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Abstract— A control structure is presented for manipulators
actuated by joints with pairwise antagonistic pneumatic mus-
cles. The used muscles and the resulting behavior of a single
manipulator joint featuring antagonistic muscles in a symmetric
configuration are characterized.

Pneumatic joint actuation results in a hysteretic behavior,
it is shown that in this case the hysteresis can be described
by a Preisach hysteresis model. This hysteresis model allows
the construction of a model-reference following controller with
a model control loop designed for good tracking performance
and a disturbance rejection loop optimized for suppression of
disturbances.

Experiments confirm the improvement in tracking control
as compared to the system solely controlled by a feedback
regulator.

I. INTRODUCTION

Pneumatic muscles have matured to become reliable,
highly durable low cost actuators. Due to favorable charac-
teristics such as high power-to-weight ratio and their inherent
compliance, they are well-suited for the design of light-
weight versatile robots [1], [2].

A. Muscle characteristics

Most of the pneumatic muscles in use today are based on
the McKibben artificial muscle, consisting of an air proof
so-called rubber bladder which is surrounded by a sheath
of inextensible fibers and closed at both ends by caps [3].
When pressurized, the bladder increases in volume, resulting
in an expansion in radius and an axial contraction due to the
inextensible sheath. When attached to an appropriate bearing,
the pressurized muscle is able to exert a pulling force. When
the pressure is released, the deformed muscle relaxes slowly,
allowing it to passively return to its original shape. When
expanding against an opposing force the muscle is prone
to buckling. Therefore, just like their natural counterparts,
pneumatic muscles can only feasibly exert pulling forces
and have to be used in an antagonistic setup. One of the
main challenges in the application of artificial pneumatic
actuators is their difficult controllability, as the available
muscles exhibit a wide range of nonlinear effects. Apart
from omnipresent creep, their deflection, which can reach
values of up to 25% of the muscle length in the unloaded
case, is dependent upon the applied air pressure and the
acting force. Due to frictional effects in the air path and the
muscle material, the deflection exhibits an asymmetrically
hysteretic behavior, see filled areas in Figure 1, which
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Fig. 1. Hysteretic behavior of the isobarically loaded muscle. Contraction
forces and displacements are denoted with a negative sign.

prohibits the precise open loop control of a single muscle.
The manufacturer guarantees a contraction hysteresis of at
most 3% of the nominal length. The deflection error of the
muscle due to the hysteresis can thus reach values of over
10% of the possible stroke.

The gray contours in Figure 1 depict the load force and
contraction loops measured at different air pressures at a
frequency of 0.1 Hz, acquired for a pneumatic muscle of
type DMSP-10-150N manufactured by FESTO. To derive a
description for the mean relation between contraction and
load force for a given air pressure, the mean force for a
certain length is calculated from the flanks of the loops and
displayed as a colored line. The resulting mapping is given
in Figure 2.

An abundance of approaches has been suggested to model
the resulting mapping [4], [5], [6]. Boblan et al. compare
several possible approaches to describe the static relation
between contraction, pressure and muscle force [7]. He
concludes that the static relation of a single muscle can be
described with best accuracy by a sine model, consisting of a
superposition of linear and sinusoid components. Therefore,
a sine model approach was chosen in our investigations
and parameterized using the measured data displayed in
Figure 2. Consequently, this model was inverted to provide
the necessary air pressure for an admissible combination of
muscle contraction and muscle force.
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Fig. 2. Static characteristics of used muscle type.

B. Manipulator setup

Fig. 3 (left) depicts the manipulator structure as introduced
by Schmitt et al. in [1]. A single stage consists of a pair
of antagonistic pneumatic muscles manufactured by FESTO
of type DMSP-10-150N, possessing a working length of
150 mm and a muscle diameter of 10 mm. From the module
design depicted in Fig. 3 (right), the relation between the
joint angle ϕ and the corresponding effective actuator lengths
LA and LB can be derived:
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An inverse mapping of the muscle statics is derived by
combining the kinematics of a single segment in (1) and
the static mapping relating the air pressure and the applied
force to the resulting mean contraction in Fig. 2. This inverse
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Fig. 3. Manipulator structure (left) and kinematic setup of a single
manipulator segment (right).

mapping provides the necessary air pressures in each muscle
for a combination of desired joint angle and individual
muscle forces and is integrated in a feedforward control
structure as displayed in Fig. 4. The described feedforward
structure compensates the static nonlinear relations between
the mean values of the contraction force and displacement to
the pressure. Depending on the combination of the muscle
forces, drive torques as well as antagonistic torques will
be produced. The antagonistic torques do not result in any
motion, as they merely cause a prestress in both actuators,
that can be used to vary the joint’s stiffness [8]. In the
following, the external force input is only used to generate
a prestress in the system.

In the antagonistic setup the same effects causing hys-
teretic behavior in a single muscle will result in a hysteretic
behavior between the desired and the measured joint angle
due to the symmetric setup of the joint actuators the resulting
hysteretic behavior will consequently be symmetric.

II. PREISACH HYSTERESIS MODEL OF THE
ANTAGONISTICALLY ACTUATED SEGMENT

A variety of hysteresis models have been applied in
an attempt to model the inherent hysteretic behavior of
pneumatic muscle actuators. Minh et al. successfully demon-
strated the application of a Maxwell-slip-model for the
description of the contraction length to force behavior for
a single muscle [9], as well as for the torque hysteresis for
the movement in a joint driven by an antagonistic muscle
pair [10]. Schindele presented the modeling of the force-
volume-characteristics based upon a Bouc-Wen-Model [?].
While the described modeling results provide a good re-
production of the behavior of single muscles, no control
approach is presented that can be extended to incorporate
the control of a joint driven by an antagonistic muscle pair.
Attempts have been made to apply classic hysteresis mod-
eling approaches such as Preisach models to the modeling
and control of pneumatic muscles and pairs of pneumatic
muscles [12], [13].

The results obtained in these works provided only limited,
superficial modeling success. The congruency condition,
which is an important necessary precondition to ensure the
applicability of a Preisach-approach [14], is not fulfilled by
the asymmetric hysteretic behavior of a single pneumatic

Fig. 4. feedforward joint angle control.
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Fig. 5. An elementary hysteresis operator γ̂ (left) and Preisach plane
(right).

muscle. Therefore the models derived in these works were
only able to reproduce major loops similar to ones used in the
identification process of the model. The main potential of a
Preisach model, the ability to model the minor loop behavior
and the model inversion for an approximate compensation
of the hysteresis could therefore not be exploited. It will be
shown that the use of the presented symmetrical antagonistic
setup featuring a pneumatic muscle pair with a compensa-
tion of the static mean nonlinear force-contraction-pressure
characteristics results in a symmetrical hysteresis behavior
which fulfills all necessary conditions to allow modeling by
a Preisach model.

A. Preisach model of hysteresis

The Preisach hysteresis model was first developed by
Preisach in 1935 in an attempt to model the physical mecha-
nisms of magnetization [15]. Although it was first regarded to
be a physical model of hysteresis, the Preisach model turned
out to be a phenomenological model that has mathemati-
cal generality and is applicable to phenomena from many
disciplines. A rigid mathematical generalization has been
presented by Mayergoyz, who also determined the necessary
conditions for the applicability of such a model [16].

The simplest type of hysteresis operator γ̂αβ can be
represented as rectangular loops in the in-/output-plane, as
shown in Fig. 5 (left). Its output switches between +1 and
−1 depending on the initial output and the history of past
inputs, representing a local memory. In addition to the set
of operators γ̂αβ , with α and β corresponding to the “up”
and “down” switching values of the input u(t), a weighting
function µ(α, β) must be considered, which is called the
Preisach function and can be identified for a given system.
The resulting Preisach model with the system output f(t) is
then given by

f(t) =

∫ ∫
α≥β

µ(α, β)γ̂αβ (u(t)) dαdβ. (2)

The switching values are subject to the relation umax ≥ α ≥
β ≥ umin, with umax and umin being determined by the
system’s physical properties. The feasible combinations of α
and β for the triangle T are displayed in Fig. 5 (right). The
output of the Preisach model is determined by integrating the
product of the weighting function µ(α, β) and the operator
γ̂αβ over the triangle T . The model output is dependent on
the extremal values in the history of the input sequence u(t)
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Fig. 6. Input sequence with dominant, as well as wiped out extremal values
(left) and Preisach plane with correspondingly activated elemental operators
(right).

as depicted in the example in Fig. 6. The set of dominant
maxima and minima determines the output of the system,
due to the wipe-out property of the Preisach model, input
values larger than past dominant maxima or smaller than
past minima wipe out the effects of the older extrema. The
dominant extrema are marked in the input sequence depicted
in Fig. 6 (left). At any instant the Preisach plane can be
divided into two regions, the one in which the relay operator
outputs are +1, marked dark gray in Fig. 6 (right), and
the one in which the relays’ outputs are −1. Both areas
are separated by a descending staircase function, whose
corners are determined by the past reversal points in the
input sequence. After applying the identification algorithm
presented by Mayergoyz to determine the Preisach function
from first order descending curves [14], the Everett map E is
defined [17], which contains the change of the output value
f(t) as a function of α and β:

E(uα, uβ) = fα − fαβ . (3)

Since α ≥ β during the measurement, only one half of
the map can be constructed by measurements. The missing
values are given by fαβ = −fβα. Thus the value of fαβ can
be calculated for any single combination of α and β. With
the sets of past dominant maxima H and dominant minima
L, the Preisach model output can then be expressed for any
given sequence of inputs u(t) by

f(t) = fmin +

n(t)−1∑
k=1

[
fHk,Lk

− fHk,Lk−1

]
. . . (4)

+

{ [
fHn,u(t) − fHn,Ln−1

]
if u̇(t) ≤ 0,[

fu(t),u(t) − fu(t),Ln−1

]
if u̇(t) ≥ 0,

with fmin being the output corresponding to u = umin (all
relays set to −1).

For a given Preisach model a computationally compact
inverse can be derived from (5) if the first-order curve
data surfaces fαβ are strictly monotonically increasing with
respect to the parameters α and β. This will result in the
inverse of the Everett map G, given by

G(fα, fαβ) = uα − uβ . (5)

With this mapping the unknown input u(f(t)) to achieve the



Fig. 7. Comparison of hysteretic behavior model and measurements.

desired output f(t) can be computed using

u(f(t)) = umin +

k−1∑
i=1

G
(
Fdi+1

, Fdi
)
+G (f(t), Fdk) , (6)

with Fd being the set of past output extreme values.
Mayergoyz recognized that a hysteresis nonlinearity can

only be represented by a Preisach model if it fulfills the
wiping-out property and minor-loop congruence property
conditions [16]. The fulfillment of the properties by the used
system was shown in [18].

B. Identification and feedforward compensation

The hysteretic behavior of the system was identified by
producing a series of first order descending curves. An input
signal was chosen to lead the output along an ascending
branch of the major loop. At distinct values, chosen as
suggested in [19], the input slope is reversed producing a
descending curve in the input-output-diagram that terminates
at negative saturation. Due to the symmetric hysteresis loop
it is apparent, that the relation

µ(α, β) = µ(−β,−α) (7)

is valid. Therefore it is obvious, that for the identification of
µ(α, β) also the first-order increasing curves could have been
used which are attached to the limiting descending branch.

After the derivation of the inverse Preisach model, as
presented in [20], the desired joint angle is fed into the
inverse model whose output serves as the input to the
feedforward structure in Fig. 4.

C. Comparison of hysteresis model and plant behavior

Figure 7 shows a comparison of the modeled and the mea-
sured hysteretic plant behavior for quasistatic movements.
It can be shown that the static hysteresis nonlinearity is
reproduced by the derived Preisach hysteresis model. Minor
deviations occur in the vicinity of turning points which decay
along the further movement.

III. CONTROLLER DESIGN

To ensure precise tracking in the presence of distur-
bances, creep, and model uncertainties, it is imperative to
complement the feedforward compensator with a feedback
controller. The idea of the control scheme, depicted in Fig. 8,
is to combine the feedforward hysteresis compensator and

a model-following controller (MFC) based on the nominal
dynamic model to implement an effective tracking controller.
The fundamental idea behind the model-following controller
structure is to separate the tracking control from the distur-
bance rejection problem in the controller design, by including
a plant model in the model control loop which is controlled
by the tracking controller. As the model control loop is
disturbance free, the tracking controller can thus be designed
to provide good tracking performance. The output of the
plant model serves as reference value to the disturbance
rejection loop containing the actual plant, providing a filtered
reference. The main advantage of the setup is that the inverse
plant model, which is usually needed for feedforward control,
does not need to be calculated, as all the signals in the control
loop can be calculated with the direct model.

The controller output in the model loop, which is neces-
sary to produce an output of ϕmod is known. The output
of the tracking controller provides a feedforward control
signal which compensates the dynamic behavior modeled
in the previous loop and is added to the output of the
disturbance rejection controller. If the plant model reflects the
exact behavior of the actual plant, the plant will be driven
to the desired values by the feedforward signal alone. As
there are always modeling errors and disturbances acting on
the actual plant, the disturbance rejection controller has to
compensate those effects. Since the controller in the model
loop provides for the tracking performance, the controller
of the second loop with the actual plant can be designed
solely for good disturbance rejection. Since there is only
a feedforward connection between the loops, the stability
of the control system is not compromised, as long as the
stability of the individual control loops is ensured. For more
information regarding MFC see Osypiuk et al. in [21]. Due
to the hysteretic behavior of the plant, its gain is dependent
upon the current amplitude and direction, while it shows a
similar dynamic behavior over the range of possible joint
angles. A typical step response along with an approximation
of the dynamic behavior as a second order system with two
real poles at s = 23rad/s is shown in Fig. 9. The gain
of the nominal plant model is derived from the in-/output
characteristic as shown in Fig. 9. With this model a PI
controller is designed such that one of the poles is canceled,
while the gain is set to provide for a damping of D = 1/

√
2.

The hysteresis nonlinearity induces an uncertainty in the
gain parameter of the plant which has to be taken into
account in the controller design for the disturbance rejection
loop. Although the resulting hysteretic loops lead to a
parametric uncertainty, the maximal and minimal possible
gain values can be derived from the in-/output hysteretic
characteristic of the plant. On any point of a minor loop,
the slope of the tangent can be regarded as the instantaneous
gain. The extremal gains on a minor loop define the range of
gain uncertainty along this minor loop, which can be seen
as the bounding sector indicated in Fig. 10. As shown in
Sec. II-C the hysteretic plant’s in-/output behavior can be
described by the derived Preisach model. The minor loops
can therefore be described by the measured Everett maps, see
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Fig. 8. Control structure with feedforward hysteresis compensator and model-following controller consisting of model and disturbance rejection loop.

0 0.05 0.1 0.15 0.2 0.25

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 a
m

pl
itu

de

Time (s)

 

 

Step Input
Measured Response

2nd Order Approximation

Fig. 9. Normalized step response of the joint angle plant, as mean of rising
and falling step.

nominal gain

sector of gain
uncertainty

�des

�
m

e
a
s

Fig. 10. Schematic of the gain approximation from the hysteretic charac-
teristics.

Fig.7 (right). The gain in any points along minor loops then
corresponds to the derivative of the Everett map E(uα, uβ)
for this combination of α and β. It follows that the bounds
of the gain uncertainty between input and output within
the major loop can then be determined by calculating the
maximal and minimal slope on the Everett map.

Along with the parameter uncertainty, an unstructured
uncertainty bounded by the function displayed in Fig. 11 is
taken into account in the controller design process, to account
for higher frequency influences and modeling errors. To
ensure a good disturbance rejection, especially for stationary
and low frequency disturbances acting at the plant output,
the sensitivity function is weighted accordingly in the H∞-
controller design. The disturbance rejection controller is then
derived as a robust controller for the uncertain open-loop
plant model via the µ-synthesis, as described in [22].

Figure 12 shows a comparison of the step response be-
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haviors of the controlled joint angle. It can be seen, that
the system’s tracking dynamics clearly benefits from the
model-following control design. While showing comparable
overshoot, the output’s rise time is significantly reduced by
the combination of inverse Preisach feedforward compen-
sation in combination with the reference model following
control loop. The disturbance rejection controller, which can
be designed specifically for this purpose, allows a significant
reduction of the influence of high frequency noise and load
fluctuations resulting from stick effects in manipulator joints.

IV. CONCLUSION

In this paper the control architecture for a manipulator
actuated by pneumatic artificial muscles is presented. After
a brief description of the used muscle type and its pressure-
force-length-relations, these characteristic are used to imple-
ment a feedforward structure for the control of a single pair
of antagonistic muscles in the manipulator structure.

Due to the symmetric setup of the muscles in the used
manipulator and the feedforward structure, the nonlinear
mean relation of the muscles are compensated in the un-
loaded case resulting in a symmetric hysteresis of the open
loop plant between desired and measured joint angle. It
can be shown, that this symmetric hysteresis nonlinearity
fulfills all necessary conditions to describe it by a Preisach
model approach. A Preisach model is identified, its inverse
is used for an approximate feedforward compensation of the
hysteresis nonlinearity.
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The joint controllers are realized as a model-following
controller, the direct and inverse Hysteresis model is used
to control the model-control loop, its controller output is
fed into the disturbance rejection loop as a feedforward
term. The controller of the model loop is designed for
good tracking performance, while the disturbance rejection
controller is optimized for good disturbance rejection in
the presence of disturbances and parametric uncertainties.
Measurements are presented to demonstrate that the resulting
controller outperforms comparable single loop controllers in
experimental investigation.
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