
Specifying a middleware for distributed embedded vehicle control
systems

Andreas Reschka1, Marcus Nolte1, Torben Stolte1, Johannes Schlatow2, Rolf Ernst2 and Markus Maurer1

Abstract— The software of electric / electronic vehicle control
systems is static in current series vehicles. Most of the systems
do not allow maintenance or functional updates, especially in
the field of driver assistance systems. Main causes are the testing
effort for a software release and the wide variety of different
configurations in different vehicle models. In this paper we
take a closer look at the requirements for a middleware which
allows such updates, verifies new software versions, and adds
reconfiguration mechanisms for singular control units and
distributed sets of control units.

To derive the requirements we consider the general vehicular
context with limitations in space, electric power, processing
power, and costs together with four exemplary road vehicle
control applications (cruise control, automatic parking, stability
control, force feedback), and a full x-by-wire target vehicle for
implementing these applications. The analysis of these three
different sources of requirements results in desired middleware
functionalities and requirements, especially concerning runtime
timings and update timings. The requirements cover an upda-
te functionality with integrated verification, the exchange of
applications on singular control units, and the degradation of
functionality by switching between control units.

I. CHALLENGE

The complexity of vehicle control systems increases with
each new generation. This includes an increasing degree
of dependability between individual system components.
In contrast, hardware resources are still limited in vehicles
due to restrictions in terms of space, electric power, and
costs. Advanced driver assistance systems with environment
perception and Vehicle-to-X-communication in particular
demand a lot of processing power and memory. In order
to reduce energy, space, and cost demands, a singular
or small number of electronic control units (ECU) could
be used for multiple applications, if the applications
currently relevant are alone stored and processed in the
ECUs. (In this context the term application is used for
the implementation of a specific vehicle control function).
Thus, inactive software components could be stored in
slower and cheaper memory and be loaded into the ECUs
on demand. Additionally, different implementations of
a single application depending on the equipment level
of a vehicle or the current capabilities could be used and
loaded into the main memory of a single ECU when needed.
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Fig. 1. Sources of constraints for the resulting requirements

In this paper we describe how we analyze requirements
and constraints from the vehicle context in general, the
desirable functionality of infrastructure software (operating
system and middleware), functional requirements from ex-
emplary safety-critical and non safety-critical applications,
and the constraints we have in our target platform MOBILE,
a fully x-by-wire controlled car (see Figure 1). The analysis
results in a set of requirements for the infrastructure software
of a single ECU or a set of ECUs. The work presented here
is part of the Controlling Concurrent Change (CCC) project
funded by the Deutsche Forschungsgemeinschaft (DFG).

A. Work Context

In the past, if applied at all, updates for automotive syste-
ms exclusively featured bug fixes for software errors induced
during the design process. Currently the idea of automatic,
incremental updates (concurrent change) is becoming more
and more popular within the automotive community. Inspired
by a growing app market in the smartphone sector, almost
all automotive OEMs are currently starting to provide deep
integration of tablet computers and smartphones into vehi-
cle infotainment systems. Some OEMs also offer custom-
tailored solutions and provide new features and bug fixes to
their customers via over-the-air updates [1], [2]. This trend is
also supported by suppliers like nVidia [3], who start offering
(re)configurable hardware platforms for driver assistance and
infotainment systems.

However, these updates do currently not consider the mo-
dification or extension of safety-critical systems which have
direct influence on the driving-behavior of the vehicle. Due
to potentially life-threatening failures, safety-critical systems
still have to be thoroughly lab-tested and updates cannot be
applied on the fly. Since the side effects of software changes
are often diffuse, a reliable management-layer (middleware)
is crucial when trying to apply concurrent change to complex
embedded systems.



A component-based approach for dynamic updates of
embedded automotive systems is described in [4]. The
authors present a plugin-based approach for AUTOSAR-
based ECUs. While they state that, theoretically, their ap-
proach also suits mixed-critically systems, they focus on non
safety-critical system-components.

Martorell et al. [5] also present an AUTOSAR-based ap-
proach for enabling dynamic software updates for automotive
ECUs during runtime, while still relying on offline lab-
based tests. They demonstrate their solution with the help of
non safety-critical components, while CCC aims at in-field
verification and the exchange and / or update of safety-critical
components.

In [6] Bosch and Eklund present a general architectu-
re for the in-field deployment of new software compo-
nents for automotive applications. However, they only pro-
vide infotainment-related use cases and explicitly exclude
safety-critical systems from their approach.

Kim et al. [7] use a software redundancy system called
SAFER for an autonomous vehicle. Their approach is focu-
sed on reliability and allows the exchange of software apps
in real-time in order to switch from failing to functioning
components. In contrast to the more general CCC approach,
they only consider the exchange of software components
with the same functionality in a single ECU rather than
different applications. Limited computational resources or
distributed applications are not considered. Last not least,
SAFER does not consider protection mechanisms which are
required according to automotive safety standards [8].

B. Controlling Concurrent Change

The CCC2 project targets the management of changing
applications in complex embedded system networks for
automotive and aerospace applications. The special focus of
this paper is on the automotive domain.

Today, typical development processes in the automotive
industry can be divided into three stages at the most ab-
stract level: specification, implementation, and verification
(e.g. as described by the V-model, according to the ISO
26262 standard) (see also [9], [10]). Due to the complexity
of modern automotive systems consisting of an increasing
number of system components, the verification of a com-
plete system is becoming more and more complex and
time-consuming. Integration tests in particular often show
hidden dependencies between the requirements for single
system components, which makes the integration of updated
components even more challenging. Additionally, updates of
multiple ECUs complicate the update process because of
dependencies between the updated software components.

One key aspect of the CCC project directly targets the
reduction of offline testing effort in a development process.
A model-based verification of the complete system is essen-
tially based on the use of contracts. These are guarantees and
assumptions which the components provide and / or make
with respect to their interfaces to the environment. They are
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Fig. 2. Example of a distributed, CCC-enabled system; Applications can
be mapped to multiple ECUs

derived from detailed functional requirements for the system-
components. In the CCC context contracts for different
views of the system are considered. These views are safety,
availability, timing, and security. The definition of contracts
for each software component allows a formal analysis if a
desired configuration of the system is feasible.

If a component is rejected in the verification process, e.g.
due to unsatisfiable safety constraints, a conflict-resolution
strategy is applied which keeps the system in an operable
state. With the help of the contracting approach, the afore-
mentioned exhaustive testing process can be partly replaced
with formal system-level analyzes which can be integrated
into the (in-field) update process. Ideally it can be moved
to the field, since the integrity of the whole system can
be automatically verified whenever a new component is
introduced.

As a part of the project, several driver assistance functions
are implemented as applications which can be loaded and
unloaded into a single ECU or a small set of ECUs.

II. VEHICLE DEVELOPMENT CONSTRAINTS

Integrating ECUs and communication systems into a ve-
hicle is subject to a variety of constraints, which have to
be considered in the conceptual phase of an (advanced) dri-
ver assistance system. These constraints cover the available
physical space in the vehicle for the integration of sensors,
actuators, ECUs, and wiring. Less used space is desirable. A
reduced number of ECUs reduces the required physical space
for the ECUs themselves, the space for wiring, and the power
consumption. These factors decrease the total hardware cost
of the ECU network.

Additionally, the workload and consequently the efficiency
of the ECU hardware increases. As a result the development
and deployment costs of the ECUs can be reduced. Thus,
a reduction or at least a constant number of ECUs has
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many obvious advantages in the overall vehicle context.
Exemplary, this trend is currently visible in the development
towards a central driver assistance ECU (German: zentrales
Fahrerassistenzsteuergerät, zFAS). This ECU acquires data
from multiple sensors and combines several driving functions
[11]. A similar approach is used in the current S-Class from
Mercedes-Benz, where several functions are integrated into
the multipurpose camera system [12], [13].

Besides efficiency and resource issues, the potential of
reducing development costs by reducing hardware develop-
ment effort and especially offline lab testing effort, less ECUs
seem to have more advantages.

III. APPLICATION-SPECIFIC REQUIREMENTS

The aforementioned approach is applied to four exemplary
use cases in different types, i.e. three driver assistance
applications Cruise Control (CC), Automated Parking (AP),
and a Stability Control System (SCS) for a passenger car.
These are typical applications in current series cars, but they
are still in the focus of research activities to improve their
performance. Additionally, a Force Feedback (FF) applica-
tion is covered, which is useful for a steer-by-wire system
to provide feedback to a human driver from the torques and
forces at the tires. These four applications are going to be
implemented and tested in different updateable versions for
our experimental vehicle MOBILE (s. section IV).

A. Cruise Control

In series cars, cruise control is realized either by a user
input of a desired velocity or as Adaptive Cruise Control
with an additional radar or lidar sensor and / or a camera to
adapt the vehicle’s velocity to other traffic participants in
front of the equipped car. For our application we consider
cruise control exclusively relying on user-input (Type CC.1)
and a cruise control with a camera system, detecting speed
limit signs (Type CC.2). The system controls the vehicle to
the minimum of user input and speed limit. Of course, the
system can be overruled by the driver. The type usable in
a car depends on the availability of a camera system. If a
camera is not connected, the cruise control only uses user
inputs for its functionality. If a camera is available, the user
input is used as a desired velocity and the detected velocity
is an upper limit of the velocity. The ECU should detect the
available type by itself. Both cruise control applications use
the engine and brakes to control the velocity to the desired
value. Lateral control is performed by a human driver.

In a first approach the exchange of the necessary software
components is done offline, e.g. in a car workshop. The-
refore, no real-time requirements exist and the software is
exchanged in a controlled situation. An update functionality
has to be integrated into the operating system / middleware
to allow a safe exchange of software.

In a second approach, a failure of the camera system can
be detected and the system degrades itself from CC.2 to CC.1
in a safe state, which maintains whenever the cruise control
is deactivated.

B. Automatic Parking

The automatic parking application should park the car
in a parking spot. As a cruise control functionality is not
required while parking, the same ECU should be used for
both applications. When activating the automatic parking
application, the cruise control application is automatically
unloaded and its resources can be used for parking. Again
two different types of parking are planned. The first one uses
on-board sensors to detect a parking space like in many series
vehicles available (AP.1). The second type uses Vehicle-to-
Infrastructure-communication to ask for a free parking space
near the car and to receive the coordinates (AP.2). In both
scenarios the car is parked automatically. Both types control
the vehicle laterally and longitudinally to follow a calculated
trajectory from a standstill to the final parking position.

The exchange from cruise control to automatic parking
functionality is done online in a safe state, in this ca-
se a standstill of the car. If the Vehicle-to-Infrastructure-
communication component is not available, AP.1 is auto-
matically activated. Otherwise AP.2 is available as well and
the driver has to decide, which type should be used. An
automatic degradation from AP.2 to AP.1 is possible as well.

C. Stability Control System

This use case covers a stability control system, which
stabilizes the car and additionally prevents the car from
collisions. The stability control system has three different
types of operation. Type SCS.1 is based on differential
braking as used in series cars. It uses sensory feedback to
keep the car controllable for the human driver. The SCS.2
type uses a side slip angle controller to allow an even better
performance, especially in critical driving situations [14].
The side slip angle control is based on sensory feedback
and actuation of the brakes, the engine(s), and the steering
of a car. The third type (SCS.3) uses environment perception
components. These are used to detect obstacles in the way
of the car and thus allow the car to avoid collisions even in
critical driving situations. Additionally they can be used to
determine the road conditions.

Again as with cruise control and automatic parking the
exchange of software components can be executed offline in
a safe state, e.g. in a workshop, and online in a safe state, e.g.
in a standstill or an uncritical driving situation. Additionally
it is imaginable to exchange software components during
operation to react to failures in the system and degrade the
stability control functionality accordingly.

D. Force Feedback

To provide feedback to a driver from a steer-by-wire
system, a force feedback system is useful. Depending on the
cornering force at the tires, a torque is applied at the steering
wheel against the steering torque of the human driver. This
application will also be provided in two different variants:
A standard mode which provides a predefined strength of
the force feedback as well as a variant with user-definable
strength.
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Fig. 3. Set-up of the experimental vehicle MOBILE

IV. TARGET PLATFORM MOBILE

The experimental vehicle MOBILE3 was custom built
by the Institute of Control Engineering and the Institute of
Engineering Design at the TU Braunschweig. The intended
purpose of the vehicle is to serve as a tool for a variety of
research projects on vehicle dynamics and mechanical or
electric / electronic components. Still, the vehicle is also a
demonstrator for use cases in the context of the CCC project.

The basic actuator set-up of MOBILE is given in Figure 3.
The most important components are:

• the drive units at the front and rear axle, which allow
to drive each wheel individually with a peak power of
approximately 100 kW and a fixed gear ratio,

• the electric steering units at each wheel, which allow
to control each wheel individually within a range of
approximately +/- 43◦,

• the electromechanical brakes,
• the flexible user interface to control the car, and
• the modular power supply based on two independent

lead-acid battery packs.
The control of the actuators is implemented solely by

wire. As a result, MOBILE offers the opportunity to evaluate
control systems whose capabilities are beyond what a human
driver can control utilizing inputs such as steering wheel,
brake, and accelerator pedal.

Of course, pure by-Wire systems introduce additional
functional risk into a system. Thus, the electronic system
of MOBILE is designed redundantly for safety-critical
tasks, i.e. each control unit and the data bus connections
are available twice. To achieve an appropriate safety
level based on this structure, an additional diagnostic and
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decision making system was developed to guarantee proper
reconfiguration of the system in case of failures of individual
control units [15], [16]. Also ongoing research deals with
functional safety of basic functionality of MOBILE, e.g. the
brake system [17].

Related to the CCC project, additional ECUs are added
to the vehicle network of MOBILE. The ECUs implement
all the functionality described in section III as well as the
required mechanisms for the safe exchange of software. To
ensure safe test operation, the interface between ECU and
vehicle is designed as demonstrated in Figure 4. During
manual operation the driver directly controls the actuators of
MOBILE with steering wheel, brake, and accelerator pedal.
Starting the currently active CCC application switches the
control of the vehicle’s actuators to the CCC ECU. Still,
the switch is released only in standstill of the vehicle. In
contrast, switching back to the driver is always possible and
occurs as soon as the driver takes over control of one of
the inputs. To realize the CCC showcases (section III) the
CCC ECU has to run in parallel of the manual control, to
allow an activation of the cruise control application and the
parking application while driving manually. The stability
control system application has to run in parallel to manual
driving and all other applications.

The most important constraint in MOBILE is the cyclic
rate of the FlexRay bus, which runs at a rate of 250 Hz.
The control messages from an (advanced) driver assistan-
ce system ECU or a set of (advanced) driver assistance
system ECUs have to meet this requirement. Additionally,
the FlexRay configuration is static by design. Thus, it is
not possible to connect new ECUs without reconfiguring all
attached ECUs. A central FlexRay gateway which separates
the FlexRay network from the ECUs running the middleware
is necessary. In this case the additional ECUs can use the
messages for vehicle control which are already provided in
MOBILE’s FlexRay cluster.

As the cruise control application is restricted to controlling
the longitudinal dynamics of the vehicle, it is not highly
critical to the vehicle’s stability. Longitudinal vehicle dyna-
mics possess typical bandwidths of about 1-2 Hz [14]. For
the automatic parking application the speed is quite low and
thus, instability of the vehicle is also not an issue. Therefore,
for both aforementioned applications, a cyclic rate of 20 Hz
should be sufficient for control messages from the (advanced)
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driver assistance system ECUs to the FlexRay gateway. The
stability control system application requires faster execution
with a rate of at least 100 Hz [14] [18].

The force feedback application is safety-critical, since a
malfunction or a large lag can reduce the human driver’s
ability to control the vehicle. According to [19] and [20]
typical bandwidths of force-feedback systems for steer-by-
wire applications are 100 Hz.

V. DESIRED MIDDLEWARE FUNCTIONALITY

As described above, a reduced number of ECUs leads to
reduced costs for an embedded system network. However,
with a reduced number of ECUs, the total computational
power of the network decreases. In order to overcome this
restriction, a suitable middleware has to provide means of
resource management and distribution. This includes system-
wide CPU time and memory assignment.

The applications using the middleware can be manifold.
For an optimal usage of the computational power of the
system, several applications have to share the same hard-
ware. Thus, the middleware is responsible for running the
necessary and desired applications and to distribute them on
unused hardware. Besides resource distribution, application
distribution is another desired functionality.

For safety reasons it is imaginable to move certain applica-
tions from one ECU to another. This improves the availability
of certain applications, which may be safety-critical and
provides a hardware redundancy mechanism. In order to
provide a safe and efficient configuration of the system, the
middleware has to apply suitable optimization algorithms.

Data exchange between ECUs is a communication task.
Since the middleware already provides means of resource
distribution, the developer cannot know which ECU is ex-
ecuting which tasks. Because of this, the middleware must
also be able to provide transparent inter-ECU communication
over the network. This also requires suitable interfaces to
communication-hardware such as bus transceivers. Thinking
of complex automated functions, typical examples of the
need for transparent inter-ECU communication are shared
components such as components for the calculation of a
vehicle dynamics model or an environment model.

In order to enable online updates of applications in the
sense of subsection I-A, the middleware must be able to
verify pending updates. In order to maintain system integrity
with respect to security and safety, malicious or faulty
components have to be rejected. To integrate the update
functionality into the software infrastructure to the largest
possible extent, an automatic application verification is ne-
cessary which reduces offline lab testing effort for multiple
different software versions in the same vehicle model and
type.

While today, system function integration is thoroughly
tested in lab environments and prototypes, this will no more
be possible with automatic verification in the field. So, the
middleware has to provide robustness against integration er-
rors. The main instrument shall be monitoring which shall be
used to supervise system timing and functionality according

to the application contract specifications. Such monitors will
be a main research target of CCC.

In future advanced driver assistance systems, which use
environment perception and control the car laterally and lon-
gitudinally, a degradation functionality will be necessary to
avoid complete outages or uncontrolled behavior of applica-
tions [21]. In case of malfunctions, other applications, which
may work faultlessly, but reduce the overall functionality of
the application’s purpose (see [7]), should be automatically
loaded.

If thinking about exchanging software components in an
ECU and by that reconfiguring the system during runtime,
fast exchange is necessary, particularly when considering
applications which influence vehicle dynamics. The time
needed for the exchange of components is therefore a metric
for the performance of such a system. The exchange time
metric is the time from unloading a piece of software to the
start of execution of a newly loaded piece of software into
the ECU.

Example: While updating at runtime or degrading the
stability control system type because of technical failure,
theoretically the cycle times from section IV apply to the
speed of the update mechanism, too. As this seems to
be quite difficult, it is more important that the degraded
version of an application runs properly, instead of allowing
a complete outage of the stability control system. A short
lag of the change from the failing version to the degraded
version is inevitable if the stability control system version
is switched on the same ECU. A different solution could be
to run two different versions of the stability control system
in parallel on two different ECUs. In normal operation,
the more sophisticated variant is used until it fails. In this
case switching to the other version restores a basic stability
control functionality. An approach for recognizing failing
system components has been described in [15].

As applications like cruise control and automatic parking
are not necessary for vehicle stability, an immediate degra-
dation is not required for a safe operation of the vehicle. Due
to this fact we consider an exchange time of one second to
be appropriate for these use cases.

As a general requirement, the middleware must not in-
terfere unintentionally with timings and availability within
the network since these are important issues with regard to
safe driving. These requirements depend on the respective
application as described in section IV.

VI. CONCLUSIONS AND FURTHER RESEARCH

The requirements derived in this paper serve as an input
for the other work groups in the CCC project in order to
extend the respective middleware and adjust it to the needs of
typical automotive applications. Additionally we will use the
application-specific requirements as a basis for defining the
contract interfaces for the respective software components.
In summary, the resulting required features are:

• A guarantee as well as a monitoring of cyclic execution
times at a rate of at least 20 Hz for automatic parking



and cruise control, and 100 Hz for stability control and
force feedback,

• a reliable inter-ECU communication,
• an online application verification functionality,
• the guarantee of an appropriate online application ex-

change time (one second for non-critical applications
and the cycle time for stability control and force
feedback).

In our future research, applications under development will
be integrated into MOBILE’s onboard network on dedica-
ted ECUs. With the help of MOBILE as an experimental
platform we will verify the suitability of the CCC-approach
for its application in automotive embedded networks and
evaluate its performance with respect to the online exchange
of applications.
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