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Abstract—Automated driving is a widely discussed topic nowa-
days. Impressive demonstrations have shown the potentials of
vehicle automation. However, many projects in the context of
automated driving use a priori data in order to compensate
insufficiencies in perceiving and understanding the vehicle’s
environment. Additionally, in terms of functional safety and
redundancy, it is not yet known whether such localization- and
map-based approaches are really path breaking.

This is the reason why we focus on on-board perception
also of the stationary urban environment. While object tracking
is a commonly used approach, the combination of grid-based
and object-based representations for environment perception is
still a research topic. The sufficient perception of lanes and
drivable areas is an unsolved issue in urban environment.
Several perception modules have to collaborate for a suitable
representation of the vehicles’ surroundings.

In this paper, we present the latest contributions of the project
Stadtpilot to a perception-driven modeling of urban environments.
We propose a lane detection approach which is based on a
grid-based representation of different environmental features.
Our approach is able to detect multi-lane structures and it is
capable to deal with complex lane structures which are typical of
urban roads. The extracted features are stabilized by a tracking
module. Additionally, we incorporate a free-space representation
which data is not derived implicitly from detected targets, but
based on an explicit ground representation. Extensions of our
dynamic classification module focus on the start/stop behavior
of other road users in order to enhance the completeness of
track list (mobile objects) and grid (stationary environment). The
presented algorithms run in real-time on a standard PC and are
evaluated with real sensor data.

I. INTRODUCTION

The development of advanced driver assistance systems
(ADAS) and automated road vehicles imposes high require-
ments on the perception of the host vehicle’s environment.
In particular in inner-city scenarios, various types of traffic
participants and structures on and next to the roads make the
perception of relevant road users, static obstacles and the road
course an even more challenging task. The host vehicle has
to be able to perceive all of these environmental elements and
model their context up to a sufficient extent in order to perform
safe and comfortable driving tasks.

The detection and tracking of dynamic elements in terms of
other road vehicles is widely discussed and a common research
topic. When advancing from typical highway scenarios into the
urban domain, additional effort has to be spent on the detec-
tion of vulnerable road users (VRUs). Next to the dynamic
elements, the stationary environment provides features about
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the road course and drivable regions. On highway-like roads,
they are mainly restricted to lane markings and guardrails.
In the urban domain, several more features of the stationary
environment are available and relevant for the determination of
the road course, like curb structures, house walls and parking
vehicles at the side of the road. Road narrows and blocked
roads due to temporarily stopping vehicles, e.g. at traffic lights,
or temporary halting delivery services, are likely to appear and
thus have to be perceived and modeled.

All of those elements make the perception and modeling
a complex task in inner-city scenarios. No comprehensive
solution, neither for lane detection nor the representation of
static obstacles or their combination with dynamic elements,
is yet available. Many approaches use a priori databases
like enhanced digital maps to compensate insufficiencies of
the environment perception and context modeling, which is
a questionable approach in terms of functional safety and
system redundancy. The risk of relying on outdated, missing
or even erroneous a priori data is just one aspect which shows
that the usage of this data might be unsustainable for public
traffic purposes. From our point of view, a perception-driven
approach is required for automated road vehicles, in which the
vehicle has to perceive and model all required aspects of its
environment via on-board sensors.

Contribution of this paper

In this paper, we present the latest contributions of the
project Stadtpilot [1], [2], [3] to a comprehensive perception-
driven modeling of the vehicle environment. We propose
additions to our grid-based lane detection approach (see [4],
[5]). Our approach does not require predefined lane geometries
and is thus able to adapt to complex lane geometries, which
frequently occur in the urban domain. Next to elevated obsta-
cles and textural data of the ground surface, curb structures
and an explicit modeling of the currently visible ground
surface, based on the approaches in [6], provide further input
for the road extraction process. The extracted features are
filtered by a Kalman-based tracking algorithm to provide
robust lane hypotheses. This approach is able to extract and
track multiple lanes while it can also deal with changing
numbers of available lanes and their geometries. Based on the
extracted road courses, static obstacles are extracted along the
lanes’ paths. The effective combination of different algorithms
and software modules is shown by the example of a dynamic
classification module, which enables the vehicle to distinguish
movable targets from elements of the stationary environment
even in case of temporarily stopped vehicles.



This paper is organized as follows. First, an overview
over current research of other groups regarding perception
systems for automated road vehicles is given in Section II.
The main part of this contribution is structured according
to the functional system architecture described in [7], whose
layers concerning the environment perception are illustrated in
Figure 1. Data acquisition and basic feature extraction required
for the subsequent tasks are shortly introduced in Section III.
The dynamic classification module is presented in Section IV,
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Fig. 1. Structure of the proposed environment perception system within the
operational level in the sense of the functional system architecture proposed
in [7].

an overview over the required dynamic object hypotheses
generation and tracking module is given in Section V. The
road extraction, based on the grid-based representation of
the stationary environment, and the hypotheses tracking are
explained in detail in Section VI. We close with a conclusion
and outlook in Section VII.

II. RELATED WORK

Many research groups are working on aspects of automated
driving for road vehicles. Based on the definition of automated
vehicles given in [7] and [8], only few groups address auto-
mated driving to its full extent. A brief overview of existing
projects, their perception concepts and addressed domains is
given in the next paragraphs.

While the detection and tracking of dynamic elements is
required to be done on-line in order to interact with other road
users, especially the perception of the stationary environment
is often supported by a priori information. Based on whether
they require a priori data not only for navigational purposes,
current projects can be categorized into two major groups,
localization-driven and perception-driven approaches.

a) Localization-driven approaches: This concept follows
the idea of controlling the vehicle’s pose in relation to a
global coordinate system. Usually, map data is used to provide

information about the stationary environment, especially about
the course of the lanes. Often, even more detailed maps
are used to improve the host vehicle’s global map-relative
position due to insufficient availability of a precise GNSS-
based localization. Thus, their driving capabilities do not
solely rely on on-board environment perception, but require
a localization relative to the a priori data, e.g. by GNSS
platforms or landmark matching algorithms.

Team AnnieWay focuses on highway scenarios and uses
radar sensors to perceive other road users during their par-
ticipation in the Grand Cooperative Driving Challenge [9].
Information about the road course is provided via detailed
maps. Map data are used for the assignment of on-line
perceived objects to provided road data.

The demonstration at the Bertha-Benz historic route in 2014
relied on on-board video and radar systems for the perception
of dynamic objects [10]. Positions of lane markings, traffic
lights and right-of-way rules were provided via high-accurate
maps, which were recorded and manually labeled in advance
of the demonstration. Among others, the taken route contains
highway and suburban roads, traffic lights and intersection
areas.

The project Stadtpilot addresses the urban domain. During
the first project phase, only the perception of other road users
was performed via on-board sensors. Information about the
stationary environment was provided solely by detailed a priori
maps. Behavior and trajectory planning was done in a global
coordinate system based on the localization provided by a
DGPS-platform [1], [2], [11].

b) Perception-driven approaches: The second group of
approaches is designed to perceive the complete environment
with on-board sensors. First attempts of perception-driven
systems were presented during the DARPA Urban Challenge,
e.g. [12].

The project BRAiVE uses advanced computer vision sys-
tems for environment perception. The experimental vehicle
is able to detect and classify traffic signs as well as lane
markings via mono and stereo camera systems [13]. Other
vehicles are perceived based on the detection of symmetric
features as well as tail- and headlights. The algorithms are
designed to work on the highway, on rural roads as well as
in the urban domain. The system is able to derive the current
domain from the detected features. Camera data is fused with
Lidar sensor data to determine accurate distances of relevant
objects. Additional map data based on the OpenStreetMap
format is used to provide information about lane width and
the position of traffic lights.

Lidar and camera systems are also used by the team
MuCAR-3 [14], [15]. They are able to extract the course of the
road without the aid of map data and they can detect splitting
roads and intersections based on the perceived data. Other
vehicles are detected via computer vision algorithms [15] and
Lidar systems [16]. The project focuses on the application in
offroad terrain.

Due to the experience gained from former activities, further
research in the project Stadtpilot focuses on the perception-



driven approach. This is valid for the stationary environment
as well as for dynamic elements (e.g. [5], [17], [18]). Current
contributions are addressed in this paper.

III. PREPROCESSING AND FEATURE GENERATION

In our approach, an object-based representation of dynamic
elements is used in combination with a grid-based repre-
sentation of the stationary environment. Before model-based
filtering algorithms can be applied to sensor data, several
preprocessing steps are required.

A Velodyne HDL-64 S2 is used as a prototype Lidar sensor.
Measurements are captured from elevated targets as well as
from the ground surface around the host vehicle. The ground
surface and the elevated targets contain different features and
are processed by different algorithms, as described in the
following paragraphs. Thus, the first task is to classify each
measurement whether it belongs to the ground surface or to
an elevated target.

A. Ground data processing

The ground classification combines a slope-based channel-
wise point classifier with a grid-based ground surface esti-
mation, as described in [6]. As a result, measurements are
separated into elevated targets and ground surface data. Based
on this classification, the reflectivity values of measurements
of the ground surface are used to generate a gray-scale image
of the road surface [5], similar to the approach in [19]. The
visibility of the ground surface is derived and used as an
additional feature for environment modeling (c.f. Section VI).
Additionally, the ground surface information is used for cal-
culating the host vehicle’s ground-relative pitch angle and to
correct the measured height of detected objects.

B. Processing of elevated measurements

The elevated targets are transformed into a 2.5D stixel
representation (c.f. [20]), using a polar grid, as described
in [17] and [5]. The algorithm was extended to handle low-
density point clusters at larger distances by taking data from
neighboring cells into account. The stixels are then segmented
based on the algorithm first proposed in [21]. Modifications
were applied in order to be able to deal with measurements
from curb-like structures (see [6] for further details) and
multiple targets per channel.

IV. DYNAMIC CLASSIFICATION

In order to combine the grid-based and the object-based
representations efficiently, a separation of static and dynamic
elements is required. In this contribution, the term static
applies to non-movable stationary elements, such as buildings,
and those elements that have not been perceived as moving yet
(e.g. parking vehicles). The term dynamic is used for elements
which are currently moving or were perceived moving in
the past (e.g. a car which has been tracked approaching an
intersection and is currently stopping at a traffic light).

Typically, road users are present in certain areas of the
environment, e.g. on roads and on sidewalks. Other parts are

occupied by stationary elements (e.g. vegetation, traffic signs,
buildings). Thus, we perform a dynamic classification based
on the area in which the targets occur.

Due to this area-based characteristic, a grid-based approach
is suitable. Dynamic classification can be accomplished by
the detection of inconsistent cell states. Earlier research of
our group ([4], [22], [23]) proposed the usage of a specialized
cell type to explicitly model these inconsistencies.

This consistency layer models each cell with a state machine
(see Figure 2). The state machine is triggered by the sequence
of hit (seen) and miss (not seen) updates from the sensor.
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Fig. 2. Adapted state machine of the consistency layer cells. Hit and miss
updates from distance-measuring sensors are used to generate state transitions,
but are not feasible to trigger a transition to the final significant inconsistency
state. Dynamic information, e.g. from an object tracking module, can be used
for this purpose, as proposed in [22], [23], [4].

Information about the dynamic properties at designated
positions can be derived from these states, i.e. cells with
inconsistency states are likely to contain dynamic elements,
while cells with hits only indicate static areas. Cells with less
updates or only miss updates are considered as areas without
an inferable tendency to dynamic or static state.

The consistency layer yields good results in inner-city
scenarios, especially if the state transitions are adapted to the
velocity of the host vehicle [4].

A. Adaption of the consistency layer

As long as the cells’ consistency states are assumed to
be constant over time, the possibility of state transitions is
a suitable way to handle occasional false measurements. But
when regarding stop-and-go traffic, e.g. at intersections, the
assumption of time-constant cell states does not hold. This
type of traffic generates a large number of hit updates in the
same cells while stopping. Thus those cells will be classified
as static even if they were known to contain inconsistencies
before. A final state significant inconsistency is required to
deal with these situations. To avoid self-affirming false classi-
fications, transitions to this state must only be possible under
unambiguous conditions. This requires multiple detections
of inconsistencies, which usually cannot be guaranteed even
within a short viewing range around the sensor, as shown
in [4].



Additional dynamic information can be used to reduce
the number of required sensor updates for a transition to
the significant inconsistency state. In [23], direct input of
velocity-measuring sensors, e.g. a radar system, was proposed.
Alternatively, a feed-back of stable object hypotheses can also
be used for this purpose, as considered first in [4]. In addition
to the usage of direct sensor input, tracked object hypotheses
are also capable to classify measurements as originating from a
moving object, even if the object has stopped temporarily. This
aspect is further evaluated in this contribution. Additionally,
provide an association algorithm which is able to process the
sensors’ point cloud data under real-time conditions.

The adapted data processing structure is shown in Figure 3.
Newly added modules are introduced in the next paragraphs.
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Fig. 3. Structure of the dynamic classification module. Segmented data is
associated with stable object tracks and processed by the consistency layer.
The stored consistency information is then used to remove unsuitable data
from further processing by the respective processing chains.

B. Segment-to-object association

As stated above, the first step of the dynamic classification
algorithm is the association of incoming sensor data with exist-
ing, stable dynamic object hypotheses (tracks). The association
can be performed on different levels of data processing, e.g. at
point cloud level or based on contour models such as the center
of gravity of a segment. In inner-city scenarios, a large number
of segments is typically extracted. This leads to ambiguous
associations when further simplifying the segment contour.
Thus, we use the sensor raw measurements for association.

In order to keep this approach computationally feasible,
we project the bounding boxes of the predicted tracks into
an image-like structure with a sufficient small cell size (e.g.
10 cm per dimension). This allows the association step of
each measurement to be reduced to a simple point test inside
the image. Uncertainties of the tracks’ contour description
are considered by an artificial expansion of the drawn track
footprint. The data originating from a dynamic object is
flagged and is used to update the consistency layer cells.

C. Data classification step
The states of the consistency layer cells are used to classify

and filter incoming sensor data. The classification is performed
for each measurement and a voting algorithm is applied to
ensure one consistent dynamic class per segment.

Segments with stable classification are removed from the
input data stream of the contradicting representation, e.g.
segments with static classification are removed from the object
hypotheses generation, and segments with dynamic classifi-
cation are removed from the grid-based processing stages.
Segments with unknown classification are forwarded to both
representations to ensure the processing of all sensor data.
They will stabilize over several timesteps only in the suitable
representation. Once stabilized, the corresponding hypothesis
in the non-suitable representation will not receive any further
updates and will be removed. The results of the different
processing steps are shown in Figure 4.

V. MODELING OF THE DYNAMIC ENVIRONMENT

A. Hypotheses generation
Object hypotheses are generated from all segments which

are not classified as belonging to the stationary environment.
For the addressed road vehicles, an oriented bounding box
model is used to describe their outer contour. The contour es-
timation and hypotheses generation steps are presented below.

a) Contour estimation and form classification: Typical
Lidar-based sensor systems generate a large number of mea-
surements belonging to a single object. To extract the outer
contour, a channel-wise skeletonization is first applied to
remove irrelevant measurements. The segments’ skeleton is
further reduced to a simplified polygon chain using an adapted
form of the Ramer-Douglas-Peucker algorithm [24].

Although the calculation of the minimum area bounding
box provides useful orientation information in many cases,
the evaluation of real-world sensor data has shown that this
approach often fails, especially if rounded corners are domi-
nant elements of the contour, e.g. the rear end of a vehicle.
To determine the most suitable orientation, the outer contour
is then classified as L-, U- or I-like using a simple set of
geometric classifiers. Based on the segment type classification,
the relevant segment of the contour description is selected. A
fitting algorithm [25] is then used to determine the hypotheses’
orientation. The skeletonization, contour estimation and the
classification steps are illustrated in Figure 5a and 5b.

b) Bounding box generation: A bounding box is calcu-
lated for each segment, based on the skeleton points and the
estimated contour orientation. The resulting object hypotheses
are shown in Figure 5c.

Information about the used reference point is added to each
hypothesis. This point describes the best seen edge or side,
whose consideration allows more stable tracking results under
shape changes and occlusion conditions. We use a reference
point set of nine reference points at the outer contour and the
center of the box model, as introduced in [26].

The used reference point model explicitly distinguishes
between the front, rear and the sides of a target. Information



(a) Tracked objects above reflectance layer (b) Consistency layer overlay (c) Classified stixel data

Fig. 4. Results of the dynamic classification. Fig. 4a shows the stable object hypotheses above the reflectance layer data. Fig. 4b shows the contents of
the consistency layer: Red cells indicate areas with consistent hit information. Yellow cells mark areas with miss updates only. Cyan areas hold inconsistent
information (mixture of hit and miss updates) and indicate areas of dynamic elements. Blue cells were associated with valid tracks and are thus known as areas
of moving objects. Fig. 4c displays the resulting stixel classification. Colors are defined as in Fig. 4b, white stixels contain unknown dynamic classification.

(a) Skeletonization (b) Contour classification (c) Final hypotheses

Fig. 5. Processing steps of the object hypotheses generation. Fig. 5a shows
the result of the segment skeletonization and classification process. Points of a
segment are classified as facing skeleton points (yellow), rear skeleton points
(green) and inlier points (red). Fig. 5b illustrates the contour estimation and
its classification results. Contours are classified as L-Shape (yellow/orange),
U-Shape (blue) and I-Shape (red). The final object hypotheses are shown in
Fig. 5c.

about the type of the seen corner of a hypothesis is not
extracted during the hypotheses generation yet. Thus, the used
reference point has to be considered as ambiguous regarding
the observed corner. Information about this ambiguity is
forwarded to the tracking module for a correct interpretation
of the object hypotheses.

In order to evaluate the quality of the measured dimensions,
each dimensional state is flagged with a quality class. This
class contains information about the detection quality of the
dimension value, i.e. whether its value is based on clearly
seen contour elements or whether it is a result from possibly
missing data, for example due to occlusion by other objects
or total reflections caused by a large angle of incidence.

B. Object tracking module

The generated object hypotheses are filtered and validated
by an object tracking module. First approaches were published
in [17] and further extended to improve the tracking perfor-
mance and effective field of view. The tracking module is

based on an Extended Kalman Filter (EKF) structure which is
summarized below.

a) Prediction and association step: Each hypothesis is
represented by a box contour enhanced by an additional classi-
fier improving the contour stability. The objects’ dynamics are
based on a constant acceleration model in a Cartesian reference
frame. The used state vector is shown in Equation 1.

x =
(
dx, dy, vx, vy, ax, ay, ϕ, length,width, height

)T
(1)

Objects are associated with the existing hypotheses using
a priority-based Local-Nearest-Neighbor algorithm. The ob-
ject similarity is determined by a Mahalanobis distance over
positional and dimensional states. The association algorithm
exploits the marked reference point of the incoming measure-
ments and uses the given reference point ambiguity informa-
tion to resolve multiple association hypotheses. If multiple
hypotheses are located within the association gating range of
a measurement, associations to stable tracks are preferred.

b) Correction step and object adaption: The associated
pairs of existing hypotheses and measurements are transformed
to their best-matched reference point determined by the associ-
ation step and are then updated by the EKF algorithm. Possible
reference point ambiguities are resolved using the estimated
moving direction of the hypotheses.

Created hypotheses have to be able to adapt to contour
changes, e.g. when passing a tracked vehicle. If occlusion by
other objects is regarded, such contour models are affected by
unintended dimensional changes. Once measured dimensions
might change although they were stable over a large period of
time.

To avoid this while still being able to adapt the contour, if
required, a contour classifier is used. Based on the evidence
information provided from the hypotheses generation, the
updates of the objects’ dimension information during the last
update cycles are evaluated. Dimensions with full visibility
over a defined time period which feature a small standard
deviation are considered as stable. The dynamic model is then
configured with less process noise, resulting in a more stable



contour description. In terms of the Kalman filtering theory,
this adaption can be categorized as dynamic model switching.

In addition to the aforementioned steps, a Dempster-Shafer
based object classification is performed using dimension and
velocity information.

c) Database maintenance and object deletion: After
the processing of associated measurements, the unassociated
measurements are used to instantiate new object hypotheses.
Existing hypotheses are validated against publishing rules
which define the conditions a hypothesis has to fulfill to be
considered as a valid one. The minimum number of required
updates, as well as the hypothesis’ moved distance is used
as a criterion. Hypotheses are removed from the database
if they exceed their time-to-live, which represents the pre-
diction/update ratio during a limited number of past update
cycles.

VI. MODELING OF THE STATIONARY ENVIRONMENT

A grid-based structure is used to hold information about the
stationary environment, which includes elevated elements as
well as ground surface data.

A. Multi-layer concept

Various types of information can be deducted from the
environmental sensors. Each type differs in its characteristics
regarding semantic information, processing algorithms and
storage types. A single grid layer is not suitable for storing data
from different sensor technologies [27], the same applies for
different information types. In order to handle different layer
types, we proposed a multi-layer concept in [5]. After a type-
specific update algorithm is performed, the different layers are
abstracted to a simple tristate value (free/unknown/occupied)
and fused into a single fusion layer, which stores the combined
information. An overview over the multi-layer concept with its
current layer types is shown in Figure 6. Typical data resulting
from the currently used layers and the result of its fusion are
shown in Figure 7.
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Fig. 6. Design of the multi-layer concept: Several sensor- and data-specific
layers are combined by using a tristate abstraction and are fused to a resulting
layer. Currently used layer types are marked in blue.

(a) Elevated occupancy (b) Curb occupancy

(c) Ground visibility (d) Reflectance data

Fusion layer cell colors:
Explicit free
Implicit free
Ground texture data
Curbs
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Texture+elevated occupancy
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(e) Fusion result

Fig. 7. Results of the stationary environment modeling at an inner-city
intersection. Fig. 7a and 7b display the current data of the Bayesian occupancy
grids for elevated targets and curb features. Fig. 7c illustrates the extracted
visibility of the ground surface (colored by the age of the last update from
green (last scan) to red (five scans before)). Hypotheses of tracked dynamic
objects are shown for comparison. Fig. 7d shows the accumulated reflectance
data of the ground area, mainly containing the road surface around the host
vehicle. The result of the tristate fusion algorithm is drawn in Fig. 7e.



Currently, we use a combination of four layers to gen-
erate a comprehensive model of the stationary environment.
Occupancy information of elevated targets is represented in
a Bayesian grid. Curb-like occupancy features are stored in
a second Bayesian grid, due to different effective detection
ranges of the features [6]. Reflectance data of the ground
surface is accumulated in another grid layer and provide
information about the textural properties of the ground and
road surface (c.f. [5]).

A fourth layer stores information about the visibility of the
ground surface. Unlike other layers, this ground visibility layer
allows us to represent free information explicitly and thus
provides a conservative estimation of currently drivable areas.
The ground visibility is derived from the detected ground
points in the current sensor scan and stored inside the cell
structure by the last time the ground surface was seen. This
data can also be gathered by other sensors, e.g. a camera
system. A cell is considered to be free ground if only ground
measurements are present at the cells’ coordinates. Ground
surface measurements below objects, e.g. driving vehicles,
which appear due to the sensor mounting position at the roof
of the host vehicle, are excluded from further processing by
detecting the presence of overhanging targets. For current
evaluations, a total grid size of 280 m x 280 m with a cell
size of 0.2m is used.

B. Road feature extraction

In [4] and [28] we proposed an adaptive approach for road
and lane extraction in urban environments which is able to deal
with non-clothoid courses of the lanes, multiple lanes as well
as changing number of lanes. The approach is based on an
interpretation of connected free-spaces, which do not contain
road markings, elevated targets and curbs. All information
describing the course of the road and the lanes is considered
jointly while searching for the course of the lanes, based on
the grid fusion result of our multi-layer concept. An example
of the extracted features is shown in Figure 8.

(a) Road elements (b) Lane center lines

Fig. 8. Results of the extraction of lane center lines and road courses [29].
Fig. 8a shows the extraction of the road course based on road elements. Lines
and triangles mark the free space (green), occupancy (red) and lane markings
(white) features. The reflectance layer is shown in the background. Based on
this data, the extracted lane center lines (blue) are shown in Fig. 8b in front
of the tristate fusion layer.

C. Road hypotheses tracking and validation

The extraction of the lane center lines from the grid-based
environment model provides a sufficient availability of lane
center-lines for map-relative localization in lane-level maps.
However, the availability and detection range in front of
the vehicle has to be significantly improved in order to be
used for automated lateral control and scene understanding
(context modeling). Since common model-based approaches,
like moving clothoids or arches, fail in urban environments due
to unpredictable and sudden changes of the lane’s curvature,
we propose a different approach with less model assumptions.
Each lane hypothesis is represented by a list of support points
(polyline). These support points are distributed in equidistant
steps along the lane and assumed to be fixed in place. As the
extraction of the lane center lines from the grid also works
based on a reference point fixed in place, the tracked positions
directly correspond to incoming support points.

This allows a simple association of new hypotheses with
existing ones and thus to track each of them in a Kalman-filter
similar to the approach in [30]. Newly incoming polylines are
associated to existing ones if possible. The support points are
then updated or added to the existing hypotheses. If a polyline
cannot be associated to an existing one, a new hypothesis is
created. Support points which are further away from the host
vehicle than a certain distance are deleted in order to keep the
number of tracked points limited. First results are shown in
Figure 9.

(a) Tracking of open-
ing lanes at inner-city
intersections.

(b) Tracking of non-
parallel lanes.

(c) Tracking of non-
parallel lanes and open-
ing lanes at inner-city
intersections.

Fig. 9. Benefit of the subsequent tracking: The results of the lane tracking
(red) improve the availability of the lane center lines (detections in white)
significantly. The approach copes with a changing number of lanes as well as
non-parallel lanes up to a certain extent.

VII. CONCLUSION AND OUTLOOK

In this paper, we have presented the latest contributions
of the project Stadtpilot toward a comprehensive perception-
driven approach of urban environment modeling. We proposed
additions to dynamic classification algorithms which is able
to deal with with stop-and-go traffic. An approach of using
explicit free-space information was shown and first results
of a grid-based road tracking algorithm were presented. The



introduced dynamic classification and object tracking module
are already used in public traffic, the road extraction and
tracking algorithms are currently evaluated at the test track.
The presented algorithms run in real-time on a PC platform
(Intel i7-4770), in relation to the sensors’ update rate of
10 Hz. After the feature generation, the subsequent filtering
algorithms can be applied in parallel in order to reduce the
systems’ latency. Typical execution times do not exceed 60 ms.

Based on the presented algorithms, we have been able to
further extend our capabilities to model the vehicle’s environ-
ment via on-board sensors only. Nevertheless, still a lot of
work has to be done for a complete perception and modeling
of relevant aspects. Future research will address the extraction
of features to determine topological properties of lanes and
to model the context between the detected elements. This
will further enhance our perception-driven approach of an
environment modeling in the urban domain.
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