INSTITUT FÜR THEORETISCHE PHYSIK

Prof. Dr. Wolfram Brenig Erik Wagner Alexander Schwenke

Quantenmechanik

WS 2020/21

12. Übungsblatt

Keine Abgabe, Klausurvorbereitung

Übungsblätter gibt es unter https://www.tu-braunschweig.de/theophys/lehrveranstaltungen/wintersemester-2020/21/quantenmechanik.

Aufgaben mit △ müssen von Studierenden im Lehramt nicht bearbeitet werden.

1. Messprozess

Betrachten Sie ein Vierniveausystem mit Hamiltonoperator H und eine Observable A

$$H = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 4 \end{pmatrix} . \tag{1}$$

(a) Bestimmen Sie die Eigenwerte E_n und die zugehörigen *normierten* Eigenvektoren $|n\rangle$ von H (n = 0, 1, 2, 3).

Ordnen Sie Eigenwerte- und -vektoren der Größe nach, sodass $E_n < E_m$ für n < m gilt.

(b) Stellen Sie den Zeitentwicklungsoperator des System

$$U(t) = e^{-\frac{iHt}{\hbar}} \tag{2}$$

in der Form

$$U(t) = \sum_{n=0}^{3} c_n(t) |n\rangle \langle n|$$
 (3)

dar und geben Sie die Koeffizienten $c_n(t)$ für n = 0, 1, 2, 3 an.

Betrachten Sie nun zusätzlich die Observable A.

- (c) Geben Sie die Eigenwerte und Eigenvektoren von A an.
- (d) Berechnen Sie die Wahrscheinlichkeiten die verschiedenen Eigenwerte von A zu messen, wenn sich das System
 - i. im Grundzustand |0>
 - ii. im ersten angeregten Zustand |1>

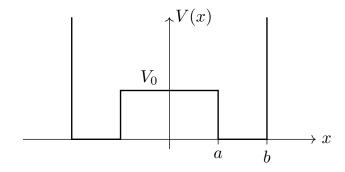
befindet.

(e) Das System befinde sich zum Zeitpunkt t=0 im Zustand $\Psi(0)=(0\ 1\ 0\ 0)^T$. Wie hoch ist die Wahrscheinlichkeit, dass sich das System zum Zeitpunkt $t=\frac{\hbar\pi}{\sqrt{2}}$ jeweils in den verschiedene angeregten Zuständen $|n\rangle$, n>0 befindet? Welchen Erwartungswert weist A zum Zeitpunkt $t=\frac{\hbar\pi}{\sqrt{2}}$ auf? Nach welcher Zeit T kehrt das System wieder in den Ausgangszustand $(0\ 1\ 0\ 0)^T$ zurück?

Bitte wenden! \rightarrow

2. Potentialtopf

Ein Teilchen der Masse m befinde sich in folgendem eindimensionalen Rechteck-Potential



$$V(x) = \begin{cases} \infty & , |x| > b \\ 0 & , a < |x| < b \\ V_0 & , |x| < a \end{cases}$$
 (4)

mit a < b und $V_0 > 0$.

Betrachten Sie den Fall $0 < E < V_0$.

- (a) Geben Sie die allgemeine Form der Lösung $\phi(x)$ der stationären Schrödingergleichung in den fünf Bereichen an.
- (b) Welche Eigenschaften gelten für die Wellenfunktion $\phi(x)$ und deren Ableitung $\phi'(x)$ in $x = \pm a$, welche in $x = \pm b$?
- (c) Lösen Sie das resultierende Gleichungssystem, indem Sie die Symmetrie des Potentials ausnutzen und zeigen Sie, dass symmetrische Lösungen

$$-k\cot(k(b-a)) = q\tanh(qa), \tag{5}$$

antisymmetrische Lösungen

$$-k\cot(k(b-a)) = q\coth(qa) \tag{6}$$

erfüllen, mit

$$k = \sqrt{\frac{2m}{\hbar^2}E}, \qquad q = \sqrt{\frac{2m}{\hbar^2}(V_0 - E)}.$$
 (7)

(d) Geben Sie im Grenzfall $V_0 \to \infty$ einen Ausdruck für die Differenz der Energien des ersten antisymmetrischen und des ersten symmetrischen Zustands an.

3. Zeitunabhängige Störungstheorie

Betrachten Sie den harmonischen Oszillator H_0 unter Einfluss einer äußeren Störung W, sodass der Hamiltonoperator des Systems sich schreiben lässt als $H = H_0 + W$ mit

$$H_0 = \frac{p^2}{2m} + \frac{1}{2}m\mu^2 x^2 \ . \tag{8}$$

(a) Die Auf- und Absteigeoperatoren a^{\dagger} und a des ungestörten harmonischen Oszillators sind durch

$$a^{\dagger} = \sqrt{\frac{m\mu}{2\hbar}}x - i\frac{1}{\sqrt{2m\hbar\mu}}p$$
 und $a = \sqrt{\frac{m\mu}{2\hbar}}x + i\frac{1}{\sqrt{2m\hbar\mu}}p$ (9)

gegeben

Drücken Sie H_0 durch a^{\dagger} und a aus und bringen Sie den Hamiltonoperator auf folgende Form

$$H = c\left(a^{\dagger}a + \frac{1}{2}\right) + W \ . \tag{10}$$

Bestimmen Sie die Konstante c.

(b) Die Störung W sei gegeben durch

$$W = \sum_{k=1}^{\infty} \frac{1}{\sqrt{k!}} \left(b_k (a^{\dagger})^k + b_k^* (a)^k \right)$$
 (11)

wobei $b_k \in \mathbb{C}$.

Zeigen Sie, dass W hermitesch ist und berechnen Sie mithilfe der zeitunabhängigen Störungstheorie die Korrektur zur Grundzustandsenergie E_0 des harmonischen Oszillators bis zur zweiten Ordnung in W.

- (c) Welche Bedingung muss für die b_k gelten, damit die Korrektur zur Grundzustandsenergie endlich bleibt?
- (d) Schätzen Sie die Korrektur zur Grundzustandsenergie E_0 für die konkrete Folge $b_k = \frac{1}{k}$ ab.

Geben Sie eine obere und eine untere Schranke durch Approximation der Summe mit einem Integral an.

4. Clebsch-Gordan-Koeffizienten

Berechnen Sie die von null verschiedenen Clebsch-Gordan-Koeffizienten zwischen Zuständen $|j_1, j_2, m_1, m_2\rangle$ und Zuständen $|j_1, j_2, j, m\rangle$ für $j_1 = j_2 = 2$ und j = 4 mit m = 3, 4 sowie j = 3 mit m = 3.

5. Radialsymmetrische Potentiale

Betrachten Sie einen dreidimensionalen modifizierten harmonischen Oszillator mit Potential $V(r)=\frac{m\omega^2}{2}r^2+\frac{\hbar^2}{2m}\frac{b}{r^2}$, mit $\ell\gg b\in\mathbb{R}^+$.

(a) Ersetzen Sie

$$b + \ell(\ell+1) = \tilde{\ell}(\tilde{\ell}+1) \tag{12}$$

und motivieren Sie den Potenzreihenansatz zur Lösung der radialen Schrödingergleichung

$$\chi_{\tilde{\ell}}(q) = q^{\tilde{\ell}+1} \left(\sum_{k=0}^{\infty} c_k q^k \right) e^{-q^2/2}, \qquad q = \sqrt{\frac{m\omega}{\hbar}} r$$
(13)

aus den Grenzfällen $r \to 0$ und $r \to \infty$.

(b) Zeigen Sie durch Einsetzten des Potenzreihenansatzes in die radiale Schrödingergleichung, dass die folgende Rekursionsrelation gilt:

$$-\left[(k+\tilde{\ell}+3)(k+\tilde{\ell}+2)-\tilde{\ell}(\tilde{\ell}+1)\right]c_{k+2} = \left[\frac{2E}{\hbar\omega} - (2k+2\tilde{\ell}+3)\right]c_k.$$
 (14)

- (c) Leiten Sie aus der Abbruchbedingung $c_k=0$ für $k>k_{\tilde\ell}$ einen Ausdruck für die Eigenenergien $E_{\tilde\ell}$ her.
- (d) Entwickeln Sie $\tilde{\ell}$ in $b \ll 1$ und schreiben Sie die Eigenenergien in $E_{N,\ell}$ um. Was gilt für die Entartung bezüglich der ℓ -Komponente?