Institutes and Research

The illustration below gives an overview of the instituts of the Department of Mechanical Engineering. The illustration depicts a classification according to the research areas. The relevant areas of specialization (important for the students) is available  here.

A short compilation of Technische Universität Braunschweig’s scientific activities.


Automotive engineering

Institut für Dynamik und Schwingungen / Dynamics and Vibrations

Director: Prof. Dr.-Ing. G.-P. Ostermeyer

Link Institute

The research work performed at the IDS encompasses modeling, simulation, analysis, measurement, experiments, and the passive and active manipulation of complex dynamic systems. Extra emphasis is placed on investigation of the mechanisms that drive self-organization and self-synchronization. Another area of focus of the IDS is tribological boundary layer phenomena, as related to brakes, clutches, and bearings. Furthermore, research is performed in the fields of automotive engineering (vibrations and acoustics), metrology (tribometer and vibrational measurement engineering), and drill string and reservoir dynamics (complex models, real time models, real time simulations). 

The courses offered by the IDS aim to impart the basic principles for describing and analyzing complex dynamic systems, and also provide students the skills needed to apply this knowledge.

Institut für Fahrzeugtechnik / Automotive Engineering

Director: Prof. Dr.-Ing. F. Küçükay

Link Institute

Teaching and research at the institute focuses on the following areas: “Electric and Hybrid Drives / Requirement Engineering (3D)”, “Conventional Drivetrains, Drivetrains, Transmissions”, “Total Vehicle, Chassis, Driving Dynamics, NVH” and “Driver Assistance Systems and Automated Driving”. In order to work on the above mentioned research topics, comprehensive test facilities, laboratory equipment and experimental vehicles are available at the institute. Close contacts to industry partners, suppliers, technical service providers as well as external research institutions, the comprehensive test facilities and interdisciplinary and inter-institutional work help to solve challenging problems efficiently and with regard to practice. The research results are integrated into teaching and therefore ensure an up-to-date teaching programme.

Institut für mobile Maschinen und Nutzfahrzeuge / Mobile Machines and Commercial Vehicles

Director: Prof. Dr. L. Frerichs

Link Institute

Since 2012 the Institute for Mobile Machines and Commercial Vehicles (IMN) is directed by Prof. Dr. Ludger Frerichs. The main objective of the institute is to establish the basis for the “Next Generation of Mobile Systems of Process, Machine and Procedures”. In this systemic context approaches to increase the efficiency and the intelligent cross-linking are investigated particularly. The associated fields of research and teaching of the institute are Processes in Mobile Machines, Mobile Hydraulics, Driveline Technology, Vehicles and Systems as well as Assistance and Robotic Systems. In the lectures as well as in the research projects fundamental and practical issues are covered equally. The applied methods comprise modeling and simulation, laboratory investigations and field tests.

Institut für Konstruktionstechnik / Engineering Design

Director: Prof. Dr.-Ing. T. Vietor

Link Institute

From idea to product - this claim drives our research and teaching. Design methodology, vibro-acoustics, vehicle concepts, computer aided engineering design and machine elements as well as their conjunction form the basis for our successful research which brings up procedures, methods, and computer-aided tools for the development of innovative products.

Our teaching is aimed at practical education. It is based on actual professional and interdisciplinary challenges of the future professional life and encourages the students’ individual development.

The IK is involved in research activities of the Automotive Research Centre Niedersachsen (NFF) and the Aeronautics Research Centre (NFL).

Institut für Verbrennungskraftmaschinen / Internal Combustion Engines

Director: Prof. Dr. Eilts

Link Institute

The main research objectives of the institute of internal combustion engines (ivb) are the development and research of combustion processes for conventional and alternative fuels, of gas exchange, charge and exhaust gas aftertreatment systems. Engines are investigated in connection with the vehicle-system to optimize the thermal vehicle management. Operating strategies for hybrid vehicles are investigated with focus on the reduction of emissions and fuel consumption. Therefore research is being conducted on engine management by in cylinder pressure measurements, exhaust gas recirculation, high pressure charging of vehicle engines and optimization of the combustion process on DI-Otto- and Diesel-engines. With different research projects all phases of the engine development process from conceptioning over simulation and design to testing are covered at the institute of internal combustion engines. The teaching activity comprehends eleven lecture modules. Four base-modules include the fundamentals, working process, combustion and emissions and design of combustion engines. Seven modules contain topics on a higher degree of specialization that are partly held by guest lecturers.
The ivb is a member of the Automotive Research Centre Niedersachsen.

Institut für Verkehrssicherheit und Automatisierungstechnik / Traffic Safety and Automation Engineering

Director: Prof. Dr.-Ing. E. Schnieder

Link Institute

The Institute aims to contribute to road safety through scientific research and academic teaching. This claim is in line with the European objectives in the EU / automotive industry and the intentions of many institutions active in this area such as the European Road Federation (ERF), European Railway Research Advisory Council (ERRAC), the road safety initiative of the European Union (e-Safety ) and the German Automotive Industry (VDA). We want to tackle this complex matter fundamentally in a coherent way, and therefore understand traffic as a networked system of cooperating elements / processes. For this approach, the structuring of our research results in four areas: In application-oriented respects the specific subject areas Vehicles and Transport concentrating on safety as a system property and automation technology as a means for purpose achievement, based on the theoretical and abstract base areas Systemics and Cooperative Systems.



Aerospace engineering

Institut für Flugantriebe und Strömungsmaschinen / Institute of Jet Propulsion and Turbomachinery

Director: Prof. Dr.-Ing. J. Friedrichs

Link Institute

The Institute of Jet Propulsion and Turbomachinery (IFAS) is mainly focusing on civil jet engines in terms of the overall system as well as on future propulsion systems. On the one hand, engine performance during operation in conjunction with economic and technology driven maintenance aspects is a major research area. On the other hand, future basic propulsion concepts especially with regard to aircraft integration are a further competence of the institute. The broad curriculum of the IFAS gives our students the opportunity to gain their knowledge in the area of jet engines. There are both, bachelor and master courses within the aerospace technology studies at TU Braunschweig. Apart from basic thermodynamic engine cycles and courses about engine architectures, aspects of engine operation and maintenance especially with regard to airline requirements are also teached.

Institut für Flugführung / Flight Guidance

Director: Prof. Dr.-Ing. P. Hecker

Link Institute

Das Institut beschäftigt sich schwerpunktmäßig mit der Flugversuchs- und Meßtechnik, Flugmeteorologie, Ortung und Navigation, Mensch- Maschine Problematik, Flugsimulation sowie der Flugregelung. Das Spektrum reicht dabei von Untersuchungen zur Energieübertragung zwischen Wind und Segelflugzeug bis hin zur grundlagenorientierten Forschung auf dem Gebiet der Flugführungsprobleme bei Überschallflugzeugen.

Institut für Flugzeugbau und Leichtbau / Aircraft and Lightweight Design

Director: Prof. Dr.-Ing. P. Horst

Link Institute

Aircraft as well as other technical products which need extreme lightweight design (ranging from spacecraft to windpower) are usually complex systems. Therefore, both research as well as education at the Institute of Aircraft Design and Lightweight Structures (IFL) cover a wide range of subjects and tend to keep many interdisciplinary issues in mind. There are at least two ways to tackle such complex systems. One uses high fidelity simulation, often in a coupled way and tries to find optimal solutions etc. On the other hand experiments at very different scales. This may start at a micro-scale level (e.g. failure of composites) and end with so-called full-scale tests, where entire aircraft are tested for their fatigue and damage tolerance behavior in a multiple design life.

Institut für Raumfahrtsysteme / Space Systems

Director: Prof. Dr.-Ing. Enrico Stoll

Link Institute

The fundamental work of the institute's spaceflight technology is knowledge and application of general and higher orbital mechanics. The main research fields consist of orbital dynamics for all objects on Earth orbits (space debris), orbit survey and orbit prediction, especially for light satellites and the re-entry of hazardous objects. The research field of the astronautics are covering: Precise calculation of satellite orbits including all involved forces, trajectory and re-entry prediction of light satellites, Space Debris: Determination of object distribution densities for satellites, rocket stages and debris particles in low Earth orbits; calculation of collision probabilities.The working group satellite technology and satellite operations is focusing on the development and verification of technologies that can remove space debris objects from orbit. In particular the Institute is doing research in the field of bio-inspired materials (so-called Gecko materials) for Active Debris Removal (ADR) missions.

Institut für Strömungsmechanik / Fluid Machines

Director: Prof. Dr.-Ing. R. Radespiel

Link Institute

The main research areas at the Institute of Fluid Mechanics are aerodynamics of aircraft, measurement and manipulation of flows, scale-resolving simulations of aeroacoustic sources, multiphase flow and icing as well as flow modeling and control. The spectrum ranges from fundamental research of model generation of turbulent flows, transition and multiphase flows on aircraft, to more applied research on future aircraft and ground vehicle aerodynamics. In the applied research, the main focus is on active methods of flow control. The research activities include theory, experiments and numerical simulations. The courses offered by the Institute of Fluid Mechanics cover the main areas of fluid mechanics, aerodynamics and aeroacoustics. Fields, where the students are involved in current research projects.

Institut für Werkstoffe / Material Science

Director: Prof. Dr. J. Rösler

Link Institute

The Institute for Materials explores innovative concepts to design new materials for future applications.
In the field of high-temperature materials, currently used nickelbase superalloys are optimised and
completely new alloying concepts are developed to allow a further increase of the energy efficiency turbines.
Thermal barrier coatings are investigated for applications in turbines and rocket engines.
Titanium alloys are improved with respect to machinability, strength and costs.
Nano-porous metallic membranes are a new material class showing promise for many applications.
Research methods range from computer simulations to material synthesis and mechanical testing.
The syllabus of the institute contains lectures on fundamentals of materials science, applied topics
and lectures focusing on special groups of materials.



Energy and process engineering

Institut für Bioverfahrenstechnik / Biological Process Engineering

Director: Prof. Dr.-Ing. Antje Spiess

Link Institute

Biochemical engineering is a key driver in the knowledge-based bioeconomy and enables the sustainable production of biological and chemical products as well as of active pharmaceutical ingredients. The Institute of Biochemical Engineering (ibvt) contributes with lectures, exercises and laboratory courses to the curriculum of the Faculty for Mechanical Engineering and in a bridging role also to the curriculum of the Faculty for Life Sciences. The ibvt research applies and develops bioreactors, classical and systems biotechnological analytics, and modelling methods in order to rationally develop tailored biocatalysts and sustainable bioprocesses using model-based experimental analysis.

Institut für Chemische und Thermische Verfahrenstechnik / Chemical and Thermal Process Engineering

Director: Prof. Dr.-Ing. S. Scholl

Link Institute

Research activities of ICTV are organized in four groups: Sustainable Production Technologies, Innovative Equipment and Plant Concepts, Fouling and Cleaning, and Pharmaceutical and Biotechnological Processes. Based on experimental investigations, mechanistic models are developed and implemented in simulations. Hereby, chemical reactions and separation processes are considered, especially for thermal and mechanically sensitive products. Fundamentals as well as the conception and assessment of production processes and the design of optimized equipment are addressed. In teaching, ICTV offers fundamental as well as application-oriented lectures and laboratory exercises in the field of fluid, chemical and thermal process engineering.

Institut für Partikeltechnik / Particle Technology

Director: Prof. Dr.-Ing A. Kwade

Link Institute

The lectures and courses offered by the Institute of Particle Technology cover the production of particles, using bottom-up routes (such as chemical synthesis) or grinding processes, their functionalization, as well as their processing into products such as tablets, coatings or battery electrodes. The lectures range from basic courses in the field of mechanical process engineering, plant engineering and chemistry to specialized and application-related courses about formulation processes, battery technology, pharmaceutical engineering and nanotechnology. Additionally, comprehensive courses, such as quality management, project management and hygienic design are offered.

Institut für Thermodynamik / Thermodynamics

Director: Prof. Dr.-Ing. J. Köhler

Link Institute

The research interests at IfT are predominantly concentrated on three major research fields: The research on Thermophysical Properties focuses on molecular simulation to predict phase behavior and transport properties of pure fluids and mixtures and to gain insight into their behavior on molecular level. The Heat and Mass Transfer section aims on achieving a deeper understanding of the flow and heat transfer in complex 3D geometries. The Energy Systems section concentrates on air conditioning and heat pump systems, thermal management and waste heat recovery as well as energy optimal control of highly transient systems. The IfT has a large calorimetric test chamber for the investigation of whole refrigeration cycles and additional test rigs for component measurements.

Institut für Energie- und Systemverfahrenstechnik / Energy and Process Systems

Director: Prof. Dr.-Ing. U. Krewer

Link Institute

Shaping the way we produce or store energy in the future is one of the main areas of research of the Institute of Energy and Process Systems Engineering. Our long-term experience covers modeling and analysis of complex systems, such as batteries, fuel cells and energy storage systems, as well as on complete power plants with combustion processes. Recently we extended our portfolio by research in the area of pharmaceutical engineering. The majority of our research is model-based analysis and optimization, as well as experimental investigation. In all areas of our research we rely on the support of students, whose fundamental knowledge gets imparted in our lectures. Our institute is member of the Battery LabFactory Braunschweig and the Center of Pharmaceutical Process Engineering.



Production and systems engineering

Institut für Adaptronik und Funktionsintegration / Adaptronics and Functional Integration

Link Institute

Director: Prof. Dr.-Ing. M. Sinapius

The Institute of Adaptronics and Function Integration (iAF) teaches and conducts research in the fields of adaptronics and functional light-weight structures. The general target areas are above all the vibration and noise reduction, shape-control and structural health monitoring. The major research projects at the iAF comprise vibration isolation of functional units, manipulating the properties of adaptive machine parts and fiber composite materials, deployable space structures, the adaptive self-controlled production of fiber composite materials, de-icing methods for airfoils and integrated sensor-guided structural health monitoring. The Institute of Adaptronics and Function Integration is in close cooperation with the DLR-Institute of Composite Structures and Adaptive Systems.

Institut für Fabrikbetriebslehre und Unternehmensforschung / Industrial Management and Operation Research

Director: Prof. Dr.-Ing. U. Dombrowski

Link Institute

The thematic focus of the Institute for Advanced Industrial Management (IFU) is located on the Advanced Industrial Management. Activities in teaching, research and practice relate to the areas of “Factory Planning and Ergonomics”, “Lean Production Systems” and “After Sales Service”. The Institute undertakes applied research with the involvement of industries. In the implementation of projects is placed on permanent and close co-operation with industry. The acquired findings are transferred to the scientific training of the students. It is also our concern to ensure the practical relevance and utility of our courses by integrating practical contributions.

Institut für Festköpermechanik / Solid Mechanics

Director: Prof. Dr.-Ing. M. Böl

Link Institute

The central research areas of the chair of Solid Mechanics are on the one side the development of multiscale-multifield models and on the other side the experimental research, among other things necessary for the validation of the aforementioned models. In the area of modelling we develop different types of material models reaching from materials like biodegradable polymers over biofilms to active and passive biological tissues. A peculiarity in this connection constitutes biomechanics. Here, we develop material models reaching from cell over tissue to organ level. Beside the numerical topics experimental investigation are in connection to biomechanics of special interest. Here the focus of interest lies beside rather classical experiments on passive tissues also on electro-chemo-mechanical experimental investigation on active, biological systems at different length scales. Having the bionic idea in mind it is thus possible to transfer knowledge from the nature into the modern technical world.

Institut für Füge- und Schweißtechnik / Joining and Welding

Director: Prof. Dr.-Ing. K. Dilger

Link Institute

Only the appropriate joining technology makes it possible to manufacture innovative products with new materials. The focus of the institute of joining and welding in research and teaching is therefore in the fields of hybrid lightweight construction, production technology and electro mobility as well as in classic joining methods such as (beam) welding, adhesive bonding and mechanical joining methods. For this purpose, not only lectures are held but also current research projects are dealt with, for example within the Open Hybrid Labfactory or in the Battery LabFactory. In addition, the long-time research activities in the field of joining technologies for aluminum die casting components are concentrated in the light metal center Soltau founded in 2014.

Institut für Mikrotechnik / Microtechnology

Director: Prof. Dr. A. Dietzel

Link Institute

The Institute of Microtechnology (IMT) with its 300 m² class 5 clean room plus adjoining laboratories and modern equipment offers the ideal setting for R&D in the fields of micro technological processes and micro systems. Current work is on lab-on-chip systems for medical, pharmaceutical, and biological applications, sensors for aviation and measurement technology e.g. tactile microprobes for coordinate measuring. The 2014 installed femtosecond laser system allows for new strategies in micro structuring and production. A new focus is the setup of innovative micro systems on flexible substrates. The IMT offers courses and project work for Bachelor and Master degree students in microsystem technology, mechatronics, actuators, microprocessor technology and electronics.

Institut für Oberflächentechnik / Surface Engineering

Director: Prof. Dr. rer.nat. G. Bräuer

Link Institute

- Chemische Gasphasenabscheidung (CVD) - Physikalische Gasphasenabscheidung (PVD) - Atmosphärendruck - Plasmaverfahren - Plasmadiffusion - PACVD - Analytik und Prüfung in der Oberflächentechnik

Institut für Produktionsmesstechnik / Production Measurement Technology

Director: Prof. Dr.-Ing. R. Tutsch

Link Institute

The Institute of Production Measurement Technology (IPROM) unifies teaching and research in the field of metrology. The emphasis lies on the acquisition of geometric quantities. Fields of application can be found in all phases of the process of product generation, starting from development and design up to the use in automated production systems. The work of IPROM is focused on optical measurement techniques, either as stand-alone solutions or in multisensory arrangements. Referring to a holistic consideration of industrial production, metrology is treated as an integral part of quality management. IPROM is contributing modules to different study programs of TU Braunschweig and, moreover, is responsible for the master study program “Messtechnik und Analytik”.

Institut für Werkzeugmaschinen und Fertigungstechnik / Machine Tools and Production Technology

Director: Prof. Dr.-Ing. K. Dröder, Prof. Dr.-Ing. C. Herrmann

Link Institute

The Institute of Machine Tools and Production Technology (IWF) has comprehensive expertise in the fields of production technology and process automation as well as sustainable manufacturing and life cycle engineering. Exemplary research areas include design and optimization of manufacturing process-es, tool and process development, development of new machine concepts, simulation, process and quality monitoring, assembly, factory automation, handling and gripping technology, manufacturing processes for hybrid lightweight components, battery production and electric mobility, energy and re-source efficient factory, digital Factory, industry 4.0, Circular Economy, Life Cycle Assessment, Life Cycle Costing. The scope of research and development projects ranges from fundamental and cooperative industrial research at national and international level up to direct industrial cooperation. The dissemination of knowledge is established via lectures, the (direct) involvement of students in research projects as well as innovative teaching-learning concepts, such as business simulations, case studies or the provision of methodological knowledge in education and training in the Lernfabrik.

  last changed 01.03.2019
TU_Icon_E_Mail_1_17x17_RGB pagetop