TU BRAUNSCHWEIG

  • Publikationen

Alessi R., Vidoli S., De Lorenzis L. (accepted), Variational approach to fatigue phenomena with a phase-field model: the one-dimensional case, Engineering Fracture Mechanics,

Fahrendorf F., De Lorenzis L., Gomez H. (2018), Reduced integration at superconvergent points in isogeometric analysis,Computer Methods in Applied Mechanics and Engineering,328: 390-410.
DOI: https://doi.org/10.1016/j.cma.2017.08.028

Kiendl J., Marino E., De Lorenzis L.(2017), Isogeometric collocation for the Reissner-Mindlin shell problem,Computer Methods in Applied Mechanics and Engineering,325: 645-665.
DOI: https://doi.org/10.1016/j.cma.2017.07.023

Alessi R., Ambati M., Gerasimov T., Vidoli S., De Lorenzis L. (2017), Comparison of Phase-Field Models of Fracture Coupled with Plasticity, Chapter in book: Advances in Computational Plasticity,
DOI: https://doi.org/10.1007/978-3-319-60885-3_1

T. Wu, A. Carpiuc-Prisacari, M. Poncelet, L. De Lorenzis, Phase-field simulation of interactive mixed-mode fracture tests on cement mortar with full-field displacement boundary conditions, Engineering Fracture Mechanics, 182: 658-688, 2017.
DOI: https://doi.org/10.1016/j.engfracmech.2017.06.014

Cajuhi, T., Sanavia, L. De Lorenzis, L. (2017), Phase-field modeling of fracture in variably saturated porous media. Computational Mechanics
DOI: https://doi.org/10.1007/s00466-017-1459-3

Dimitri R., Cornetti P., Mantic V., Trullo M., De Lorenzis L.(2017), Mode-I debonding of a double cantilever beam: a comparison between cohesive crack modeling and finite fracture mechanics,International Journal of Solids and Structures, 124: 57-72.
DOI: https://doi.org/10.1016/j.ijsolstr.2017.06.007

Carrara P., De Lorenzis L. (2017), Consistent identification of the interfacial transition zone in simulated cement microstructures, Cement and Concrete Composites,80: 224-234.
DOI: https://doi.org/10.1016/j.cemconcomp.2017.03.008

Weeger O., Narayanan B., De Lorenzis L., Kiendl J., Dunn M.L. (2017), An isogeometric collocation method for frictionless contact of Cosserat rods, Computer Methods in Applied Mechanics and Engineering, 321: 361-382.
DOI: https://doi.org/10.1016/j.cma.2017.04.014

Carrara P., De Lorenzis L. (2017), Chloride diffusivity of interfacial transition zone and bulk paste in concrete from microscale analysis, Modeling and Simulation in Materials Science and Engineering,25(4).
DOI: https://doi.org/10.1088/0965-0393/24/6/065009

V. Rheinheimer, Y. P. Wu, T. Wu, K. Celik, J. Y. Wang, L. De Lorenzis, P. Wriggers, M.H. Zhang, P. J.M. Monteiro (2017), Multi-scale study of high-strength low-thermal-conductivity cement composites containing cenospheres. Cement and Concrete Composites, 80, 91-103.
DOI: http://dx.doi.org/10.1016/j.cemconcomp.2017.03.002

P. Carrara, T. Wu, R. Kruse, L. De Lorenzis (2016), Towards multiscale modeling of the interaction between transport and fracture in concrete. RILEM Letters, 1: 94-101.br/> DOI: http://dx.doi.org/10.21809/rilemtechlett.2016.21

J. Kiendl, M. Ambati, L. De Lorenzis, H. Gomez, A. Reali, Phase-field description of brittle fracture in plates and shells,Computer Methods in Applied Mechanics and Engineering DOI: http://dx.doi.org/10.1016/j.cma.2016.09.011

P. Carrara, L. De Lorenzis, D. Bentz (2016), Chloride diffusivity in hardened cement paste from microscale analyses and accounting for binding effects. Modeling and Simulation in Materials Science and Engineering, 24(6).
DOI: http://dx.doi.org/10.1088/0965-0393/24/6/065009

H. Gomez, L. De Lorenzis (2016). The variational collocation method. Computer Methods in Applied Mechanics and Engineering, 309: 152-181.
DOI: http://dx.doi.org/10.1016/j.cma.2016.06.003

T. Wu and L. De Lorenzis, A phase-field approach to fracture coupled with diffusion, Computer Methods in Applied Mechanics and Engineering (In press),
doi:10.1016/j.cma.2016.05.024

M. Scaraggi., D. Comingio., A. Al-Qudsi., L. De Lorenzis, The influence of geometrical and rheological non-linearity on the calculation of rubber friction, Tribology international, 101:402-413, September 2016, Elsevier.
DOI: http://dx.doi.org/10.1016/j.triboint.2016.04.027

L. De Lorenzis, A. McBride, B.D. Reddy (2016), Phase-field modelling of fracture in single crystal plasticity. GAMM Mitteilungen, 39(1): 7-34.
DOI: http://dx.doi.org/10.1002/gamm.201610002

P. Otto, J. Unger, L. De Lorenzis (2016). A regularized model for impact in explicit dynamics applied to the split Hopkinson pressure bar. Computational Mechanics, 58(4): 681-695.
DOI: http://dx.doi.org/10.1007/s00466-016-1311-1

M. Ambati and L. De Lorenzis (2016), Phase-field modeling of brittle and ductile fracture in shells with isogeometric NURBS-based solid-shell elements,Computer Methods in Applied Mechanics and Engineering,
DOI: http://dx.doi.org/10.1016/j.cma.2016.02.017.

T. Gerasimov, L. De Lorenzis (2016), A line search assisted monolithic approach for phase-field computing of brittle fracture, Computer Methods in Applied Mechanics and Engineering
DOI:10.1016/j.cma.2015.12.017

M. Ambati, R. Kruse, L. De Lorenzis (2016), A phase-field model for ductile fracture at finite strains and its experimental verification, Computational Mechanics, 57: 149-167.
DOI: http://dx.doi.org/10.1007/s00466-015-1225-3

P. Carrara, L. De Lorenzis, (2015), A Coupled Damage-Plasticity Model for the Cyclic Behavior of Shear-Loaded Interfaces, Journal of the Mechanics and Physics of Solids, 85: 33-53
DOI: http://dx.doi.org/10.1016/j.jmps.2015.09.002

R. Kruse, N. Nguyen-Thanh, L. De Lorenzis, T.J.R. Hughes (2015) Isogeometric collocation for large deformation elasticity and frictional contact problems, Computer Methods in Applied Mechanics and Engineering, 296: 72-112.
DOI: http://dx.doi.org/10.1016/j.cma.2015.07.022

R. Dimitri, M. Trullo, L. De Lorenzis, G. Zavarise (2015). Coupled cohesive zone models for mixed-mode fracture: a comparative study. Engineering Fracture Mechanics, 148: 145-179.
DOI: http://dx.doi.org/10.1016/j.engfracmech.2015.09.029

J. Ma, S. Sahraee, P. Wriggers, F. Wang, L. De Lorenzis (2015). Stochastic multiscale homogenization analysis of heterogeneous materials under finite deformations with full uncertainty in the microstructure. Computational Mechanics, 55: 819-835.
DOI: http://dx.doi.org/10.1007/s00466-015-1136-3

M. Ambati, T. Gerasimov, L. De Lorenzis (2015) Phase-field modeling of ductile fracture,Computational Mechanics 55:1017-1040
DOI: http://dx.doi.org/10.1007/s00466-015-1151-4

T. Wu and P. Wriggers (2015), Multiscale diffusion–thermal–mechanical cohesive zone model for concrete, Computational Mechanics, 55, 999-1016.

C. Maruccio, L. De Lorenzis, L. Persano, D. Pisignano (2015). Computational homogenization of fibrous piezoelectric materials. Computational Mechanics, 55: 983-998.
DOI: http://dx.doi.org/10.1007/s00466-015-1147-0

P. Cornetti, M. Corrado, L. De Lorenzis, A. Carpinteri (2015). An analytical cohesive crack modeling approach to the edge debonding failure of FRP-plated beams, International Journal of Solids and Structures, 53: 92-106.
DOI: http://dx.doi.org/10.1016/j.ijsolstr.2014.10.017

N. Nguyen-Thanh, N. Valizadeh, M.N. Nguyen, H. Nguyen-Xuan, X. Zhuang, P. Areias, G. Zi, Y. Bazilevs, L. De Lorenzis, T. Rabczuk (2015). An extended isogeometric thin shell analysis based on Kirchhoff-Love theory. Computer Methods in Applied Mechanics and Engineering, 284: 265-291
DOI: http://dx.doi.org/10.1016/j.cma.2014.08.025

R. Sauer, L. De Lorenzis (2015). An unbiased computational contact formulation for 3D friction. International Journal for Numerical Methods in Engineering, 101(4): 251-280.
DOI: http://dx.doi.org/10.1002/nme.4794

L. De Lorenzis, J.A. Evans, T.J.R. Hughes, A. Reali (2015), Isogeometric collocation: Neumann boundary conditions and contact, Computer Methods in Applied Mechanics and Engineering, 284: 21-54
DOI: http://dx.doi.org/10.1016/j.cma.2014.06.037

P. Phung-Van, L. De Lorenzis, C. H. Thai, M. Abdel-Wahab, H. Nguyen-Xuan (2015), Analysis of laminated composite plates integrated with piezoelectric sensors and actuators using higher-order shear deformation theory and isogeometric finite elements, Computational Materials Science, 96B: 495-505
DOI: http://dx.doi.org/10.1016/j.commatsci.2014.04.068

M. Ambati, T. Gerasimov, L. De Lorenzis (2015), A review on phase-field models of brittle fracture and a new fast hybrid formulation, Computational Mechanics, 55: 383-405
DOI: http://dx.doi.org/10.1007/s00466-014-1109-y

L. Persano, C. Dagdeviren, C. Maruccio, L. De Lorenzis, D. Pisignano (2014). Cooperativity in the enhanced piezoelectric response of polymer nanowires. Advanced Materials, 26(45): 7574-7580.
DOI: http://dx.doi.org/10.1002/adma.201403169

R. Dimitri, M. Trullo, G. Zavarise, L. De Lorenzis (2014). A consistency assessment of coupled cohesive zone models for mixed-mode debonding problems. Fracture and Structural Integrity, 8(29):266-283.
DOI: http://dx.doi.org/10.3221/IGF-ESIS.29.23

J. Ma, S. Zhang, P. Wriggers, W. Gao, L. De Lorenzis (2014). Stochastic homogenized effective properties of three-dimensional composite material with full randomness and correlation in the microstructure. Computers & Structures, 144: 62-74.
DOI: http://dx.doi.org/10.1016/j.compstruc.2014.06.003

L. De Lorenzis, P. Wriggers, T.J.R. Hughes (2014), Isogeometric contact: a review, GAMM Mitteilungen, 37(1): 85-123
DOI: http://dx.doi.org/10.1002/gamm.201410005

R. Dimitri, L. De Lorenzis, P. Wriggers, G. Zavarise (2014), NURBS- and T-spline-based isogeometric cohesive zone modeling of interface debonding, Computational Mechanics, 54: 369-388.
DOI: http://dx.doi.org/10.1007/s00466-014-0991-7

R. Dimitri, L. De Lorenzis, M.A. Scott, P. Wriggers, R.L. Taylor, G. Zavarise (2014), Isogeometric large deformation frictionless contact using T-splines , Computer Methods in Applied Mechanics and Engineering, 269: 394-414.
DOI: http://dx.doi.org/10.1016/j.cma.2013.11.002

De Lorenzis L., Fernando D., Teng J.G. (2013), Coupled mixed-mode cohesive zone modeling of interfacial debonding in plated beams, International Journal of Solids and Structures, 50: 2477-2494.
DOI: http://dx.doi.org/10.1016/j.ijsolstr.2013.03.035

Sauer R., De Lorenzis L. (2013), A computational contact formulation based on surface potentials, Computer Methods in Applied Mechanics and Engineering, 253: 369-395.
DOI: http://dx.doi.org/10.1016/j.cma.2012.09.002

De Lorenzis L., Wriggers P. (2013), Computational homogenization of rubber friction on rough rigid surfaces, Computational Materials Science, 77: 264-280.
DOI: http://dx.doi.org/10.1016/j.commatsci.2013.04.049


  aktualisiert am 05.12.2017
TU_Icon_E_Mail_1_17x17_RGB Zum Seitenanfang