
Stationary Urban Environment Modeling using
Multi-Layer-Grids

Richard Matthaei, Gerrit Bagschik, Jens Rieken, and Markus Maurer
Technische Universität Braunschweig

Institute of Control Engineering
38106 Braunschweig, Germany

Email: <matthaei,bagschik,rieken,maurer>@ifr.ing.tu-bs.de

Abstract—Future advanced driver assistant systems and au-
tonomous driving put high demands on the environmental
perception especially in urban environments. Today’s on-board
sensors and on-board algorithms still do not reach a satisfying
level of robustness and availability. In this paper we focus on the
perception of the stationary environment which mainly consists
of raised obstacles and lane-markings. We propose to fuse both
the raised obstacles as well as the markings in a grid-based
representation for a higher robustness against partial occlusion
and false detections. The algorithms are designed to work with
both research and close-to-production sensors. The algorithms
run in real-time on a standard PC and are evaluated with real
sensor data.

I. INTRODUCTION

The research on future advanced driver assistant systems
(e.g. an inner-city intersection assistant) and autonomous ve-
hicles for urban environments points out the importance of
a complete scene representation for a robust and predictive
vehicle guidance. The scene’s elements can be divided into
two groups: stationary and movable elements. The movable
elements, like other traffic participants, are not considered in
this paper, but we focus on the stationary elements of a scene.
The stationary elements, which are relevant for the previously
mentioned systems, are given by raised obstacles (e.g. build-
ings, walls, bushes) on the one hand, and on the other hand
lane markings and road boundaries. The raised obstacles give a
rough impression of the environmental structure (e.g. the road
course), whereas lane markings and road boundaries provide
more detailed information especially on wide places where less
raised obstacles are available (e.g. intersections and expansive
roads). Hence, the road course and the lane course are defined
by both: lane markings and raised surroundings.

The big variety of the urban environment involves a special
challenge for perception systems. For example, the number
of lanes varies frequently, intersections consist of lanes with
different driving directions and the lanes are not parallel in
all cases. Furthermore, there are gaps in the building-lines
and abrupt changes in the facades of the buildings as well
as streets without any lane markings. Especially in urban
scenarios, partial occlusion is another big issue for perception
systems due to the high amount of other traffic participants.

Today’s on-board perception systems are not able to detect
lane markings and to estimate the course of lanes in urban
scenarios with the required availability and robustness [1].

Some research efforts focus on using detailed a-priori map
data to compensate this lack of perceptional performance
[2][3][4][5][6]. In our opinion more research has to be done
on detecting and understanding the entire vehicle environment
because we do not expect map data to be up-to-date and
available in the required level of detail in the near future.

So a central task for inner-city scenarios is to robustly
detect the course of the road and in more detail the course
of the lanes. An algorithm for a robust extraction of the road-
course has been previously described in [7]. In this paper we
now focus on how to obtain a complete grid-based image of
the surroundings as a reliable data-base to improve the road-
extraction algorithm. One issue we could identify during our
past research is the high amount of incomplete structures in
inner-city scenarios which makes it difficult to estimate the
road course over long distances just based on a snap-shot of
environmental data.

The incompleteness is caused by the aforementioned char-
acteristics of the stationary environment: incomplete building
lines, missing lane markings and partial occlusion. Some of
these issues can be solved by a mutual support of the raised
objects and the lane markings (see Section VI). In the case
of partial occlusion of the lane markings, for example, the
information about the raised surroundings can help to estimate
the further direction of the lane markings. Or, the other way
around, if the stationary environment is interrupted on inter-
sections, the information about the lane markings can support
the estimation of the road course across the intersection.
Furthermore, if parts of the stationary environment or lane
markings are occluded by moving obstacles, these parts may
have been perceived before or may be visible some moments
later. As they are stationary, we can add them to the known
environmental data with the knowledge about our motion.

All of these aspects have to be taken into account in order
to robustly extract the course of the lanes and the roads in
inner-city scenarios. For that reason we propose to fuse the
raised and the ground structures into one consistent grid-
based representation for a subsequent environment modeling
algorithm considering both environmental feature groups at the
same time. In this paper, we will use the Velodyne HDL-64
laser scanner as a proof-of-concept to detect raised structures,
as well as lane markings. The algorithms are designed to
be ported to close-to-production and series sensors as well,



e.g. a combination of camera systems and single-layer laser-
scanners. First results are shown in [7].

The aforementioned fusion of multiple grid-based repre-
sentations leads to a new technical challenge: the grid-based
processing becomes a bottleneck because all sensor data is
fused into one single representation and all reading modules
(e.g. lane-estimator, road-estimator or visualization) need an
asynchronous access to this data. That is why a highly parallel
access is required. A solution for this challenge is proposed
in this paper as well.

II. RELATED WORK

Usually, information about the road course or the course
of the own lane is directly extracted from image data by
detecting the lane markings. A typical approach is to extract
relevant features from the image and to estimate the course
in a subsequent filter process. In this way, a certain amount
of false-detections can be compensated and the noise of the
measurement data can be reduced. A brief survey is given by
[1].

Another approach using image data is presented in [8]. The
image data is projected by an inverse perspective mapping
(IPM) into a bird’s eye view and the gray-scale values are
accumulated over time in a grid-based structure. The possible
detection range seems to be about 10 m. Unfortunately, the
limits of this approach are not discussed in detail in [8],
but one can imagine that the performance of subsequent
applications would be strongly limited due to a short detection
range. This approach is described in [8] as an additional
possibility to generate a grid-based representation beside the
known approaches of accumulating laser or radar data in a
grid.

The grid-based processing of sensor data is already well
known (e.g. [9], [10], [11]) and still part of current research
activities. Especially the so called occupancy grid with the
Bayesian update for raised obstacles is widely used (e.g.
[12],[13],[14]). In [3] a grid-based structure is filled by the
reflectance values of a laser-scanner. The result is very similar
to the approach of [13], but the sensor-data is much more
precise. Additionally, the gray-scale grid is augmented to a
probabilistic representation [3].

Many of the approaches extracting the road course from
laser or radar data work only on occupancy grids (e.g. [14],
[15], [16], [17]). Some of them are using multiple grid-
based representations ([15], [16]), but only [15] is fusing both
representations into one solution. The lane markings are not
considered in any of these solutions. In [18] measurements
of a laser-scanner are used to fill an occupancy grid with
ground-reflections, but the raised surroundings are not taken
into account.

Based on our experiences in estimating the road course as
presented in [7], it would be beneficial for further processing
to first fuse the results of the lane information and the raised
obstacles. One problem for the perception system is that –
due to partial occlusion, gaps in building-lines or missing lane-
markings – the road course in urban environments is often only

partially represented. A fusion of both information sources,
the raised obstacles and the lane markings, combined with
an accumulation of the measurements over time would give
a more continuous low-level description of the entire road
course. This makes it easier to extract the relevant data. To
the best knowledge of the authors, such an approach has not
yet been presented.

III. LIDAR PROCESSING CHAIN

To obtain satisfying results for the grid representations some
preprocessing of the sensor data has to be done. The entire
processing of the Velodyne data is illustrated in Figure 1.

Laser-
scanner 

Ground 
Detection 

Histogram 
Equalization 

Vertical 
Segmention 

ISM 
Occupancy 

ISM 
Reflectance 

General preprocessing Processing of raised targets 

Processing of ground targets 

Fig. 1: The lidar processing at a glance.

First of all, we have to distinguish between laser reflections
from the ground and reflections from raised objects. After
separating ground targets from the raised ones the processing
chain splits into two chains: one for the raised targets and one
for the ground reflections. These three resulting processing
sequences are explained in more detail in the following.

A. General Preprocessing
We separate the Velodyne sensor data into the 64 layers

and the channels with their typical horizontal discretization.
Afterwards, all data of a total 360◦-scan is collected taking the
sensor calibration into account. This means especially that the
vertical order of the layers is sorted by their physical angle and
the horizontal misalignment of the laser diodes is compensated
as well. Ground targets are then detected by comparing the
distance of adjacent layers within each channel, as described
in [19]. The key feature is the distance between two targets
of the same channel in two adjacent layers. We define an
expected distance between both targets assuming they are on
the ground level (z = 0) which is then compared to a calculated
distance derived from real measurements. We use the given
sensor mounting height and a tolerated vehicle pitch and roll
movement for the calculation of the expected distance.

If the distance of the measurements is significantly smaller
than the previously mentioned expected distance, the targets
seem to be above each other and thus do not belong to the
ground level. The resulting classification of the laser targets is
illustrated in the upper part of Figure 2.

B. Processing of Ground-targets
If the applied sensor gives enough information about the

reflectance (like the Velodyne laser-scanner), this information
can be used to create a gray-scale grid, similar to [3].



To compensate the different characteristics of the laser
diodes we apply a layerwise histogram expansion within the
ground targets of each layer as known from image-processing.
The histogram equalization yields a contrast maximization
of the reflections. So, the required information for the lane
detection becomes clearer. The histogram expansion runs
online and adapts itself to local changes. We currently do not
apply an overall intensity calibration as proposed by [3]. Due
to the histogram expansion a certain adjustment between the
diodes can already be noticed which seems to be sufficient in
a first step. The results of this preprocessing steps is shown
in the lower part of Figure 2.

Velodyne raw data classified ground points

ground points‘ amplitudeadjusted contrast

Fig. 2: Results of the Velodyne raw data processing steps:
ground detection (upper right, ground: white dots) and contrast
adjustment (lower left).

The laser reflections are then accumulated in the reflectance
layer, using a simple low-pass filter as mentioned in section
IV-B.

C. Processing of raised targets

After the ground points have been classified, we use the
(r, φ)-part of the cylindric point coordinates to add the elevated
points to an artifical polar grid, converting the single-target 3D
point cloud into a multi-target 2.5D stixel representation (as
introduced in [20]). This algorithm is applied in [19] as well.
It can be applied to the Velodyne data as well as to close-to-
production sensors. The applied polar-grid has an adaptable

angular and radial resolution. Currently we use an angular
resolution of 0.2◦ and a radial discretization of 0.2 m. Thus, it
reduces the total amount of data. Additionally, only cells with
more than one hit and with a difference in height greater 0.5 m
between the associated points (in the current state of devel-
opment) will be marked as valid targets. By this, we remove
flat structures which were not correctly classified as ground
points. Although, theoretically some measurements get lost
applying this strategy, we did not notice any significant errors
in the representation of the environment for our applications:
Curbs and other structures of medium height are currently
handled either as ground points or as raised targets, but in both
cases the structure of the environment is represented. In future
work we will focus on the correct handling of curbs and other
structures of medium height as raised targets because they are
relevant for a collision-free driving.

The resulting data is processed as a virtual scan and used
for updating the occupancy grid. Furthermore, this data is
clustered by a segmentation algorithm and is used for object
tracking. The problem of moving object detection for cleaning
up the occupancy grid has been studied by past work (e.g. [21],
[22], [7]) and is not part of this paper.

IV. GRID-BASED ENVIRONMENT MODELING

A. Multi-Layer-Concept with Fusion

Derived from mobile robots, systems based on different
sensor technologies (e.g. ultrasonic, mono- and stereovision
and lidar) are applied in production vehicles nowadays. The
challenge of low-cost sensor systems is to fuse the information
in such a way that the overall system has a higher level
of robustness and detection rate. As proposed in [11] a
separate occupancy grid-layer has to be used for each sensor
technology. Additionally, each state vector requires a separate
grid-layer, as well. To handle different layer types and fuse
them to a single layer representation we propose a concept
as illustrated in Figure 3. Each layer with its state vector
will be abstracted to a so called tristate representation which
allows us to compare the layers. In this paper we use the well-
known occupancy and the reflectance layer. The layer types,
the tristate and an example of a fused layer are shown in
Figure 5.

B. Layer types for the Ground Representation

Figure 4 shows examples for possible ground representa-
tions as they were introduced in Section IV-A.

In addition to the well known occupancy layers for raised
stationary obstacles, we use two different ways of representing
the ground by a grid-based approach. The first one (left image
in Figure 4) is similar to the occupancy grid. This approach
has already been introduced in [18] and [7]. The incoming
laser reflections classified as ground-targets are accumulated
in a Bayesian grid. This allows us to collect data of the road
markings even with a close-to-production laser scanner, which
does not provide sufficient data about the reflection’s intensity
and gives only a sparse set of marking measurements.



Tristate 
abstraction 

Fusion 

Sensor 1 
(e.g. radar) 

Sensor 2 
(e.g. US) 

Sensor 3 
(e.g. lidar) 

Sensor 4 
(e.g. camera) 

Sensor 5 
(e.g. lidar) 

Sensor 6 
(e.g. lidar) 

O
cc

u
p

an
cy

 L
ay

er
s 

fo
r 

ra
is

ed
 o

b
st

ac
le

s 
G

ro
u

n
d

 L
ay

er
s 

fo
r 

gr
o

u
n

d
 p

o
in

ts
 

R
ef

le
ct

an
ce

 
O

cc
u

p
an

cy
 

Sensor-Specific 
Layer 

Fig. 3: Multi-layer-concept for fusion of the entire stationary
environment with a sensor-specific threshold-decision.

Fig. 4: Our two representations of the ground filled by three
sensors. Left: Occupancy grid filled by close-to-production
laser-scanner. Center: Reflectance grid filled by camera data.
Right: Reflectance grid filled by Velodyne laser-scanner.[23]

For filtering gray-scale values as well, we introduce a
second layer: the reflectance layer. This reflectance layer can
be filled by laser data (e.g. [3] or right image in Figure 4)
or camera data (e.g. [8] or center image in Figure 4). The
reflectance layer accumulates the gray-scale values of a laser-
scanner or gray-scale camera. The initial update of a cell is just
set by the measurement value vmeas, in the further processing
the cell’s value vcell is fused with the incoming data over time
using a low-pass filter with the weight k = [0..1]. The filter
equation is given by:

vcell = k · vcell + (1− k) · vmeas (1)

C. Fusion of Grid-Layers

As motivated in Section I we propose to fuse the entire
stationary environment into one single representation (see
Figure 5). Due to different state vectors of every single layer
we have to abstract the layer as a tristate representation where
the cells contain the state unknown, free or occupied. This
step makes it easy to change the state vector of the original
layer (e.g. from reflectance value to occupancy value or from
Bayesian representation to a Dempster-Shafer representation).

Additionally, only with this abstraction step it is possible to
fuse different state vectors of the grid (e.g. reflectance with
occupancy) for a complete image of the stationary surround-
ings.

In the resulting fusion layer we can distinguish between
areas which are occupied by raised obstacles and areas which
are ’occupied’ by markings (see Figure 5).

Occupancy Layer Reflectance Layer 

Tr
i-

St
at

e 
La

ye
r 

Fusion Layer 

Fig. 5: Processing-Steps for grid fusion. In this case the
Velodyne laser-scanner is used.[23]

V. IMPLEMENTATION OF MULTI-LAYER-GRID

The data stored in the grid is used by a number of instances,
for example the tristate-fusion modules, inverse sensor models
and visualization modules. Our grid implementation is based
on a block structure as already proposed in [24, pp. 107 -
109] to be able to fuse serveral possible data inputs in the
future. This structure allows multiple write accesses to a layer
instance, as long as there is only one sensor updating one
block at the same time. The grid is being moved (shifted) with
the movement of the vehicle, keeping the orientation from its
initialization and thus not requiring a rotation of the cells. The
shifting is done block-wise in a separate thread.

The classical approach to ensure data consistency while
writing data into a layer in multi-threading environments uses a
locking scheme, i.e. read-write-mutexes. These mutexes allow
several parallel read-accesses, but only one write-access at a
time. When a write-lock is requested, all read-accesses have



to be finished and, even worse, no new read-access is given
as long as the write-access is not finished.

The fusion module requires a fixed layout of all used layers
when calculating the resulting cell values. With the mentioned
locking-scheme, this implies that no new data could be added
to any of the connected layers during the fusion process.
Additionally, the movement of the layer has to be prevented.
For complex fusion algorithms with several input layers and
high computational costs, this will cause a lot of waiting-times
and latencies in the data processing. In the worst case, these
waiting-times may ruin the real-time capability of the entire
perception system.

To avoid this issue, we have implemented a layer access
scheme with block-based queues and reference-counting, as
shown in Figure 6.

Generic Sensordata

Write-Accessor

Inverse Sensor 
Model

Basic Layer

Queue MemorypoolBlock Memorypool

Read-Accessor

Writing Modules Reading Modules

Multiple Reader,
e.g. Visualisation

Fig. 6: Overview of grid-implementation.

This implementation does not rely on locking the underlying
data, because it is based on a mark-and-sweep-algorithm. The
memory-pool allocates a certain amount of block instances on
start-up to prevent frequent computational expensive memory
allocations and deallocations. The memory-pool also holds
references to used and free blocks and performs an on-demand
recycling of free blocks. Each block in the layer layout is
represented by a block-queue. This block-queue manages the
access to the block-data. As soon as the block is taken from
the memory-pool the block’s reference-counter is initialized
with 1. This marks the block’s data as in use and prevents
the block from being recycled even if no module is currently
working on this block.

The block-queue always provides a ready-to-read block
which stores the current cell values and will be shared among
all reader-instances. Upon requesting any read-access to a
block, the reference counter is incremented. The reference
counter is decremented whenever an access is terminated.

When a write-access is requested (e.g. by the inverse sensor
model or by a cyclic fusion request), a new block is taken
from the memory pool, initialized with the current contents
of the readable block and given to the writer instance. The
writer instance updates this copy while the original block is

still available to other readers as shown in Figure 7.

Readable Block

Writeable BlockExample Data

Fig. 7: Blockwise write-access concept.

After finishing the update, the writer instance returns the
block to the block-queue. The block-queue exchanges the
current ready-to-read block by the updated block. The new
block is now available to all subsequent read-accesses. Pending
readings to the last ready-to-read block will not be aware
of the exchange and can finish their access. These blocks
are preserved from being recycled by the reference counting
mechanism.

This scheme allows a nearly-parallel read-write-access to
the layer data. Parallel write-access to one block is still
mutually excluded to prevent data corruption and it is ensured
that every read-access gets the newest available data set.

The layer is defined by a certain layout of the block-queues.
The access to the layer is abstracted by so-called accessor-
classes. These accessor-classes copy the layer layout at the
time of acquisition. Each time an accessor acquires the current
layout, the reference counter on each queue is incremented to
prevent the block-queue from being recycled by the memory-
pool. So this approach to organize the block-queues is similar
to the organization of the blocks themselves and is needed for
shifting the entire layer.

While shifting the layer, the block layout of the layer will
be changed according to the vehicle’s movement since the last
shift cycle. Some block-queues, which are then out of range
will be removed, new ones coming in range will be added.
The shifting algorithm ensures the correct physical alignment
of the blocks, i.e. the block-queues’ positions within the layer-
layout are adapted, but not their position in the world.

VI. RESULTS

We used our test vehicle Leonie of the research project
Stadtpilot [4] for evaluation. It is equipped with a Velodyne
laser-scanner and an IMAR iTrace as INS-DGPS-system. In
this setup, we use the highlighted parts of the fusion concept
shown in Figure 8.

For our tests we used a grid with a dimension of
150 m x 150 m and a cell resolution of 0.2 m for the bayes,
reflectance and resulting tristate fusion layer. Each layer was
separated in 15 blocks in each direction. Our implementation
allows the real-time processing of the incoming Velodyne laser



Tristate 
abstraction 

Fusion 

Sensor 1 
(e.g. radar) 

Sensor 2 
(e.g. US) 

Sensor 3 
(e.g. lidar) 

Sensor 4 
(e.g. camera) 

Sensor 5 
(e.g. lidar) 

Sensor 6 
(e.g. lidar) 

O
cc

u
p

an
cy

 L
ay

er
s 

fo
r 

ra
is

ed
 o

b
st

ac
le

s 
G

ro
u

n
d

 L
ay

er
s 

fo
r 

gr
o

u
n

d
 p

o
in

ts
 

R
ef

le
ct

an
ce

 
O

cc
u

p
an

cy
 

Sensor-Specific 
Layer 

Fig. 8: Applied parts (red) of the fusion concept for the setup
with the Velodyne laser scanner.

data with a scan-frequency of 10 Hz. We measured an average
execution time of 35 ms for the raised targets and 25 ms for the
ground reflections. The total processing time averaged about
45 ms, as both layers share some preprocessing modules. The
detailed timings are shown in figure 9. All calculations were
done on an Intel i7-4770 processor with 8 GiByte of RAM.

Laser-
scanner

Ground
Detection

Histogram
Equalization

Vertical
Segmention

ISM 
Occupancy

ISM 
Reflectance

General preprocessing Processing of elevated targets

Processing of ground targets

elevated target processing: 35 ms

ground point processing: 25 ms

Fig. 9: Measured timings in the sensor data processing chain.

The grid implementation is capable of parallel read- and
write-accesses. This flexibility, mainly required by the fusion
module, comes with an extended amount of memory usage.
The memory usage increases with the number of readers
and the processing time of each module, because there is
a snapshot of the grid from the reqeusted time. The used
blocks can not be recycled before the modules finished their
processing and according to that, new block have to be
allocated. As each reading access to a grid-block prevents the
block from being recycled by the underlying memory pool,
the memory usage grows. In this configuration, we measured
a memory pool usage up to four times the theoretical cell
count of the layer, resulting in around 35 MiByte of memory
usage for the bayes and reflectance layer when using a 64-bit
double precision floating-point number as cell datatype. But –
and this is more important for the real-time processing – the
processing time for writing the sensor-data into the layers is
not influenced. So all data will be processed in real-time from
the sensor’s point of view.

Due to the collection of an entire 360◦-scan and the access
to a layer, which consists of a mixture of cells updated in the

last and in the current scan, some data might have a delay.
As we assume the perceived data to be stationary and we
know about the motion of the host vehicle, this delay is not an
issue. The delay is only relevant for Bayes or reflection-value
for the reflection layer and leads to a reduced sight distance,
but does not yield a wrong position of the targets. This a
major advantage to issues with latency in tracking algorithms
of moving obstacles, where a delay in the filtering process has
an influence on the object’s position as well.

Figure 10 shows the benefit of the grid-based approach
for road detection. Even though there are occluded regions
due to other traffic participants (orange areas), the low-level
information about the lane-markings is available for extraction
(white triangles).

Fig. 10: Extracted road course based on markings and building
lines. Background: reflectance-layer (for better visualization,
even though the road course is extracted from the tristate-
layer), foreground: sensor data of the current scan. Orange
areas: occlusion for ground detection, white triangles: ex-
tracted road-markings, red triangles: extracted raised obstacles,
green dots: online estimated reference-line for the piece-wise
extraction (see [7] for more details).

The benefit of fusing the entire stationary environment into
one single representation becomes clear in Figure 11. While
the lane markings are not available due to occlusions or limited
detection range, the range for a rough estimation of the road
course can be extended by using the stationary environment.
In this case, we are able to extract the course of the road up to
50 m ahead (see Figure 11, left). In another case, the building
has a gap due to a crossing street. Just looking for continuous
lines in an occupancy grid would lead to an interruption of
the extraction. Due to the fusion of the stationary obstacles
with the road markings the algorithm is able to span this gap
and give a robust estimate of the road course even in this case
(see Figure 11, right).



Fig. 11: Correct extraction of the road course even in cases
of missing features. Left: Lane markings are missing, but the
building line helps to estimate the rough course up to 50 m
ahead. Right: A crossing street leads to a gap in the building
line. This can be compensated by using the road-markings.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have presented a new approach for a
complete low-level representation of the stationary environ-
ment with the focus on inner-city scenarios. We have shown
that the fusion yields benefits for the extraction of the road
course, especially in scenes with occlusion or incomplete and
interrupted building lines or road markings. We have also
presented a technical solution for a real-time processing of
the computational expensive grid-processing. The identified
bottleneck in the fusion-layer is solved using a quasi lock-
free implementation of the entire grid processing, so that the
algorithms run in real-time on a standard PC.

For our future work we will continue our activities towards
environment modeling. A special challenge will be using
close-to-production sensors like cameras or less expensive
laser-scanners as well. First results of the usage of those
sensors were already presented in [7]. The extracted road
course or more detailed lane course can then be used for
localization purposes [23] and scene-estimation.

ACKNOWLEDGMENT

The authors wish to thank Toni Günther and Jaebum Choi
for their support.

REFERENCES

[1] A. Bar Hillel, R. Lerner, D. Levi, and G. Raz, “Recent progress in road
and lane detection: a survey,” Machine Vision and Applications, pp. 1–
19, 2012.

[2] J. Knaup and K. Homeier, “RoadGraph - graph based environmental
modelling and function independent situation analysis for driver assis-
tance systems,” in Intelligent Transportation Systems (ITSC), 2010 13th
International IEEE Conference on, Madeira, Portugal, Sep. 2010, pp.
428 –432.

[3] J. S. Levinson, “Automatic laser calibration, mapping, and localization
for autonomous vehicles,” Ph.D. dissertation, Stanford University, 2011.

[4] J. M. Wille, F. Saust, and M. Maurer, “Stadtpilot: Driving autonomously
on braunschweig’s inner ring road,” in Intelligent Vehicles Symposium
(IV), 2010 IEEE, San Diego, CA, 2010, p. 506–511.

[5] A. Geiger, M. Lauer, F. Moosmann, B. Ranft, H. Rapp, C. Stiller, and
J. Ziegler, “Team AnnieWAY’s entry to the grand cooperative driving
challenge 2011,” IEEE Transactions on Intelligent Transportation Sys-
tems, to be published, 2012.

[6] T. Weiss and K. Dietmayer, “Automatic detection of traffic infrastructure
objects for the rapid generation of detailed digital maps using laser
scanners,” in Intelligent Vehicles Symposium, 2007 IEEE, 2007, p.
1271–1277.

[7] R. Matthaei, B. Lichte, and M. Maurer, “Robust grid-based road de-
tection for ADAS and autonomous vehicles in urban environments,” in
Proceedings of the 16th International Conference on Information Fusion
(FUSION), 2013, Istanbul, Turkey, Jul. 2013, pp. 1 –7.

[8] M. Konrad, M. Szczot, F. Schüle, and K. Dietmayer, “Generic grid
mapping for road course estimation,” in Intelligent Vehicles Symposium
(IV), 2011 IEEE, 2011, p. 851–856.

[9] A. Elfes, “Sonar-based real-world mapping and navigation,” Robotics
and Automation, IEEE Journal of, vol. 3, no. 3, pp. 249–265, 1987.

[10] H. P. Moravec, “Sensor fusion in certainty grids for mobile robots,” AI
magazine, vol. 9, no. 2, p. 61, 1988.

[11] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics (Intelligent
Robotics and Autonomous Agents series), ser. Intelligent robotics and
autonomous agents. The MIT Press, Aug. 2005.

[12] M. Bouzouraa and U. Hofmann, “Fusion of occupancy grid mapping
and model based object tracking for driver assistance systems using
laser and radar sensors,” in Intelligent Vehicles Symposium (IV), 2010
IEEE, 2010, p. 294–300.

[13] M. Konrad, M. Szczot, and K. Dietmayer, “Road course estimation in
occupancy grids,” in Intelligent Vehicles Symposium (IV), 2010 IEEE,
San Diego, CA, 2010, p. 412–417.

[14] T. Weiss, B. Schiele, and K. Dietmayer, “Robust driving path detection in
urban and highway scenarios using a laser scanner and online occupancy
grids,” in Intelligent Vehicles Symposium, 2007 IEEE, Istanbul, Turkey,
2007, p. 184–189.

[15] M. Darms, M. Komar, and S. Lueke, “Map based road boundary
estimation,” in Intelligent Vehicles Symposium (IV), 2010 IEEE, 2010,
p. 609–614.

[16] H. Loose, U. Franke, and C. Stiller, “Kalman particle filter for lane
recognition on rural roads,” in Intelligent Vehicles Symposium, 2009
IEEE, 2009, p. 60–65.

[17] A. Müller, M. Himmelsbach, T. Lüttel, F. v. Hundelshausen, and H.-
J. Wünsche, “GIS-based topological robot localization through LIDAR
crossroad detection,” in 14th International IEEE Conference on Intelli-
gent Transportation Systems (ITSC), 2011, 2011, p. 2001–2008.

[18] F. Homm, N. Kaempchen, and D. Burschka, “Fusion of laserscannner
and video based lanemarking detection for robust lateral vehicle control
and lane change maneuvers,” in 2011 IEEE Intelligent Vehicles Sympo-
sium (IV), Jun. 2011, pp. 969 –974.

[19] J. Choi, S. Ulbrich, B. Lichte, and M. Maurer, “Multi-target tracking
using a 3D-Lidar sensor for autonomous vehicles,” in 16th International
IEEE Conference on Intelligent Transportation Systems (ITSC), 2013.
IEEE, 2013, p. 881–886.

[20] H. Badino, U. Franke, and D. Pfeiffer, “The stixel world-a compact
medium level representation of the 3d-world,” Pattern Recognition, pp.
1–10, 2009.

[21] R. Matthaei, H. Dyckmanns, M. Maurer, and B. Lichte, “Consistency-
based motion classification for laser sensors dealing with cross traffic
in urban environments,” in Intelligent Vehicles Symposium (IV), 2011
IEEE, Baden-Baden, Germany, Jun. 2011, pp. 1136 –1141.

[22] R. Matthaei, H. Dyckmanns, B. Lichte, and M. Maurer, “Motion classi-
fication for cross traffic in urban environments using laser and radar,” in
Proceedings of the 14th International Conference on Information Fusion
(FUSION), 2011, Chicago, Jul. 2011, pp. 1 –8.

[23] R. Matthaei, G. Bagschik, and M. Maurer, “Map-relative localization
in lane-level maps for ADAS and autonomous driving,” in Intelligent
Vehicles Symposium (IV), 2014 IEEE, 2014.

[24] J. Effertz, “Autonome Fahrzeugführung in urbaner Umgebung durch
Kombination objekt- und kartenbasierter Umfeldmodelle,” Ph.D. disser-
tation, TU Braunschweig, Braunschweig, 2009.


