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Abstract— Recently, automated driving has more and more
been transformed from an exciting vision into hands on reality
by prototypes. While drivers are used to assistance and maybe
even automation for driving within a lane, it is exciting to
dare a step ahead: Deciding and executing tactical maneuvers
like lane changes in automated vehicles without any human
interaction. In this paper, we present our approach for tactical
behavior planning for lane changes. We present a way to
tackle perception uncertainties and how to achieve provident,
prediction-based behavior planning. For this, we introduce a
novel framework to plan in high-dimensional, mixed-integer
state spaces in real-time. Our approach is evaluated not only
in simulation, but also in real traffic. The implementation has
recently been demonstrated to the public in the Audi A7 piloted
driving concept vehicle, driving from Stanford to the Consumer
Electronics Show (CES) 2015 in Las Vegas.

I. INTRODUCTION

Technology affine drivers are used to handing over some
mainly stabilization level related driving tasks to driver assis-
tance systems as an adaptive cruise control or lane keeping
system. The next big step is to automate behavior planning
on a tactical level. Among tactical behavior planning tasks
are decision making, whether lane changes are beneficial
and possible, if a vehicle should execute some cooperative
driving behavior, or particular maneuvers in intersection
handling. Tactical driving behavior has to consider the (per-
ceived), current driving situation and addresses a planning
horizon of something between 100 ms and 30 s. It is often
attributed as the intelligence of the automated vehicle.

The central challenge for tactical behavior planning is the
complexity of real world traffic situations and the uncertainty
in its perception with todays imperfect sensor systems. Tacti-
cal behavior planning for automated driving requires rapidity,
consistency, providentness and determinism. To achieve this,
we present a framework for tactical behavior planning in
uncertain, mixed-integer state spaces. We introduce a distinc-
tion into a measurement model, prediction model and reward
model and present implementations for each of these.

For that purpose, this paper is structured as follows: In
section II we define requirements and illustrate necessary
scenarios to be handled by a tactical behavior planning for
lane changes. Section III presents the framework for lane
change behavior planning. This is followed by an evaluation
in a simulation environment as well as in real traffic in
section IV. Last of all, section V finalizes this paper with
conclusions and a research outlook.

S. Ulbrich and M. Maurer are with the Institute of Control Engineering,
Technische Universität Braunschweig, Hans-Sommer-Str. 66, 38106 Braun-
schweig, Germany {ulbrich, maurer}@ifr.ing.tu-bs.de

II. BACKGROUND

Donges [1] defined different levels of driving tasks. He
introduced the classification of driving tasks into navigation
tasks (strategic level), guidance tasks (tactical level) and
stabilization tasks (operational level). The focus of this
paper are guidance tasks, which entail any tactical behavior
planning of an automated vehicle. Figure 1 illustrates tactical
behavior planning as a part of the overall architecture of an
automated vehicle.
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Fig. 1. Tactical behavior planning for lane changes as a part of the overall
functional system architecture of an automated vehicle (cf. [2], [3], [4])

A. Related work

A review of relevant literature has been presented in
Ulbrich & Maurer [5] already. Therefore, the focus is limited
to some particular aspects of lane change planning and gap
selection not yet covered in [5]. In simulated environments,
the development of driving behavior models, especially car-
following models for simulation environments has been a
focus of research for several decades. Literature is vast and
has extensively been reviewed by e.g. [6], [7], [8]. Extensions
of these models exist to address lane changing and gap
selection aspects, in which cooperative behavior is a central
topic. Gipps [9] proposes a framework for lane change
decision making in sub-urban driving situations. Hidas [10]
extends the Gipps-model [9] by a gap quality evaluation.
In contrast to real world implementations, most simulation
models simplify the world by simulating “lane changing [...]
as an instantaneous action” [11, p. 46]. Thus, any kind of
options like aborting an already started maneuver are not



considered. Moreover, no kind of uncertainty is modeled
or considered. Hence, all decisions are based on perfect
knowledge about the other vehicle’s states, intentions and
willingness to cooperate.

Ardelt et al. [12], [13] present BMW’s lane change ap-
proaches in its ConnectedDrive-project, focused on highly
automated driving on highways. A hybrid, deterministic state
machine is used to define the superordinate driving behavior
and a decision tree is used as a hierarchical decision making
process. The superordinate state is determined by traversing
the decision tree, depending on the driving goal derived
by the situation interpretation and the current feasibility of
maneuvers.

Ruf et al. [14] develop the SPARC framework for behavior
and trajectory planning. The prediction model is separated
from the reward model. So far, it has only been applied
on perfect, simulated data but seem to scale well with real,
uncertain sensor data.

Brechtel et al. [15] showed a way of using Markov deci-
sion problems for lane change decision making. They based
their decision process’ state variables directly on measured
values like relative distances and velocities toward surround-
ing vehicles. Brechtel et al. [16] used a learning algorithm
to translate a value-continuous intersection merging problem
into a discrete approximation of the same to be solved by
a partially observable Markov decision process (POMDP).
They evaluated it based on simulated data.

The authors presented and evaluated a lane change de-
cision making approach based on a partially observable
Markov decision process [5]. Here, the state space was
discretized in order to render Branch and Bound based
methods feasible. In [4], appropriate evaluation metrics and
a detailed evaluation has been presented.

In this paper, we no longer discretize the state and ob-
servation space. We allow high-dimensional, mixed-integer
state spaces with uncertainties as they occur in the real world.
Only actions remain as value-discrete tactical choices (either
do a lane change or don’t).

B. Requirements

Figure 2 illustrates a typical decision making problem for
performing lane changes in urban environments. Whether a
lane change is possible depends on the relative distances,
velocities and accelerations of other vehicles around the ego
vehicle. Whether a lane change is beneficial depends on
the road network, the mission and the behavior of other
vehicles around the ego vehicle. As stated in [5], behavior
planning for automated driving requires rapidity, coherency,
providentness and determinism.

• Rapidity: Tactical behavior planning needs to be
fast. Despite some strategic decisions (e.g. route re-
calculation) may take more time, at least tactical be-
havior planning needs to be taken fast (<100ms).

• Consistency: A decision should fit in the framework
of previous decisions. Similar to a human driver, a
behavior planning module should not constantly change

its mind about the choice of driving maneuvers. All
decisions should align well with a long term goal.

• Providentness: Behavior planning should have some
foresight to predict how the situation will look like after
a maneuver execution or the elapse of some time.

• Determinism: Last of all, decision making should be
predictable in a sense that it can be tested and validated
according to functional safety requirements.

Fig. 2. Typical scenario for lane change decision making with two dynamic
objects and three regions of interest rear left (RL), front left (FL) and front
ego (FE)

C. MDPs, POMDPs and SN-MPCs

Markov decision processes (MDPs) are a general frame-
work to model planning and decision making problems.
Executing an action u ∈ U , given the system is in state
x ∈ X , is what will be called as a part of a policy π : x→ u.
The goal of such a planning problem is to find an optimal
policy (sequence of actions) π∗ that maximizes the expected
reward rτ with discount factor γ over the time horizon T :

RT = E[

T∑
τ=0

γτ ∗ rτ ] (1)

Anyhow, true system states are typically not observable.
Partially observable Markov decision processes (POMDP)
help to accommodate this issue by the introduction of the
idea of a belief bel(xt) of being in a state xt at time t.

A POMDP is represented by the tuple (X, U, T, R, Z, O)
where:

• X is the set of all the environment states xt at time t.
• U is the set of all possible actions ut at time t.
• T is the X ×U ×X → [0, 1] is the transition function,

where T (xt, ut−1, xt−1) = p(xt|ut−1, xt−1) is the
probability of ending in state xt if the agent performs
action ut−1 in state xt−1.

• R is the X × U → R is the reward function, where
r(x, u) is the reward obtained by executing action u in
state x.

• Z is the set of all measurements or observations zt at
time t.

• O is the X × U × X → [0, 1] is the observation
function, where O(xt, ut−1, zt−1) = p(z|u, x) give the
probability of observing z if action u is performed and
the resulting state is x.

Typically the set of states X , actions U and measurements
Z are modeled value-discrete. This increases the computa-
tional complexity and therefore POMDPs are often avoided
for real-time applications.

In model predictive control (MPC), the set of states X
and actions U are typically assumed to be value-continuous



only and the models R and T are assumed to be linear
or quadratic. There are computationally efficient solution
methods for finite, (receding) optimization horizons. Ex-
tensions to the general model exist to consider non-linear,
e.g., mixed-integer state spaces and uncertain measurements
Z. Mixed-integer POMDPs and stochastic, non-linear model
predictive control (SN-MPC) are essentially two overlapping
frameworks to model similar technical challenges.

The presented implementation will use the separated, non-
linear, mixed-integer observation O, prediction T and reward
R models of a POMDP to handle uncertainties and non-
linearities. It will make use of a finite, receding optimization
horizon as in an MDP to render online solution methods
feasible.

III. BEHAVIOR PLANNING FRAMEWORK

This section presents a novel framework for tactical be-
havior planning in uncertain, mixed-integer state spaces. The
planning framework consists of four components compo-
nents; it is illustrated in figure 3. A measurement model
to account for uncertainties in the transformation of mea-
surements into state estimates, a planning core to address
the behavior planning and decision making and a situation
prediction model and a reward model to support the planning
core in its behavior planning.
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Fig. 3. Behavior planning framework

A. Measurement Model

The task of the measurement model is to translate obser-
vations about the driving situation into an aggregated belief
on the system’s state. Observations entail value-discrete
(e.g., number of lanes) and value-continuous aspects (e.g.,
distance to a front vehicle). Some aspects of the system
state are observable (e.g., how long the indicator has been
switched on already), and hidden. Hidden state variables may
contain information, whether a lane change seems possible
or beneficial in the current situation, which gap is the best
to head to, etc.

Figure 4 illustrates three different stages within the mea-
surement model. The leftmost part of the image depicts
a visualization of the context model as an abstract scene
description of the vehicle itself and its environment. The
next part visualizes a situation representation of lane change
relevant information. A dynamic Bayesian network is used to
obtain beliefs for the distributions of hidden state variables.
The rightmost part of figure 4 depicts the dynamic Bayesian
network.

Fig. 4. Estimation of situation aspects by a Bayesian network. Left: scene,
center: situation, right: visualization of dynamic Bayesian network

For planning lane changes, the four high-level hidden state
variables are, whether a lane change is possible and beneficial
to the left and right respectively. To calculate state estimates
for those abstract hidden state random variables, several other
underlying random variables need to be calculated:

1) Lane Change Possible Estimation: To estimate if a lane
change is possible, we have to consider if it is possible due
to the dynamic traffic situation, due to the infrastructure, due
to ability induced skill restrictions and due to the system’s
current skill-level induced skill restrictions.

2) Lane Change Beneficial Estimation: To estimate if a
lane change is beneficial, it we need to evaluate the dynamic
traffic situation for relative velocity gains on neighbor lanes
and if a lane change is beneficial due to infrastructure related
information.

3) Gap Quality Assessment: High traffic densities neces-
sitate to adjust the automated vehicle towards a cost-optimal
gap. Therefore, the most appropriate gap for a lane change
is determined.

4) Calculating and Propagating Uncertainties: Among
the key challenges for tactical lane change behavior planning
is the inherent uncertainty from any kind of environment
perception modules. State estimates from perception modules
come along with an uncertainty already. Based on this,
hidden state variable estimates are calculated by the dynamic
Bayesian network. To obtain a variance estimate for those as
well, we use an unscented transform with a minimal set of
sigma points in the same way it is used in an Unscented
Kalman filter [17, p. 65].

Details about the measurement model are provided in
Ulbrich & Maurer [18].

B. Tactical Behavior Planning Core

The behavior planning core uses the state believes to
derive behavior decisions. It utilizes the reward and situation
prediction models as illustrated in figure 3. It decides about
-to the reward model- optimal tactical behavior actions and
commands those to a subordinate trajectory planning module.

POMDP-based and stochastic non-linear model predictive
control approaches are often not applicable, due to their com-
putational complexity. Luckily, a lot of domain knowledge
can be incorporated in the action selection process to tailor
the decision process to the particular issue:



• Planning horizons are relatively short: It is typically not
possible to make long-term predictions of more than
maybe 10 s, anyway. Hence, there is no need for a high,
possibly infinite planning depth T .

• Action alternatives are sparse: Typically several varia-
tions of the same maneuver exist, but only very few
mutually exclusive, discrete action alternatives.

• Mixed observability: Some internal states (e.g., if a lane
change is in progress) are free of uncertainty. Hence,
they reduce the model complexity by a lot and may
even rule out some action alternatives at all.

• Limited planning accuracy needed in the far future:
After all, only the immediate, next action will be prop-
agated to the subsequent modules, e.g., for trajectory
planning. Hence, there is no need for a detailed plan
for the far future.

The authors apply a tree-based policy evaluation to make
use of this domain knowledge. Tree-based policy evaluation
methods uses tree of beliefs b and actions u that can be
obtained and executed in each time step. Figure 5 illustrates
such a belief tree [19], while simplifying that one action
might result in several beliefs. Based on a current belief b0
at a time step t0 several actions u(i) ∈ U can be executed and
result in a reward r(b0, u(i)). Given a certain action will be
executed, new observations will occur z(i) ∈ O resulting in
a new, future beliefs b1, ..., b5 at time step t0+τ . These new
beliefs are once more root nodes of some subtrees for this
future time slice. The total reward RT is calculated along
each path to a fringe node representing the planning horizon
T . A path represents a sequence of future actions. The path
with the highest reward is selected.

b0

b1 b2 b3 b4

. . .

b53

t0: Current belief

t1: Planned ahead

for one time step

tT-1: Planned ahead

for T-1 time steps

u(2)=Indicate Left

u(1)=LC Left

b92 b93

u(7)=Abort LC

u(1)=LC Left

u(3)=Indicate Right

b5
. . .

b94

u(1)=Finish LC

tT: Planned ahead

for T time steps

u(5)=Drive Normalu(1)=LC Left

b81b80

b96 b99
. . .

u(5)=Drive Normalu(1)=LC Left

u(5)=Drive Normal

RT=0RT=+40RT=+150RT=+100RT=-500

u(2)=Indicate Left

u(4)=LC Right

Fig. 5. Policy tree of (predicted) state beliefs and actions; LC=lane change

The tree size grows with the number of value-discrete
actions and orthogonal observations. As an approximation,
it is possible to consider only the most likely parametric
description of a measurement variable distribution and its
subsequent belief distribution. By this, measurement vari-
ables probability distributions can be considered, as long
as they can be described by one parametric distribution.
Therefore, it is for instance possible to model that coop-
erative breaking intensities of traffic participants vary by a
probability distribution, but not that some driver might be
inattentive, gradually approaches and finally crashes into the

automated vehicle without reacting at all. For the real world,
this limitation is not severe, as the authors are not aware
of any way to estimate those behavior likelihoods in such a
mixture-of-probability-distributions random processes, any-
way.

Figure 5 shows a tree simplification for not pursuing
action u(1) or u(4) while having belief b0. This is to show
that some actions can be ruled out because of not being
allowed (changing lanes without indicating, given belief b0
represents normal driving). In fact, it is possible to prune
the tree even further by ruling out actions would result in
unreasonable policies (sequence of actions). E.g., if a lane
change was decided it will be an unreasonable policy to
abort a lane change and reinitiate a second lane change in
two consecutive time steps. This helps to reduce the tree
complexity a lot. Every path to a fringe node at end of the
planning horizon at time step t0 + T will be a possible -to
a certain degree- reasonable policy. Both tree simplifications
reduce the number of policies to be evaluated by a lot as
demonstrated in section IV-C.

The set of actions U contains the 13 discrete action
alternatives of DoLc, FinishLc, PrepareLc, IndicateLc and
AbortLc to the left and right and action alternatives for
NormalDriving, AbortLcIndication and AbortLcPreparation.
Further more it entails a targetGapIndex and continuous
dimensions for gradual deviations like a longitudinal delta
target pose and sampling variation as well as a commanded
velocity deviation from the current ego velocity.

C. Multi-resolution planning

Another key idea to render online solution methods
tractable for the presented behavior planning is to incorporate
the concept of multi-resultion planning.

Earl et al. [20] use an iterative refinement pattern for
robot path planning with mixed integer linear programming.
Culligan [21, p. 26] extends this idea by using a variable
time discretization for a trajectory planning application in
unmanned aerial vehicles.

t0 t1 t2 t3 … tN-1 tN

Δ𝑡𝑛

𝑇

Time

Fig. 6. Variable planning time steps

A common way to discretize the planning horizon T is
to use a fixed time step ∆tn = ∆t = T/N . However, it
is only necessary to plan with a high temporal accuracy in
the immediate future. In this paper, the authors use a time
resolution pattern as illustrated in figure 6. At first, a time
step of ∆t = 500ms is used. After the first prediction/action
selection step, a time step of 2 ·∆t = 1 s, 3 ·∆t = 1.5 s, ...,
is used. The overall planning horizon T is 14 s.

D. Situation prediction model

The situation prediction model facilitates a prediction of
the entire situation as a function of the former situation and



an action: bel(xt+τ ) = p(bel(xt), ut). The situation predic-
tion as a whole constitutes of the prediction of several aspects
of that situation. Among them are simple dynamic models for
the prediction of object movements, behavior models to im-
itate the interaction between vehicles and simplified models
to predict the ego behavior. A plethora of situation prediction
models have been proposed. The focus of this paper is not to
find the best one, but rather to present a framework to make
use of any of them for actual behavior planning.

We use an improved intelligent driver model as in Shen et
al. [22]. It is based on predicting a longitudinal acceleration
and by this calculating new longitudinal velocity and position
of each object based on its environment. For the lateral
prediction, we assume that vehicles will maintain their lateral
offset towards their lanes. Lanes are predicted to continue the
way they are perceived based on a floating clothoid model.

Planned actions may change the situation itself. For in-
stance, if the abortion of a lane change is commanded to the
prediction model, it will change the prediction of the ego
vehicle as well as of the rest of the situation.

E. Reward model

The reward model calculates a reward r(bel(xt), ut) as
a function of the system state belief bel(xt) and an action
ut. In a traditional POMDPs and MPCs, such a reward is a
single numeric value. However, it proved useful to return a
vector. By this, it is possible to aggregate the lane change
possible reward dimension separate from the lane change
beneficial or the gap selection reward dimension over time.
Thus, the decision making algorithm may distinguish if a
positive overall reward results from whether a lane change
is possible and/or beneficial.

Moreover, the reward model incorporates a decision hys-
teresis for several aspects of the system’s state belief bel(xt).
Therefore, similar to the measurement and prediction model
it yields a non-linear mapping.

IV. EVALUATION

This section presents our evaluation results. After a short
presentation of an evaluation in a simulation environment,
we present an evaluation in real traffic.

A. Evaluation in a Simulation

During the development process and for validation of the
algorithms, a simulation environment is a crucial part. We
use a tool chain of Virtual Test Drive (VTD)1 and Automotive
Data and Time-triggered Framework (ADTF)2 to test the
presented algorithms. Figure 8 illustrates a scenario where
a lane change is executed to overtake a slow vehicle.

B. Evaluation in Real Traffic

The best proof for the feasibility of a concept is its
evaluation in real traffic. The algorithms have been tested
and tweaked in the Audi A7 piloted driving concept vehicles
for about 60.000 km in public traffic. The lane changing

1VTD: http://www.vires.com
2ADTF: https://automotive.elektrobit.com/ products/eb-assist/adtf/

Fig. 8. Screenshot of a scenario-based closed loop testing in VTD

behavior has recently been demonstrated to the public in the
550 mile drive from Stanford to Las Vegas to the Consumer
Electronics Show 20153 and on a German highway4. The
focus of our efforts has been on highways, but it has also
been tested on (sub-)urban multilane streets.

The first two images in figure 9 illustrate driving a 20 km
stretch of the A9 from Ingolstadt, Germany northbound. The
first diagram depicts the longitudinal ego velocity of the
automated vehicle. There is no speed limit on this stretch
of a 3+3 lane highway. The target velocity is set to 40m/s.
Occasionally, the automated vehicle gets slowed down by
traffic in front, if it is not able to perform a lane change due
to traffic from behind on the neighbor lanes.

The second and third diagram of figure 9 present the lateral
offset of the automated vehicle to the center of the ego lane.
As the ego lane jumps to another lane, every time a lane
change is performed, the lateral offset jumps from positive
to negative (lane change left) or negative to positive (lane
change right). The third till sixth plot of figure 9 illustrate a
single overtaking maneuver during the 20 km drive in more
detail.

The maneuver is visualized by a sequence of images from
the lane tracking camera and a situation visualization widget
in figure 7. Initially, the automated vehicle drives on the
rightmost lane of a highway. In front of it appears a slow
truck (green). As overtaking on a highway in Germany is
only allowed on the left, and the grey vehicle from behind on
the left neighbor lane is sufficiently far away (arrow pointing
backwards) and slow enough (grey color), the automated
vehicle (blue) activates the indicator (yellow indicator lights)
and initiates a lane change to the middle lane (visualized by
the yellow arrow). The automated vehicle speeds up slightly
and overtakes the truck. While driving on the middle lane,
the automated vehicle gets overtaken by a very fast vehicle
on the leftmost lane (red). After the truck has been passed
and no other truck appears on the horizon on the rightmost
lane, the automated vehicle changes back to the rightmost
lane to obey the right lane driving order in German traffic
regulations.

The last three diagrams in figure 9 illustrate internal state
variables of the lane change decision making. First of all,
the state estimates for the hidden state variables lane change
possible and lane change beneficial (c.f. section III-A) are

3http://www.audi.com/content/com/brand/en/vorsprung durch technik/
content/2014/10/piloted-driving.html

4http://www.stern.de/auto/news/jack-das-selbstfahrende-auto-von-audi-
erstmals-auf-einer-deutschen-autobahn-2174446.html



Fig. 7. Video and situation visualization for an overtaking scenario.

illustrated. The closer the automated vehicle approaches the
slow, green truck on the rightmost lane, the more beneficial
a lane change to the left becomes. As a lane change is also
possible (threshold is around 0.5), a lane change is indicated
(lane change state changes to +9). The indication phase is
followed by the actual lane change to the left itself (lane
change state= +1). The lateral offset to the center of the
ego lane dpos,ego increases until the ego lane switches to
the middle lane. The automated vehicle gets overtaken by a
fast vehicle on the leftmost lane. Hence, the lane change
possible state estimate decreases between t = 238 s till
t = 243 s. Due to object mismatches, lane change possible
left decreases at t = 248 s. Directly after the first lane
change to the left, lane change possible left temporarily
drops because a lane change is only considered possible after
a proper re-centering to a lane to avoid challenges for the
lane tracking modules. After the lane change to the left has
been completed and the green truck has been overtaken lane
change beneficial right rises from t = 240 s onwards. At
t = 245 s a lane change to the right is first indicated (lane
change state changes to −9) and then executed (lane change
state changes to −1).

C. Runtime

The algorithm runs in real time on an Intel i7 4800MQ
CPU sharing resources with trajectory planning, situation
modeling and visualization modules. Typical peak loads for
any of the cores are below 20%. Per cycle, we evaluate on
average about 80 pathes in the tree. At worst, the number of
evaluated pathes will grow to 200 and it will still take less
than in peak 4ms to evaluate them.

D. Current Limitations

Although many guests in our vehicle judged the presented
algorithms to perform very well already, there are still several
limitations. A central performance determinant is the traffic
density. The denser the traffic is, the more likely is the
automated vehicle to not finding a sufficiently large gap, or
to abort an already initiated lane change due to false object
detections or track-to-lane associations.

Another challenge for our implementation are the current
sensor systems to the side. Other than e.g. [13] or [23]
our vehicle is just equipped with low-cost, series production
radar sensors to detect vehicles directly at its side. Thus,
many false positive and false negative detections are caused
by these sensors. A lidar, camera or better radar system

would clearly help to reduce the number of aborted lane
changes and to merge into smaller gaps as a whole.

Also very challenging is the gap adjustment. Since the
object detection to the front and rear is currently based on
lidar sensors it is hard to differentiate trucks from cars as typ-
ically only the wheels or undercarriage is seen. Frequently,
there seems to be an appropriate gap between the reflection
of a truck’s trailer and the driver compartment while still
being, e.g., 60 m away. Approaching such an assumed gap,
the contour estimation of the neighbor vehicle improves and
the front and rear of the truck are perceived as one truck
without a gap in between. Thus, a gap approach needs to be
overthrown and a better gap has to be found. A passenger
judges this as an illogical gap approach, because based on his
perception, he does not face the same perceptual limitations
as the automated vehicle.

Another limitation are currently highway interchanges and
on- and off-ramps. As our vehicle is designed to work
without highly accurate GPS-systems and detailed, highly
accurate maps, we are limited by what a camera and the lane
detection algorithms perceive. Thus, weaving and merging
areas often appear to be shorter than for a human driver. If
some interaction with other vehicles in those weaving areas
does not turn out to work smoothly, it may happen, that we
do not have sufficient remaining maneuver space for lane
changes.

V. CONCLUSIONS

In this paper, the authors presented a novel framework
for tactical lane change behavior planning for automated
vehicles. It allows to plan a sequence of actions in uncertain,
high-dimensional, mixed-integer state spaces in real-time. A
measurement model allows to handle uncertain perception
information, a prediction model yields consistent and provi-
dent behavior planning. A fixed model results in predictive,
deterministic behavior.

The paper evaluates the algorithms’ performance in a
simulation environment and online in real traffic.

Despite demonstrating a solid performance already, several
areas of improvement exist. So far, our prediction model is
yet relatively crude. Particularly in complex, highly interac-
tive traffic situations it does not provide accurate predictions
of the other drivers’ tactical maneuvers. The uncertainty
estimation is not yet fully considered in the reward model and
is still lacking regarding an objects’ uncertainty of existence
or especially modeling the perception uncertainties of the
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Fig. 9. State variables during an overtaking scenario

sensor systems. The gap adjustment is still limited, mainly
by the persistent detection of objects and gaps.
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