 2. In the same experimental setting as in Figure 1, it can be observed that the norms of the gradients (10) seem to be less dependent on the number
of unrolled iterations in case one uses ergodic averaging. This behavior supports a more stable behavior of the training procedure and more robustness with
respect to the utilized step sizes for stochastic gradient descent.
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