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Abstract— Pneumatic artificial muscles feature lightweight
and compact design, in combination with high obtainable forces
and an intrinsic compliance. This makes them well suited for
the actuation of kinematic redundant manipulators, but due
to limited deflection of the muscles and highly nonlinear static
and dynamic characteristics, new challenges arises.

In this contribution, redundancy resolution and control
strategies are presented, which take the main actuator non-
linearities into account to make effective use of the advantages
provided by the pneumatic muscle actuators. The presented
approach is demonstrated on a manipulator consisting of
modular segments each actuated by a pair of pneumatic muscle
actuators. The approach proves to allow the avoidance of
the pressure- and deflection-dependent joint limits to ensure
maximum controllability of the manipulator at each point in
the workspace.

I. INTRODUCTION

Pneumatic actuation provides a number of favorable prop-
erties especially well suited to the design of manipulators
working in an obstructed environment: their high force-to-
weight ratio [1] allows to combine a larger number of seg-
ments in a light-weight structure to feasibly realize manipu-
lators with a high degree of redundancy [2], [3], increasing
the movability in the presence of obstacles. Furthermore, as
all possible measures have to be taken to avoid damage to
the manipulator and the environment by unexpected contact,
the inherent compliance of fluidically driven manipulators
provides an important intrinsic safety feature to complement
the use of collision avoidance and detection algorithms in
the control structure [4], [5].

Pneumatic artificial muscles (PAM) feature lightweight
and compact design, in combination with the obtainable
high forces and an intrinsic compliance. This makes them a
suitable choice for the actuation of manipulators, but due to
the multitude of nonlinear effects and the limited contraction,
pneumatic muscles have only been used in a small number
of academic applications so far.

Siciliano presents important principles for the redundancy
resolution of kinematically redundant manipulators in his
1990 survey [6]. Since then, a multitude of application spe-
cific redundancy resolution approaches have been suggested,
focusing on the exploitation of the kinematic redundancy to
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Fig. 1. Manipulator structure and kinematic relations on a single segment.

improve task execution [7], [8]. The suggested approaches
did not yet allow to take actor nonlinearities into account, as
they were developed without regard for the type of actuator
used. When using pneumatic muscle actuators in kinetic
redundant manipulators a new set of challenges arises, due to
limited deflection of the single muscles and highly nonlin-
ear static and dynamic characteristics. In this contribution,
redundancy resolution and control strategies are presented,
which take the main actuator nonlinearities into account
to make use of the advantages provided by the pneumatic
muscle actuators.

The approach is demonstrated for the modular structure
depicted in Fig. 1, consisting of identical manipulator seg-
ments, as presented in [3]. Each of the segments is actuated
by an antagonistic pair of pneumatic muscles (FESTO DMSP
type, nominal length 150 mm, diameter 10 mm).

In order to visualize the results, the approach is demon-
strated on a structure made up by six segments, each with
one degree of freedom (DOF), controlled in two translational
degrees of freedom at the end-effector, thus dealing with four
redundant DOF in the structure.

II. REDUNDANCY RESOLUTION SCHEME

When the number of drives in a manipulator structure
exceeds the number of degrees of freedom necessary for
a specific task, the structure is said to possess redundant
degrees of freedom. For a serial manipulator, the direct kine-
matic problem that relates the joint positions q to the pose
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Fig. 2. Different configurations of the kinematically redundant manipulator
leading to the same pose of the end-effector.

of the end-effector x has a finite number of solutions, most
of which are trivial. However, the inverse mapping is not
uniquely defined for kinematically redundant manipulators,
since an infinite set of possible joint configurations q can be
found, that result in the same pose of the end-effector x. An
example is shown in Fig. 2.

Because no closed-form solution exists, the inverse kine-
matic problem can only be solved numerically. In order
to choose one of the infinite number of possible solutions,
additional tasks or performance criteria has to be defined. For
a redundant manipulator actuated by pneumatic muscles joint
limits have to be taken into account, since the muscles’ range
of deflection is restricted. With the maximal contraction ratio
of 25% and the geometric properties of the structure, this
leads to a controllable joint angle range of −30

◦ ≤ qi ≤
+30

◦
. One important issue when calculating the joint angles

from the set of solutions of the inverse kinematic problem is,
therefore, to keep them as small as possible, e.g. by looking
for a solution that minimizes the cost function J = qTq.
A simple optimization for small joint angles over the whole
structure may still lead to solutions in which single angles
exceed the admissible joint limits. In Fig. 4 (solid lines)
the solution of the inverse kinematic problem for a given
end-effector path is shown. This path is defined in two
DOF in Cartesian space, consequently providing the six joint
manipulator with four redundant DOF. The minimization of
the joint angles for a given pose leads to solutions in which
the cost function J = qTq is minimal and most of the joint
angles are quite small at the expense of the angle shown
in red, to an extent that it becomes larger than the largest
possible angle θmax.Therefore, the joint limits mentioned
above also need to be taken into account in the redundancy
resolution scheme. A proposed weighting function which
allows to minimize joint angles while regarding joint limits is
the so-called logarithmic barrier [9], which can be expressed

as follows:

f(q) =
∑
i

(
qi

qimax

)2

− ln

(
1−

(
qi

qimax

)2
)
. (1)

The weight grows towards infinity as the angle approaches
the joint limits. Therefore, joint angles growing towards the
limits will be severely punished. The shape of the weight
function is shown in Fig. 3.
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Fig. 3. Weighting function over the admissible angle range.

The search for an optimal joint vector q that minimizes the
cost function (1) under the constraint x = g(q) is conducted
via convex optimization. This task is a type of constraint
minimization problem that can be solved using Lagrange
multipliers λ. To combine both constraints into one equation,
the following Lagrangian function can be used:

Λ(q, λ) = f(q) + λT (g(q) − x), (2)

with the unknown row vector λT , which defines a linear
combination of the constraints. A local extremum of the
Lagrangian function can be found using a gradient descent
approach:

∇Λ(q, λ) = 0. (3)

An effective strategy to solve the resulting nonlinear system
of equations is the Newton-Raphson-method, where the zeros
X of the system F(X) = 0 are calculated through the
following linear iteration formulas:

JF(X
p)ΔXp + F(Xp) = 0, (4)

Xp+1 = Xp +ΔXp. (5)

Starting from vector X0, the vectors Xp+1 are iterated
until the absolute value of the change of the solution vector is
smaller than the stopping criteria ε. The system of equations
in (3) can be split into two parts, one for the vector q, the
other for λ: X =

[
qT λT

]T
.

F =

[
F1

F2

]
=

[ ∂
∂qΛ(q, λ)
∂
∂λΛ(q, λ)

]
=

[∇f(q) + JT
g (q)λ

g(q)− x

]
. (6)

The first part is responsible for the optimization and the
second for the constraints. Both parts can be solved using the
Newton-Raphson-method. The only difficulty is to calculate
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Fig. 4. Planned trajectories for the manipulator joint angles resulting from an unweighted minimization of the joint angles (solid lines) and a minimization
of the weighted angles (dashed).

the Jacobian. Equation (7) represents the linear system that
has to be solved. J1 and J2 are the Jacobians of F1 and F2.[

J1(q, λ)
J2(q)

] [
Δq
Δλ

]
= −

[
F1(q, λ)
F2(q)

]
. (7)

To calculate the Jacobian matrix J1, it can be first written
as two separate matrices:

J1 = [J1,1,J1,2] =

[
∂

∂q
F1 ,

∂

∂λ
F2

]
. (8)

Both submatrices J1,1 and J1,2 are derived through in-
spection of equation (6):

J1,1 =
∂

∂qj

∂

∂qi

(
f(q) + λT g(q)

)
. (9)

The same approach for J2 results in

J2 = [Jg(q) , 0] . (10)

With these matrices, the iteration formulation is at hand:

[
qp+1

λp+1

]
=

[
qp

λp

]
−
[
J p
1,1 J pT

g

J p
g 0

]−1 [
F1

p

F2
p

]
. (11)

Fig. 4 shows two inverse kinematics solutions for a
movement of the end-effector of a six DOF manipulator
along a path defined in two DOF in Cartesian space. The
kinematic redundancy is resolved to find consistent joint
trajectories that minimize the specific cost functions. Shown
in solid lines are the manipulator joint angles resulting
from unweighted minimization (solid lines). This simple
minimization still allows a violation of the joint limits,
happening for the angle shown in red. The minimization of
the angles weighted with (1) is shown in dashed lines. As
it can be seen, the use of the weight function ensures the
compliance of the planned trajectories with the joint limits.
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Fig. 5. Load force and contraction curves for an isobarically loaded
pneumatic muscle of type FESTO DMSP-10-150N.

III. JOINT LIMIT ESTIMATION

So far, an optimal solution for the inverse kinematic
problem has been found based on the premise that the angle
in each joint stays as small as possible, avoiding joint limits.
Nonetheless, these limits were supposed to be static and
equal for each joint. This is not the case on a muscle actuated
manipulator, where the maximal contraction is related to the
force it exerts.

The relationship between muscle contraction and force can
be measured under isobaric conditions, as shown in Fig. 5.
The gray areas shown are related to the hysteretic behavior of
the muscles, while the lines represent their averages. These
lines are limited by the working area of the muscle.

The force that a muscle and its symmetric counterpart
must exert to bring the end effector to the desired pose



is related to the position of the joints in space, since the
net torque resulting of the action of a pair of antagonistic
muscles must equal the equivalent torque exerted by gravity
on the manipulator. The diagram in Fig. 1 represents the
actuating forces on the first segment when the manipulator
reaches a static position. The shaded box represents the
following segments as a lumped element of weight mg and
an equivalent center of mass. The latest can be calculated as
a function of the joint vector q and the geometric properties
of the structure. With this into account, the following static
equation is obtained by inspection:

F1 d1 − F2 d2 = mg deq , (12)

being d1 and d2 geometric functions of the joint angle
θ. Since the structure is symmetric, both functions can be
resumed into a single one, namely d(θ), with d1 = d(θ) and
d2 = d(−θ). This function can be derived as the minimum
distance between the center of the joint and the line depicted
by the muscle, which can be written using vector algebra as

d(θ) =
vT

|v| ·
(
ru
lu

)
, (13)

with v is a vector perpendicular to the muscle:

v(θ) =

(
lu
−ru

)
+

(
cos θ − sin θ
sin θ cos θ

)(
l0
r0

)
. (14)

Further geometric analysis of the structure yields a rela-
tionship between joint angle and muscle length l, which leads
to

l(θ) =

∣∣∣∣
(
ru
lu

)
+

(
cos θ − sin θ
sin θ cos θ

)(−r0
l0

)∣∣∣∣ . (15)

Based on symmetry, both muscle lengths can be related to
this function, namely l1 = l(θ) and l2 = l(−θ).

Applying the relationships derived in Eq (13) and (15) to
the measured data displayed in Fig. 5, a characteristic surface
Φ can be derived, as shown in Fig. 6. This surface illustrates
the correspondence between exerted torque, joint angle and
pressure, while its domain is restricted by the working area
of the pneumatic muscle. These restrictions are of interest,
since they determine indirectly the joint limits.

Intersecting this restricted surface with the plane of con-
stant θ produces a segment of line relating air pressure and
torque, which can be expressed as

τ = τθ(P ). (16)

A second segment is obtained for the antagonistic muscle
as well, replacing the angle with its negative. This two
segments can be plotted together as in Fig. 7. Infinite
combinations satisfying Eq. (12) can be found, so that τ θ −
τ−θ = mgdeq . The selected pair is the one that compromises
minimal air pressure.

The torques of each muscle can be determined in Fig. 7
as well, projecting the marked points into the torque axis.
This value can be used to calculate joint limits, by looking
at the working area of the muscles actuating the joint.

Fig. 6. Characteristic surface of a muscle considered as a torque actuator.
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Fig. 7. Torques as a function of pressure P for a given angle θ.

The projection of the characteristic surface Φ into the
torque-angle plane is shown in Fig. 8. The feasible joint
angles can be computed for both muscles evaluating the
working area for the given torques, as highlighted by the dot-
dash line. The absolute value of the smallest of the limits,
indicated in the figure with a blue line, is the resulting joint
limit.

Approximating the characteristic surface with a polyno-
mial function and operating accordingly, a closed mathemat-
ical function ξ can be found, such that

qmax = ξ(q). (17)

IV. NUMERICAL IMPLEMENTATION

A solution to the inverse kinematic problem was intro-
duced in section II. With this approach, an optimal vector
in joint space can be computed numerically, as a function
of joint limits and an underdetermined pose in Cartesian
space. In section III, a method to evaluate joint limits as
a function of the joint vector was described. Nevertheless,
both problems should be solved simultaneously in order to
ensure optimality and conformance to feasible joint angles.



Fig. 8. Working area of the actuated joint and derived joint limit.

A first approach to solving both problems together would
be to replace joint limits in Eq. (1) with the closed function
(17), and continue to solve the inverse kinematics numer-
ically. Nonetheless, the matrices in (11) result in an ill-
posed system even after regularization, and consequently
cannot be solved with current processors. This situation also
renders other quasi-Newton methods unusable. On the other
hand, replacing the limits without recomputing the iteration
Jacobians yields a highly numerically unstable system, which
requires the implementation of an update method [10].

A means of dealing with this issue is the use of a
continuation method, employing a parameter to move from
a problem with an easily determined solution to that of
the original nonlinear problem. A new problem is therefore
defined, namely the resolution of

G(α, (q)) = ∇Λ(q, λ) − (1− α)∇Λ(q0, λ0) = 0, (18)

solving iteratively for values of α increasing from 0 to 1,
and starting from a known solution q0, λ0. It can be seen
that, for α = 0, the system adopts the trivial solution
q = q0, while the staring vector vanishes for α = 1.
After each iteration, the values of the limits are updated, and
the Lagrange function is solved numerically. This method
provides for the simultaneous resolution of Eq. (3) and (17),
and its stability is assured by the Homotopy Convergence
Theorem [11].

Fig. 9 shows the results of the complete algorithm for the
first joint of the manipulator. This joint is generally the one
that must exert the highest torque, since its axis is parallel
to gravity. Therefore it can be seen that the limit decreases
as the joint angle gets larger and the manipulator’s center of
mass moves farther away from its rest position.

V. PROPOSED CONTROLLER

Appropriate control structures for pneumatic actuators in
motion control has been a topic of recent studies. Although
different approaches have been investigated [12], [13], most
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Fig. 9. First-joint value and limit for a given motion in space.

difficulties revolve around the absence of a global dynamic
model. In our case, the problem is aggravated, since the goal
is to control a set of joints actuated indirectly by antagonistic
pneumatic muscles. To simplify the task we will focus on a
single joint as in Fig. 1, controlling its angle by adjusting
air pressure in two muscles. Each muscle is actuated by an
electronic pressure valve, whose time constant is depreciable.
Even though no dynamics are specified for this plant, it can
be assured that it possesses no pure integrators, since the joint
angles are function of the contraction ratio of the muscles
only. Therefore, a simple approach to controlling joint angles
is to implement a PI controller, given its robustness and
asymptotic tracking capabilities of constant input.

A biasing pressure must be added to the output of the
controller, since the muscles can only contract when the
pressure in their interior is higher than the atmospheric
pressure. Nonetheless, biasing the muscle with half the
nominal pressure forces an unnecessarily large pretension,
hence reducing the maximal torque difference, while using a
different value yields to saturation problems. A different ap-
proach to this issue is to feedforward a workspace-dependent
air pressure. This leaves the controller with the only task
to compensate disturbances and model uncertainties, hence
increasing the dynamic response. Feedforward values can be
obtained out of the evaluation of the characteristic surface
done for the redundant resolution of the inverse kinematics.

Further inspection of the surface Φ gives rise to a second
control strategy. The values obtained by differentiating the
pressure with respect to joint angle and evaluating it at the
working point can be used as a variable gain in the control
loop, which causes two positive effects. In the first place,
varying the gain of a PI controller varies the controller itself,
normalizing indirectly its output for different states of the
muscles. On the other hand, it accounts for asymmetry in the
actuators, since the increment in pressure needed to contract
the muscle an extra 1% is larger than the decrement needed
to let the muscle stretch that same 1%.

Finally, the transport delay is measured in the pneumatic
system and integrated in the controller. A block diagram
including the proposed controller can be seen in Fig. 10
and a set of step responses is shown in Fig. 11, for both
the proposed controller and the biased complementary PI
controller.
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Fig. 10. Block diagram of the closed loop system with position control.
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VI. CONCLUSION

Due to their limited deflection and static nonlinear charac-
teristics, pneumatic artificial muscles have not gained wide-
spread application in manipulator motion control. Although
the obtainable high forces and low weight of those pneumatic
muscles lend themselves to the actuation of highly segmented
manipulator structures, the inherent nonlinearities of the
pneumatic actuator have prevented their use so far.

In order to obtain feasible control results when actuating
kinematic redundant manipulators, the dominant nonlinear
muscle characteristics have to be taken into account in the
redundancy resolution phase. In this work, an algorithm is
presented to transform the nonlinear longitudinal muscle
characteristics into the corresponding relation at the joint
level of an antagonistically actuated, segmented manipulator.
It is shown how this can be used to predict the variable joint
limits from the nonlinear muscle characteristics and how
these can in turn be taken into account in the redundancy
resolution process. This step ensures the calculation of joint
level trajectories, that allow a maximal controllability in spite
of the actuator nonlinearities.

As the nonlinear mapping on the joint level has been
derived, a control structure is presented which exploits this

knowledge to compensate the manipulators nonlinearities by
an adaptive gain-scheduling approach.
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chen Gelenken für alltägliche Assistenz- und Serviceaufgaben,” 2006-
2010.
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