TU BRAUNSCHWEIG
     Seegras unter Wasser  


Laufende Projekte:

RELease from coastal squEEZE (RELEEZE)

Managementoptionen zur Vermeidung von Kippunkten in Küstenökosystemen der Nordsee

RELEEZE


Management von Gewässern zur Förderung der biologischen Vielfalt – ein Beitrag zur Umsetzung der Biodiversitätsstrategie in Städten

DBU Projekt (2017-2020)


SeaArt – Langfristige Ansiedlung von Seegras-Ökosystemen durch bioabbaubare künstliche Wiesen

Seegraswiesen sind wichtige Ökosysteme, die zahlreiche Funktionen für den Menschen übernehmen, aber auch durch ihn gefährdet sind. Seegraswuchs geschieht in einer Rückkopplung, in der vorhandenes Seegras Wellen und Strömung dämpft und Wassertrübung reduziert. Dadurch werden die Anwuchsbedingungen für weiteres Seegras verbessert. Doch ohne bestehendes Seegras ist eine Wiederansiedlung fast nicht möglich.
In den kommenden vier Jahren werden Mitarbeiterinnen und Mitarbeiter der Technischen Universität Braunschweig, der Hochschule Hannover, der Leibniz Universität Hannover, dem niederländischen Institut für Meeresforschung sowie der Firma Soiltec GmbH daher ein künstliches Seegras entwickeln, das gute Anwuchsbedingungen für Seegras herstellt womit den Teufelskreis der Wiederansiedlung durchbrochen werden soll. Das künstliche Seegras wird ausschließlich aus bioabbaubaren Materialien bestehen, so dass langfristig eine rein natürliche Seegraswiese entsteht. Zusätzlich wird das Projektteam untersuchen, welche Flächen in der deutschen Nordsee sich besonders für eine Wiederansiedlung von Seegras eignen, um in einem Folgeprojekt einen ersten Versuch der Wiederansiedlung mit Hilfe von bioabbaubaren künstlichen Wiesen starten zu können.
In kürze wird auch eine Webseite entstehen, auf der weitere Informationen über das Projekt und dessen Verlauf bereitgestellt werden.

Seegras unter Wasser

Metapolis

In den kommenden vier Jahren untersuchen Wissenschaftlerinnen und Wissenschaftler der Technischen Universität Braunschweig und der Leibniz Universität Hannover bestehende und künftige Strategien für nachhaltige Beziehungen zwischen Stadt und Land in Niedersachsen. Außerdem entwickeln sie eine interaktive Plattform, von der interessierten Bürgerinnen und Bürgern die gewonnenen Erkenntnisse abrufen können.

Positionspapier

COMTESS- Sustainable Coastal Land Management: Trade-Offs in Ecosystem Services

Coastal regions will be especially affected by climate change, i.e. rising sea- levels, increase of storms and winter precipitation. Ecosystems might change in ways that affect the stability of ecosystem functions and, thus, the provision of ecosystem services that coastal communities rely on today.

This project will investigate different land use scenarios for sites at the German North and Baltic Sea coast under climate change. The main focus is to evaluate ecosystem functions and services provided by these coastal regions and how they are affected by environmental change and different land management options. Work package 5 (“Modelling of biodiversity and plant- mediated ecosystem services (ESS) in response to land use management and environmental change”) is undertaken by the University of Potsdam. Part 1 of this sub- project lies with the Institute of Earth and Environmental Science, part 2 with the Institute of Biochemistry and Biology.

In detail, WP 5 will yield the ecological evaluation of the COMTESS scenarios by statistically modelling the functional and response diversity (WP 5.1) and developing a process- based model for the spatio- temporal dynamics of key species and plant- mediated ESS (WP 5.2). For this purpose, we will upscale the plot-level one (or two)-year measurements of WP 1 - 4 to the landscape scale and to time scales ranging from 2010 to 2100. The statistical niche modelling of WP 5.1 will be enhanced with the transient plant community dynamics captured by the individual- based model of WP 5.2. Finally, the insurance effect of functionally redundant species on the resilience of ESF and, thus, the provision of ESS will be analysed for variable environmental conditions. The predictions from WP 5 will be summarized in a GIS modelling shell used by later work packages for the ecological- economic analysis. More...

Researchers: Anett Schibalski, University of Potsdam; Katrin Körner, University of Potsdam

Duration: 2011 – 2014

Funded By: BMBF (FONA, Sustainable Land Management)

CAOS (Catchments as Organised Systems)

The overall objective of the research unit is to provide a new framework for building hydrological models that allow a much more realistic representation of the surface and especially subsurface architecture of catchments at the lower mesoscale (10–200 km2). Key methodological objective is to unite a) the recent observation and exploration technology from soil physics, geophysics, remote sensing and hydrology with b) our understanding of landscape formation and soil structure development and c) reductionist process models as learning tools to assess novel information on surface and subsurface structures as well as on distributed process dynamics. Key theoretical objective is to develop a model and mathematical framework that allows better integration of this information into the model identification process and thus facilitates communication between experimentalists and modellers. Research will be conducted in the hydrological observatory “Attert basin” that has been operated by the Gabriel Lippmann Research Institute in Luxemburg since 2003 and is among the best investigated basins in the World.

Subproject J:Feedbacks between bioactivity and soil hydrology

 

Bodenstrukturen

Soil structure determines a large part of the spatial heterogeneity in water storage and fluxes from the plot to the hillslope scale. In recent decades important progress in hydrological research has been achieved by including soil structure in hydrological models. One of the main problems herein remains the difficulty of measuring soil structure and quantifying its influence on hydrological processes. As soil structure is very often of biogenic origin (macropores), the main objective of this project is to use the influence of bioactivity and resulting soil structures to describe and support modeling of hydrological processes at different scales. Therefore, local scale bioactivity will be linked to local infiltration patterns under varying catchment conditions. At hillslope scale, the spatial distribution of bioactivity patterns will be linked to connectivity of subsurface structures to explain subsurface stormflow generation. Then we will apply species distribution modeling of key organisms in order to extrapolate the gained knowledge to the catchment scale.

As on one hand, bioactivity influences the hydrological processes, but on the other hand the species distribution also depends on soil moisture contents, including the feedbacks between bioactivity and soil hydrology is pivotal for getting reliable predictions of catchment scale hydrological behavior under land use change and climate change.

Researchers: Loes van Schaik, University of Potsdam/ Technical University Munich; Anne-K. Schneider, Technical University Munich, Anne Zangerlé, Technical University Munich

Duration: 2011-2014

Funds: DFG-funding FOR 1598 (Teilprojekt: SCHR 1000/6-1)

Understanding downstream migration of European eel (Anguilla anguilla) - Analysis and modelling of migration triggers –

The European eel stock is in steep decline and consequently the species has been added to the IUCN Red List of Threatened Species as critically endangered. In order to reduce the anthropogenic mortality caused by hydroelectric power plants turbines, it is absolutely necessary to identify the environmental triggers for downstream migration towards their maritime spawning grounds. The aim of this project is to identify and quantitatively describe these triggers and develop predictive models. Therefore, environmental data will be combined with catch data and infrared video data from several trapping sites in three “top-11 rivers” in southern Sweden by means of advanced statistical modelling approaches. This will help to identify environmental windows of optimal migration conditions, described by threshold combinations of triggers. The results will enable an enhanced turbine management for hydroelectric power plants which will consequently contribute to achieve the goals of the Swedish Eel Management Plan.

Researchers: Florian Stein and Boris Schröder, Technische Universität München; Olle Calles, Karlstads Universitet; Johan Östergren, Sötvattenslaboratoriet SLU Aqua; Uwe Brämick, Institute of Inland Fisheries in Potsdam-Sacrow

Duration: 03/2012-12/2013

Funded by: Elforsk ‘Krafttag ål’

Abgeschlossene Projekte:

BIOPORE - Linking spatial patterns of anecic earthworm populations, preferential flow pathways and agrochemical transport in rural catchments: an ecohydrological model approach

Earthworms play a pivotal role in agro-ecosystem functioning by modulating soil structure that significantly influences soil hydraulic properties, organic matter dynamics, and plant growth. This project focuses on anecic earthworms like Lumbricus terrestris which create vertical semi-permanent burrows that function as preferential flow pathways. Preferential flow in macropores is a key process which strongly affects infiltration and may cause rapid transport of pesticides into depths of 80 to 150 cm where they experience a much slower degradation. Therefore, preferential transport is an environmental problem because the topsoil is bypassed, which has been originally thought to act as a filter to protect the subsoil and shallow groundwater. Assessing the environmental risk of pesticides in earthworm burrows and how human management practise feedbacks on that risk requires the development of an integrated eco-hydrological model. This model allows predictions of i) the spatiotemporal distribution and population dynamics of anecic earthworms, ii) the related pattern of connective preferential flow pathways (i.e., earthworm burrows), and iii) the space-time pattern of infiltration and travel depth distribution of solutes. This enables the understanding of how small-scale patterns regulate large-scale processes in rural landscapes and how feedbacks between earthworm engineering and transport characteristics affect the functioning of (agro-)ecosystems. We expect our final model to be applicable for catchment-scale risk assessment that may assist agrochemical registration. More...

Researchers: Juliane Palm and Loes van Schaik, University of Potsdam; Julian Klaus and Erwin Zehe, Technische Universität München

Duration: 2007-2011

Funded by: DFG

Biodiversity and Sustainable Management of a Megadiverse Mountain Ecosystem in South Ecuador

DFG-Research Unit/Forschergruppe FOR 816 (Phase 1) Functionality in Tropical Mountain Rainforest

Subproject A3.3: Spatial-temporal dynamics of landslides and their biotic & abiotic controls

Researchers: H. Elsenbeer, M. Märker and P. Vorpahl, University of Potsdam; A. Huth, UFZ Leipzig-Halle; B. Huwe, University of Bayreuth

Duration: 2007-2010

Funded by: DFG


  aktualisiert am 27.06.2017
TU_Icon_E_Mail_1_17x17_RGB Zum Seitenanfang