A semiquantitative treatment of surface charges in DC circuits
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Surface charges play a major role in DC circuits because they help generate the electric field and
potential distributions necessary to move the charges around the circuit. Unfortunately, it is
generally regarded as a difficult task to determine the surface charge distribution for all but the
simplest geometries. In this paper, we develop a graphical method for the approximate construction
of surface charge distributions in DC circuits. This method allows us to determine (approximately)
the location and the amount of surface charge for almost any circuit geometry. The accuracy of this
semi-quantitative method is limited only by one’s ability to draw equipotential lines. We illustrate
the method with several examples. © 2012 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4731722]

I. INTRODUCTION

The simple DC circuit is a basic component of every
physics curriculum, which leads one to think that all details
about this common system are well known and understood.
Yet several authors'™ 2 have pointed out an important gap in
the usual presentations of the subject. In discussions of the
Drude model, for example, it is said that the electrons in a
wire are guided by an electric field located inside the con-
ductor with a direction parallel to the wire at any point. This
statement might be puzzling to students who remember that,
in the context of a Faraday cage, there is a proof that there is
no electric field inside a conductor. If this is true, how can
there be an electric field in a current-carrying wire? What
kind of charges are generating it and where do they reside in
a DC circuit?

For a physicist, it is evident that the Faraday cage argu-
ment does not apply to the DC circuit. The Faraday cage is
in electrostatic equilibrium, whereas the wire is in a station-
ary non-equilibrium state. In their textbook, Chabay and
Sherwood lucidly illustrate the transition from the electro-
static to the DC case.'

The origin of the electric field inside a long straight wire
has been discussed by Sommerfeld.” He found that the field
inside the conductor is generated by charges that are located
at the surface of the wire and are therefore called surface
charges. Jackson has identified three roles for these surface
charges in real circuits:® (1) they maintain the potential
around the circuit, (2) they provide the electric field in the
space outside of the conductor, and (3) they assure the con-
fined flow of current by generating an electric field that is
parallel to the wire. The latter role can be nicely illustrated
by a straight wire that is being bent while the current is flow-
ing.! In this case, a simple feedback mechanism ensures that
the electric field follows the wire even after it is bent:
charges accumulate on the inner and outer edges of the bend
until the additional field generated by the newly accumulated
surface charges forces the flowing electrons to follow the
wire. The accumulation process takes place very quickly—
effectively instantaneous from a macroscopic perspective—
and is complete as soon as the total electric field points along
the wire at any place inside the conductor. The resulting pat-
tern of surface charges, however, is quite complicated and
cannot be determined by straightforward arguments.

Over the years, several authors have discussed different
aspects of surface charges. Jefimenko has demonstrated their
existence experimentally,* while Jackson,® Heald,” Hernan-
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dez and Assis,®” and Davis and Kaplan® have found analyti-
cal solutions for several simple geometries. A qualitative
approach to more complex geometries, including conductors
with varying diameter and resistance, has been given by
Haertel.” Meanwhile, Galili and Goibargh,10 Harbola,11 and
Davis and Kaplan® have discussed the role of surface charges
for the energy transport from the battery to a resistor, and
Preyer has carried out numerical simulations to determine
the distribution of surface charges.'?

There seems to be general agreement that the distribution of
surface charges is too complex to be determined by any simple
rules.? Indeed, Heald spells out the difficulty as follows: the
distribution of surface charges “depends on the detailed geo-
metry of the circuit itself and even of its surroundings. For
instance, we would have to specify exactly how the pieces of
hookup wire are bent. And since most real-world circuits have
rather complicated geometries, the mathematical difficulty of
making this calculation is forbidding.”

In this paper, we show that the situation is not as hopeless
as the above statement might suggest. We specify a simple
method for the graphical construction of surface charge dis-
tributions in two-dimensional DC circuits. Using this
method, we can determine the location and the amount of
surface charge in a semi-quantitative manner for almost arbi-
trarily complex circuit geometries. The accuracy of the
method is limited only by one’s ability to draw equipotential
lines.

II. TWO TYPES OF SURFACE CHARGES

Surface charges occur in two different ways that must be
treated separately. We distinguish surface charges of types I
and II as described below. It must be stressed that both types
of surface charges act together to fulfill the three roles men-
tioned earlier.

Type-I surface charges occur at the boundary of two con-
ductors with different resistivities (e.g., at the interface
between a wire and a resistor). In order to keep the current
constant, the electric field must be larger inside the resistor.
Therefore, type-1 surface charges accumulate at the interface
between the two materials and contribute to the extra field
inside the resistor. (A more accurate name would be inter-
face charges.)

Type-II surface charges reside at the surface of con-
ductors; they sit at the boundary between a conductor and
the surrounding medium (usually air). The charges that
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accumulate at the edges of a bent wire are an example of this
type of surface charge.

A. The field discontinuity and the kink
in the equipotential lines

Let us adapt some well-known facts from electrostatics
to the case of DC circuits. We will use the microscopic
Maxwell equations throughout this paper so that we are
only dealing with the electric field. Figure 1 shows two
regions separated by a sheet of area S carrying a surface
charge density ¢ = ¢/S. As shown in any textbook on elec-
trodynamics, Gauss’ law interrelates the electric fields in
both regions. While the tangential components of the fields
are continuous across the sheet, there is a discontinuity in
the normal component whose magnitude is governed by the
surface charge density. If the sheet extends in the yz-plane,
we have

ag
EZ,X_EI,X = (l)
€0
Eyy —Ep, =0, @)
E2,z - El,z = 07 (3)

where ¢ is the permittivity of free space.

The field can be written as the gradient of the electric
potential ¢. Although the field is discontinuous at the sheet,
the potential is continuous everywhere (this can be shown
from Maxwell’s equations, cf. Ref. 13); at any point, the field
vector is perpendicular to the equipotential lines (gray lines
in Fig. 1). Because of the field discontinuity, there is a kink
in the equipotential lines at the location of the surface
charges. A kink in the equipotential lines can thus be used as
an indicator for a sheet with surface charges. This observa-
tion, which can be expressed quantitatively with the help of
Eq. (1), will be the key to the formulation of our surface
charge rules.

B. The magnitude of type-I surface charge densities

Type-I surface charges are prototypically represented by
the “resistor”” shown in Fig. 2. Two conductors with different

region 1

region 2
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Fig. 1. Electric field at a boundary with surface charges.
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Fig. 2. Surface charges at the boundary between two adjoining conductors.

resistivities p; and p, adjoin to a common boundary with
cross-sectional area A. Using Ohm’s law E = jp, where j is
the volume current density, we can relate the current / to the
electric field by

A
[=jA==E. “4)
P

Because the current is constant in the circuit, we have

A A
—FE, =—E,, ()
P1 P2

and applying Eq. (1) to the left boundary in Fig. 2 gives

1
GZCOK(pZ_pI)' (6)
We get the same expression with opposite sign for the right
boundary in Fig. 2. A similar result has been found by
Jefimenko.'*

Equation (6) is a quantitative expression for the density of
type-1 surface charges. The physical interpretation of this
equation has already been stated—a constant current requires
a larger electric field inside the resistor than in the wire. A
portion of this field is generated by the surface charges
described by Eq. (6). It should be noted that in the discussion
of Fig. 2, we disregarded charges at the outer surfaces of the
conductors even though in this example, there will be
charges at the conductor/air boundaries. These type-II sur-
face charges are examined in Sec. II C.

C. The magnitude of type-II surface charge densities

Consider a piece of conductor where the conductor—air
interface lies in the yz-plane, as shown in Fig. 3. Inside the
conductor the electric field is directed parallel to the current
flow, say in y-direction. Using Eq. (1) and the fact that
E; . = 0, we deduce the normal field component just outside
the conductor is

E2,x = (7)
According to Eq. (2), the tangential component does not
change at the boundary so

El,y = E2.y =E. ®)

We already mentioned that a kink in the equipotential lines
is an indicator of surface charges. Let o denote the kink angle
of an equipotential line at the conductor’s surface (see
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Fig. 3. The kink angle o can be related to the surface charge via the electric
field discontinuity.

Fig. 3). Because « is also the angle between the outside elec-
tric field vector and the surface, we can relate this angle
to the components of the electric field: tanou = E» /E, .
Equation (7) then gives

o = ¢pEtano. )

Because the electric field E inside the conductor cannot be
easily measured, we can use Eq. (4) to write

1
o= eoftanu. (10)

This equation connects the surface charge density with the
kink angle of the equipotential lines. Note that the sign of
the surface charge density can immediately be read off from
the orientation of the kink with respect to the direction of
current flow (as demonstrated in Fig. 4):

e If o =0, there is no kink in the equipotential line and hence
no surface charge.

e If >0 (i.e., if the “arrowhead” formed by the kink points
in the direction of the current flow), then ¢ is positive. This
situation is seen in the left portion of Fig. 4.

e If <0 (i.e., if the kink’s “arrowhead” points in the oppo-
site direction to the current flow), then o is negative. This
situation is seen in the left portion of Fig. 4.

III. FORMULATION OF THE SURFACE CHARGE
RULES

Equation (10) allows us to determine the distribution of
type-1I surface charges if the kink angle of the equipotential

Fhoghest”

Auipotential Iins

Fig. 4. The sign of the surface charges can be determined from the orienta-
tion of the kink with respect to the direction of current flow.
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lines is known. Thus, we have effectively reduced the sur-
face charge problem to the task of finding the equipotential
lines for a DC circuit. Although exact solutions for the
potential have been found for simple geometries, > ™®
obtaining solutions in general is a difficult problem. It is,
however, possible to determine the equipotential lines
approximately using a graphical approach. We provide a set
of simple rules for this approach below.

Let us consider an illustrative example. Figure 5 shows a
circuit consisting of a 20-V battery and a single wire with
uniform resistivity throughout; the poles of the battery are
marked with “4” and “—.” Some features of the circuit’s
equipotential lines can be determined easily:

(1) Inside the wire, the electric potential can be determined
using Ohm’s law. Because the resistivity of the wire is
uniform throughout, Ohm’s law implies that the electric
potential varies linearly along the wire. The potential
drops steadily from the plus pole to the minus pole.
Thus, the equipotential lines pass through the wire at reg-
ular intervals (as shown in Fig. 5).

(2) Outside the wire, the electric potential drops from a max-
imum to a minimum between the poles of the battery.
Accordingly, all equipotential lines must pass between
the poles of the battery.

Using the two features above, we can specify a practical
method to find the distribution of surface charges in a given
DC circuit. The rules are formulated for two-dimensional cir-
cuits, but they could be easily generalized to three dimensions.
What follows is a step-by-step procedure for this method.

Step 1: Draw the circuit. Using Ohm’s and Kirchhoff’s
laws, determine the current and the value of the potential at
each point of the conducting elements (wires, resistors,
etc.).

Step 2: Mark equal potential differences on the conductors.
Divide the voltage of the battery into 20-30 equal parts and
mark the corresponding locations on the conductors, using
the results of step 1. In general, these equipotential marks
will be straight lines parallel to the cross-section of the con-
ductor. On a wire with uniform resistivity, the marks will be
equally spaced (cf. Fig. 5); inside a resistor, the spacing will

| | -| | |
+8 V +10V  —10V -8V
| 46V —6V [
| +4vV —4V|—
| +2v oV -2V ||
| | | | |

Fig. 5. Potential distribution in a homogeneous DC circuit. The voltage of
the battery is assumed to be 20 V.
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be smaller. This step forms the basis for the construction of

the equipotential curves.

Step 3: Draw an equal number (20-30) of starting points for

equipotential curves between the two poles of the battery.

(As discussed, all equipotential lines must pass the region

between the poles of the battery.)

Step 4: Finish the construction of the equipotential curves.

Connect the starting points with the marks on the conduc-

tors, taking into account the following rules:

* Equipotential curves never cross.

» Equipotential curves cross conductors only at the points
that have been determined in step 2. Otherwise, they must
pass around all conductors.

* When drawing equipotential curves, it is helpful to imag-
ine they are elastic bands that repel each other."

* Do not try to draw a smooth transition at the surface of
the conductor; in general there will be a kink here.

» Far away from the circuit, the equipotential curves merge
into those of an electric dipole.

Step 5: Use Fig. 4 to determine the sign of the (type-II) sur-

face charges wherever there is a kink in the equipotential

curves. The magnitude of ¢ can be determined using

Eq. (10). In the drawing, it might be helpful to use symbols

like ++, +, 0, —, —— to indicate relative amounts of sur-

face charge.

Step 6: Determine the magnitude of the (type-I) surface

charges at the interface between two conductors with differ-

ent resistivities using Eq. (6).

This method is illustrated in Fig. 6 where the surface
charges on a sinuous wire are constructed using paper and
pencil. The resulting surface-charge pattern is quite complex
even for this relatively simple circuit. Chabay and Sher-
wood"!” consider a similar geometry in their discussion of
the field buildup mechanism. Using purely qualitative argu-
ments, they find an approximate distribution that hardly
resembles the complicated pattern seen here. Preyer dis-
cusses a similarly shaped wire and a comparison with his nu-

\

‘\ \ \

Fig. 6. Paper-and-pencil construction of surface charges. The steps indi-
cated in the figure refer to the corresponding steps described in the text.
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merical results (Fig. 8 in Ref. 12) shows that our method
reproduces the correct surface charge distribution quite well.

IV. TESTING THE METHOD WITH AN ACCURATE
NUMERICAL STUDY

Equipotential lines in DC circuits are rarely discussed in
textbooks. It may therefore be desirable to guide our intu-
ition with some examples. In what follows, we show an
accurate depiction of equipotential lines for several circuits.
The calculations are performed numerically as described
below and the results are related to the surface charge rules
stated above.

First we consider the DC circuit with uniform resistivity
previously discussed in Fig. 5. A numerical calculation of
surface charges for a similar geometry has already been
carried out by Preyer.'? Because there is no interface
between different conducting materials, we are only deal-
ing with type-II surface charges. In our calculations, we
assume a potential of =10V at the two poles of the bat-
tery. The “wire” has a uniform resistivity of 0.25 Qm and
a total length of 234 cm. For ease of computation and visu-
alization, we consider a 2D situation where the z-compo-
nent of the current and the electric field are equal to zero
everywhere.

The electric field and the potential are calculated using the
commercial finite-element software package ANSYS MAX-
weLL.'® Tt is used in the two-dimensional DC conduction
mode, where the tangential component of the field and the
normal component of the current are assumed to be continu-
ous along boundaries. The calculation is performed using a
mesh of about 40 000 triangles. To determine the surface
charge distribution, the electric field is exported onto a
regular grid and the surface charge density is calculated
using V - E = p/ey by numerically differentiating the elec-
tric field. The results of the calculation are shown in Fig. 7.
We note the following features.

Electric field: The arrows denote the direction and magni-
tude of the electric field. The total field shown is the sum of
the field generated by the battery plus the field of the surface
charges. To reduce clutter, the region around the battery is
omitted because the field is so large. As expected, the elec-
tric field inside the wire points along the wire at all locations.
It is worth noting that, as opposed to electrostatics, the field
is not perpendicular to the surface of the conductor because
the latter is no longer an equipotential surface.

Equipotential lines: As stated above, all equipotential
lines pass between the two poles of the battery. This feature
may also be linked to the fact that in the 2D geometry con-
sidered here, the equipotential lines indicate the direction of
energy flow'” (i.e., the Poynting vector is perpendicular to
both the electric field and the z direction).

Surface charges: At first sight, the distribution of surface
charges appears somewhat complicated. A closer inspection,
however, reveals the following typical features:

(1) At the bends of the wire, a quadrupole-like charge distri-
bution guides the electric field around the bend. This func-
tion of surface charges is often mentioned in texts but the
corresponding surface charge distribution is hardly ever
discussed in detail. The structure of this “corner distribu-
tion” becomes more apparent as shown in Fig. 8. Note
that in this diagram, only the part of the electric field gen-
erated by the surface charges is shown. Students may gain
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Fig. 7. Electric field, equipotential lines, and surface charges for a simple circuit with uniform resistivity. The density of surface charges is shaded from white
to black (red to violet) representing most positive to most negative, respectively. The scale gives the surface charge density in 10" C/m>.

some confidence by verifying that the field “lines”
actually run from positive to negative surface charges.

(2) There is a tendency for the surface charges to be more
positive closer to the positive pole of the battery and
more negative closer to the negative pole. This feature—

/4
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-
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¥
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4 »
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Fig. 8. A detailed look at the surface charge distribution at a bend of the
wire from Fig. 7. In this figure, the arrows show only the part of the electric
field generated by the surface charges.
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which leads to a dipole-like character of the field far
from the circuit—is a remnant of the linearly varyin%
surface charge density on Sommerfeld’s infinite wire.
Most of the qualitative accounts seem to focus strongly
on this result;l’g’lo’17 a linear variation of surface charge
is the dominant feature in most schematic diagrams in
the published literature. Figure 7 shows that the actual
surface charge distribution is much more complex.

We can make a quantitative estimate for the magnitude of
the surface charge using Eq. (9). Inside the homogeneous
wire, the electric field is constant and given by E=VI/L,
where V is the voltage on the poles of the battery and L is the
length of the wire. The surface charge density is thus

Vv
o= eoZtanoc. (11

Using V=20V and L =2.34 m, we find
o = (7.6 x 10" ")tanar C/m*. (12)

Therefore, on a location where the kink angle is 45°, the sur-
face charge density is 7.6 x 10~'! C/m?, a value consistent
with the results obtained numerically (cf. Fig. 7). Such a sur-
face charge density corresponds to approximately 500 elec-
trons per square millimeter.
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Fig. 9. Electric field, equipotential lines, and surface charges for a series connection of two resistors with arbitrarily twisted pieces of hookup wire (top) and a
parallel connection of two different resistors (bottom). The same shading/coloring scheme is used as in Fig. 7. The surface charge density is given in 10~ C/m?.

V. FURTHER EXAMPLES connected in series to a battery with arbitrarily curved pieces
of hookup wire. We can see that even in this “forbiddingly
Figure 9 shows the surface charges for two more compli- difficult” geometry,’ the equipotential lines are no harder to

cated circuits. In the top part of the figure, two resistors are construct than in the previous example. The shapes of the
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equipotential lines is predetermined to a large extent by their
uniform distance along the hookup wire. On the other hand,
the kink angle—and accordingly the amount of surface
charge—sensibly depends on the orientation of the wire.
This observation substantiates Jackson’s statement that in
real circuits the surface charge distribution depends strongly
on the precise location of all parts of the circuit.’

At the interface between the wire and the resistors the re-
sistivity changes. Here, we come across type-I surface
charges of for the first time. There is a larger amount of
charge on the left resistor because its resistivity is twice as
large as that of the right resistor (2 Qm compared to 1 Qm).
The wire’s resistivity is 0.25 Qm.

The same two resistors are connected in parallel in the
lower part of Fig. 9. The pattern of equipotential lines
reflects the more complicated voltage distribution in the cir-
cuit. In all previous examples, the current was the same in all
parts of the circuit. This is not the case in a parallel connec-
tion. For this reason, the relative amount of surface charge
can no longer be estimated from the kink angle alone,
although the signs of the charges are given correctly.
According to Eq. (10), the current / at the respective loca-
tions has to be specified as well. In the parallel connection
shown here, the current is largest between the poles of the
battery and before the circuit separates into two branches.

VI. DISCUSSION

It is generally thought that the determination of surface
charge distributions in all but the simplest circuits borders on
the impossible. In this paper, we have shown that this is
not the case. We have outlined a relatively simple scheme
for the semi-quantitative construction of surface charge dis-
tributions that can be applied to almost any circuit geometry.
Using paper and pencil alone, this procedure takes about
15 min to complete. The accuracy of the method is limited
by one’s ability to draw equipotential lines. In particular, the
spatial resolution is determined by the number of equipoten-
tial lines one chooses to draw. Typically, 20-30 lines will
lead to a reasonable resolution.

Although students may be more familiar with field lines
than equipotential lines, we stress that anybody who is able
to draw field lines can construct equipotential lines. In free
space, field lines and equipotential lines are orthogonal fami-

788 Am. J. Phys., Vol. 80, No. 9, September 2012

lies, and both contain exactly the same information. In this
sense, the determination of surface charges provides a nice
opportunity for students to practice the appropriate skill.
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