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Abstract— Automated driving within a lane is a fascinating
experience already. However, more exiting but also technically
more challenging is to dare the next step of automating tactical
behavior decisions for lane changes, as well. In this paper,
we present our approach for situation assessment in tactical
behavior planning for lane changes, whether lane changes
are beneficial and/or possible. We present a way to tackle
perception uncertainties and how to monitor the system’s
abilities and current skills. This is achieved by a dynamic
Bayesian network and an unscented variance transform. Our
approach is evaluated not only in a simulation, but also in real
traffic. Our implementation has recently been demonstrated
to the public in the Audi A7 piloted driving concept vehicle,
driving 550 miles from Stanford to Las Vegas to the Consumer
Electronics Show (CES) 2015.

I. INTRODUCTION

Driver assistance systems like an adaptive cruise control or
lane keeping system are able to take over some stabilization
level related tasks, already. Among the key challenges toward
automated driving is to automate behavior on a tactical
level, too. For this, it is necessary to have a situation
assessment for tactical behavior planning. This situation
assessment transforms various factors of the current driving
situation into abstract, aggregated state estimates for partic-
ular situation aspects. Such a situation assessment needs to
consider information about dynamic objects, the scenery as
well as information from a self-representation all along with
transient and permanent goals and values of the system.

In Ulbrich & Maurer [1], we presented our general frame-
work for tactical lane change behavior planning. This paper
focuses on which aspects need to be considered for a lane
change situation assessment. It provides details about the
situation assessment for the dynamic traffic situation. We
extend previous works by performing not only a situation
assessment, whether a lane change is possible but also if the
lane change is beneficial at all.

For that purpose, this paper is structured as follows: In
section II we pinpoint situation assessment in the overall
system architecture of an automated vehicle, review exist-
ing literature on situation assessment and provide a theo-
retic foundation of dynamic Bayesian networks. Section III
presents our implementation of a dynamic Bayesian network
for lane change behavior planning. This is followed by an
evaluation in a simulation environment as well as in real
traffic in section IV. Last of all, section V finalizes this paper
with conclusions and a research outlook.

S. Ulbrich and M. Maurer are with the Institute of Control Engineering,
Technische Universität Braunschweig, Hans-Sommer-Str. 66, 38106 Braun-
schweig, Germany {ulbrich, maurer}@ifr.ing.tu-bs.de

II. BACKGROUND

Donges [2] distinguished different levels of driving tasks.
He introduced the classification into navigation tasks (strate-
gic level), guidance tasks (tactical level) and stabilization
tasks (operational level). The focus of this paper are guidance
tasks, which entail any tactical behavior planning for an au-
tomated vehicle. Figure 1 illustrates situation assessment for
tactical behavior planning as a part of the overall architecture
of an automated vehicle.
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Fig. 1. Tactical behavior planning for lane changes as a part of the overall
functional system architecture of an automated vehicle (cf. [3], [4], [5]).

A. Related work

A review of relevant literature has been presented in
Ulbrich & Maurer [6] already. Therefore, the focus is limited
to some particular aspects of the situation assessment itself.

Pellkofer [7] and Naranjo [8] use a fuzzy logic for
modeling lane change decision making problems. The ad-
vantage of such a fuzzy logic approach is its simplicity and
computational efficiency.

Schubert et al. [9] use a Bayesian network for situation
assessment and decision making for lane changes. Decel-
eration to safety time (DST) is used as a central criterion
for lane change situation assessment. In [10], Schubert et
al. illustrate how to transform value-continuous (measured)
state variables into discrete state variables by a discretization
of so called situation parameters. In [11], he does a more in
depth practical evaluation of the proposed Bayesian network.
He picks some sample sequences of highway driving and
illustrates how situation assessments’ expected utilities for



doing lane changes vary over time. Moreover, he illustrates
the consequences of uncertainties on the ambiguity of the
situation over time.

Reichel et al. [12] present an approach for situation aspect
modeling and situation assessment for merging situations. It
is used it to analyze if the ego vehicle is part of a convoy
merging maneuver or if a convoy is about to merge to the
ego lane.

Ardelt et al. [13], [14] present BMW’s lane change situ-
ation assessment approaches in its ConnectedDrive-project,
focused on highly automated driving on highways. They use
a decision tree to assess the current feasibility of maneuvers,
depending on the driving goal and a situation interpretation.

Also in the field of driver assistance systems for lane
change assistance, Chen [15] and Habenicht [16] provide an
approach for situation assessment based on the point mass
motion equations of an object. In his implementation, Chen
focuses on an assessment based on time gap and time-to-
collision. However, in his theory part, he derives necessary
motion equations for objects. By solving these equations for
the necessary acceleration/deceleration to safety he provided
the framework for the metric being used in this paper.

B. Dynamic Bayesian Networks

Bayesian networks allow probabilistic reasoning based
on the idea of conditional probability. Bayesian networks
graphically represent relationships between random vari-
ables. Every node in Bayesian network stands for a random
variable and directed edges among nodes encode information
about the conditional dependence of the random variables. A
Bayesian Network is a directed acyclic graph G = {X , E}
with a set of nX nodes X = {X1, ..., XnX

} and a set of
directed edges E = {Xi → Xj |Xi, Xj ∈ X , i 6= j}. All
nodes on which a node Xi conditionally depends on are
called Dep(Xi)

1. Hence, a Bayesian Network can be written
by: P (X1, ..., XnX

) =
∏nX

i=1 P (Xi|Dep(Xi))
Evidence, or measurements, can be incorporated by a joint

probability distribution p(X1, ..., XnX
|m).

Typically, Bayesian networks assume discrete random
variables for their nodes. However, they can also be used to
handle continuous random variables. A continuous random
variable has an infinite number of possible values. Hence,
it is not possible to explicitly state conditional probability
tables for the set of edges E . There are two ways to
address this issue: On the one hand a continuous random
variable can be discretized, on the other hand a random
variable can be described in terms of a particular probability
density function, which can be represented by a finite set
of parameters (cf. Russel & Norvig [17, p. 520]). In this
paper, a transformation between value continuous node (e.g.
lane traffic flow velocity) and a value discrete node (e.g.,

1This set is often called the set of parent nodes Pa(Xi). Given the
hierarchical structure of abstraction in our Bayesian network in figure 2
and figure 3, we see a chance for misunderstandings that a more abstract
node like Lane change possible left is indeed a dependent child node to, e.g.
Lane change possible left due to infrastructure situation. Hence we suggest
to call this set Dep(Xi).

lane change beneficial due to velocity gain) is performed
with a sigmoid function. We use the cumulative distribution
function of a normal distribution for this purpose.

A dynamic Bayesian network extends a regular Bayesian
network by the temporal dependency among nodes. Spe-
cial cases of this general framework are Kalman filters or
hidden Markov models. In these, a random variable not
only depends on its set Dep(Xi) within a time slice, but
also on earlier time slices (cf. figure 2). We assume the
Markov property to hold. That is, a system state only depends
on current measurement updates and a finite history of
previous states. In our case a first-order Markov process only
depending on current measurement updates and the last state
P (Xt|Xt−1,mt) is used.
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Measured scene with 
updated observable state 
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Fig. 2. Measurement update for hidden state variables (circles) in
dynamic Bayesian network for lane change planning based on observable
measurements (rectangular).

III. SITUATION ASSESSMENT FOR LANE CHANGES

This section presents our implementation of a dynamic
Bayesian network for lane change situation assessment.
This is part of a so called measurement model in a novel
framework for tactical behavior planning in uncertain, mixed-
integer state spaces presented in Ulbrich & Maurer [1].

This paper focuses on the measurement model and in
particular the situation assessment.

The measurement model translates current measurement
information about the driving situation into an aggregated
belief of the system’s state. Measured information may par-
tially be value-discrete (e.g., number of lanes) and partially
be value-continuous (e.g., distance to a front vehicle). Some
aspects of the system state are directly observable (e.g., how
long the indicator has been switched on already) or at least
no better state estimate can be obtained by modeling them
as hidden (e.g., object velocities). For other aspects it may
be possible to obtain better or at least some state estimates
by modeling them as hidden. Hidden state variables may
contain information, whether a lane change seems possible
or beneficial in the current situation, which gap is the best
to head to, etc.

Figure 3 shows different stages within the measurement
model. The leftmost part of the image shows a visualization
of the information in the context model as an abstract scene



Fig. 3. Estimation of situation aspects by a Bayesian network. Left: scene,
center: situation, right: visualization of dynamic Bayesian network.

description of the vehicle itself and its environment. The
center part of figure 3 illustrates a situation abstraction of
the lane change relevant information. Here, a situation where
the automated vehicle performs a lane change to the left to
overtake a slower front vehicle is depicted. For obtaining
beliefs for the distributions of hidden state variables, a
dynamic Bayesian network is used. The rightmost part of
that figure illustrates the dynamic Bayesian network used to
estimate distributions for the hidden state variables. Every
node in that dynamic Bayesian network is considered a
hidden state random variable.

Figure 2 illustrates the belief update in the dynamic
Bayesian network. Every round node is a hidden state
variable in the dynamic Bayesian network. A new belief
estimate at time slice t is derived from the latest values
of observable state variables like distances or velocities of
objects and -with a certain weight- the old belief of that
particular state variable at the previous time slice.

The four high-level hidden state variables for planning lane
changes are, whether a lane change is possible to the left or
right and whether it is beneficial to the left or right. To obtain
state estimates for those hidden state random variables,
several other random variables need to be estimated.

A. Lane Change Possible Estimation

For the estimation if a lane change is possible, it is
necessary to consider if it is possible due to the dynamic
traffic situation, due to the infrastructure, due to ability
induced skill restrictions, as well as due to the system’s
current skill-level induced skill restrictions.

1) Lane Change Possible due to the Dynamic Traffic
Situation: Maybe the most obvious aspect for situation
assessment is the consideration of dynamic objects in the
automated vehicle’s environment.

To evaluate if a lane change is possible due to the dynamic
traffic situation, the automated vehicle’s environment is split
into different regions of interest. Figure 4 illustrates three
different regions of interest for deciding a lane change to
the left. In purple, the region of interest ”front ego” (FE),
in yellow ”front left” (FL) and in orange ”rear left” (RL).
Accordingly, ”front ego” (FE), ”front right” (FR) and ”rear
right” (RR) will be considered for a lane change to the right.

sFE
sRL

sFE

ROI RL ROI FL

sego

ROI FE

sRL

Fig. 4. Typical scenario for lane change situation assessment with three
dynamic objects and three regions of interest rear left (RL), front left (FL)
and front ego (FE).

To calculate, whether other vehicles allow to change lanes,
we use the motion equations of a point of mass similar as in
Chen [15] and express the distance between the ego vehicle
and a vehicle in the rear left neighbor lane by a difference
of sego(t)− sRL(t). For the sake of analytic solvability, we
assume that the driver of the green vehicle will brake with a
constant (negative) acceleration aRL and that he would like
to maintain a time gap of TRL = 0.8 s and has a reaction
time of TR = 1 s. With ∆v = ṡego − ṡRL. The acceleration
we enforce on the green vehicle to avoid collisions can be
calculated2 by:3

aRL =
∆v2

2 · (sRL −∆v · TR + ṡego · TRL)
(1)

Based on measurement data from real traffic, we assume
that an averagely altruistic driver will let us merge as long as
he does not have to decelerate with more than aRL,begin =
−1m/s. Thus, if the calculated necessary deceleration for
aRL is below this threshold, a lane change is considered
possible. Vice versa, if a lane change has been initiated
already and a rear left vehicle has to brake more than
aRL,abort = −3.5m/s, we consider a lane change no longer
possible and will abort it.

If the relative velocity −∆v < 3m/s, vehicles will accept
a lot smaller time gaps as the situation is easier to manage.
Thus, we allow TRL to decrease to 0.3 s or 0.2 s depending
on the urgency of a lane change. This is necessary to enable
lane changes in traffic jam situations.

To consider uncertainties, all distances, velocities and
accelerations are conservatively estimated by not just using
the mean but rather µ± 1.0 · σ.

Similar calculations can be done for approaching a slower
vehicle in the ”front left” (FL) and ”front ego” (FE) region
of interest.

2) Lane Change Possible due to the Infrastructure Situa-
tion: For deciding, whether a lane change is possible it is
necessary to consider the infrastructure, as well. On the one
hand it is necessary to consider if the automated vehicle is
currently driving on a valid lane and if a neighbor lane exists
and is valid, as well. Moreover, it is necessary to evaluate
if lane markings, traffic signs and traffic rules allow to do a
lane change.

3) Ability Induced Skill Restrictions: Ability induced skill
restrictions rule a lane change impossible due to general
limitations of the automated vehicle. For a discussion of a
theoretical framework, see Reschka et al. [18].

2Part of the mathematical derivations have been done together with my
colleague Patrick Pascheka.

3We assume sRL < 0m for a vehicle behind the ego vehicle.



a) Risk of too fast vehicles: Doing a lane change to
a left neighbor lane on a highway stretch without a speed
limit may not be a safe maneuver, because objects might
approach the automated vehicle with high velocities from
behind. Given a limited ability of the environment perception
modules to track objects far behind and a minimal time
necessary to finish a lane change, it may happen that a fast
vehicle from behind is forced to initiate a strong emergency
braking maneuver in order to prevent a collision with an
automated vehicle pursuing a lane change. However, a lane
change to the left on a highway without a speed limit will
be possible if the environment perception modules see a
slow vehicle on the neighbor lane, because a fast vehicle
from behind will have to adapt its velocity to those vehicles
anyway.

b) Collision avoidance with merging vehicles: A lane
change to the rightmost lane of a highway may result in
a hard to resolve situation if it is performed right next
to a highway on-ramp and another vehicle is entering the
highway from such an on-ramp. In particular, heavy trucks
merging to a highway expect some cooperative behavior of
regular vehicles on the highway while they merge. As lane
and object perception modules do not always detect those
merging objects reliably two lanes to the right of the ego
lane, lane changes are currently avoided in those situations.

c) Ego vehicle too slow: A lane change may also be
impossible, if the automated vehicle is driving too slow.
Because in those situations a lane change might take longer
to be completed than a reliable prediction of the environment
changes being possible.

d) Environment domain type: Last of all, the envi-
ronment domain type may impose ability induced skill
restrictions for lane changes. For instance, currently our
implementation of the automated vehicle is not able to offer
safe overtaking maneuvers on rural or urban roads, where it
is necessary to change lanes to lanes with oncoming traffic.
Other examples for lane change domain ability restrictions
are areas with road works on highways.

4) Skill Restrictions: Skill restrictions rule lane changes
impossible due to a temporary decreased skill level. Among
them are in our model restrictions in the sensor viewing range
to perceive objects, to perceive lanes and the monitoring of
the correct execution of all components necessary for the
operation of the automated vehicle. Once again, a theoretical
framework is presented in Reschka et al. [18].

a) Sensor object viewing ranges: To calculate sensor
viewing ranges for perceiving objects, a simple form of the
incept theorem is used. Given another vehicle is driving
directly behind an automated vehicle, it obstructs the view
to the neighbor lanes, as well. It may cause occlusions due
to the fact that our main sensor for covering the rear and
the front area are mounted in the middle of the automated
vehicle’s bumpers.

b) Lane viewing ranges: To calculate lane viewing
ranges for perceiving lanes, the ego lane segment and its
neighbor lane segments perceived by the lane tracking algo-
rithms are traversed to their front and rear ends.

B. Lane Change Beneficial Estimation

To estimate whether a lane change is beneficial, it is
necessary to evaluate the dynamic traffic situation for relative
velocity gains in different regions of interest (ROIs) around
the ego vehicle and if a lane change is beneficial due to
infrastructure related information. A third aspect for lane
change beneficial situation assessment are timing restrictions
to reflect disadvantages of immediate behavior changes.

1) Lane Change Beneficial due to Dynamic Situation:
In this paper, any kind of benefit considerations for doing
a lane change regarding the dynamic situation are based on
estimated lane specific traffic flow velocities and resulting
velocity gains.4

2) Lane Change Beneficial due to Infrastructure Situation:
Apart from dynamic traffic situation based reasons for are
lane change, the predominant source for lane changes will be
infrastructure related factors. For instance, if the navigation
layer necessitates a right turn to another road, the tactical
layer should take care to reach the turning point on the
rightmost lane. To accomplish this, every lane segment is
attributed with a cost to reach the destination.5

Fig. 5. Lane advice from the navigation layer. Red denotes, in comparison,
bad lane choices to reach the navigation goal, green indicates favorable lanes
to reach the destination.

3) Lane Change Beneficial due to Timing Restrictions: In
some situations, it might be possible but still not beneficial
to perform a lane change due to timing restrictions. One
example of these are some timing restrictions to enabling a
re-centering to a lane between finishing one lane change and
starting a next one.

C. Gap Quality Assessment

In dense traffic, it is necessary to adjust the automated
vehicle towards a cost-optimal gap. Therefore, it is necessary
to determine the most appropriate gap for a lane change. This
is done by calculating the relative distances and velocities to
each gap around the automated vehicle. Space constraints do
not allow an extensive discussion of relevant aspects and their
implementation. Details will be provided in another paper.

D. Calculating and Propagating Uncertainties

Among the key challenges for tactical lane change behav-
ior planning is the inherent uncertainty from any kind of

4Parts of the lane change beneficial consideration for the dynamic situa-
tion have been developed together with my colleague Simon Grossjohann.

5The lane advice calculations for navigation purposes and parts of the
infrastructure consideration have kindly been contributed by my colleague
Christian Appelt.



environment perception modules. The higher the abstraction
level of the perception gets, the bigger the uncertainty about
state estimates will be.

dRL

vRL

µ LaneChangePossibleLeft
σ(LaneChangePossibleLeft)Dynamic 

Bayesian

Network

Fig. 6. Sigma point variance propagation of uncertainty prone state
dimensions through a non-linear dynamic Bayesian network.

As illustrated in figure 2, every hidden state variable of the
dynamic Bayesian network will be estimated based on old
state information and current measurement updates. Every
of these measurement updates will come along with an un-
certainty. As the expected values µ of specific measurement
updates propagate to some hidden state variable estimates, so
will their variances do according to the measurement update
model outlined above. A challenge are the inter-dependencies
between state variables causing a non-linear propagation of
those variances through the dynamic Bayesian network to
represent beliefs about the driving situation. An approach to
address this is to use an unscented transform with a minimal
set of sigma points in the same way it is used in an Unscented
Kalman filter [19, p. 65].

The unscented transform, as illustrated in figure 6, is
a method to calculate the statistics of random variables
through a non-linear transformation function like the dy-
namic Bayesian network. We use eleven sigma points to
transform positions and velocities of the immediate next
objects in the regions of interest named in section III-A.1 and
the automated vehicle’s ego velocity. The authors preferred
an unscented transform over a more generic but slower par-
ticle filter approach, to keep evaluation times of the situation
assessment low, as the situation assessment is performed
several times per update cycle, for the current plus several
predicted future scenes as detailed in Ulbrich & Maurer [1].
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Fig. 7. Example of a hidden state variable as an estimate for a gap
quality. The variance is derived from measured variances of object positions,
velocities and accelerations.

Figure 7 illustrates an estimated mean and variance for a
beta distributed random variable to represent the probability
that a gap is suitable for making a lane change.

IV. EVALUATION

In this section we present our evaluation. After evaluating
the general feasibility of the proposed algorithms in a simu-
lation environment, we present an evaluation in real traffic.

A. Evaluation in a Simulation

A simulation environment is a crucial during the de-
velopment process and for validation of the algorithms.
We use Virtual Test Drive (VTD)6 and Automotive Data
and Time-triggered Framework (ADTF)7 as a tool chain to
test the presented algorithms. Figure 8 shows the situation
assessment for a lane change during an overtaking scenario.

Fig. 8. Screenshot of a scenario-based closed loop testing in Virtual Test
Drive.

B. Evaluation in Real Traffic

To prove the feasibility of a concept, it is best to evaluate
it in real traffic. Our algorithms have been tweaked and
tested in the Audi piloted driving concept vehicles for about
60.000 km in public traffic. The lane changing behavior has
recently been presented to the public in the 550 miles drive
from Stanford to Las Vegas to the Consumer Electronics
Show 20158 and on a German highway9. Our focus has
been on highways, but it has also been tested on (sub-)urban
multilane streets.

In figure 10, the first two plots depict driving a 20 km
stretch of the A9 from Ingolstadt, Germany northbound.
The longitudinal ego velocity of the automated vehicle is
visualized by the first diagram. There is no speed limit on
this stretch of a 3+3 lane highway. The target velocity is
set to 40m/s. Occasionally, traffic in front of the automated
vehicle slows it down, if it is not able to perform a lane
change due to traffic on the neighbor lanes.

The lateral offset of the automated vehicle to the center
of the ego lane is shown in the second and third diagram
of figure 10. Each time a lane change is executed, the ego
lane jumps to another lane and the lateral offset jumps from
negative to positive (lane change right) or positive to negative
(lane change left). The third till eighths plot of figure 10
illustrate the situation assessment before and during a lane
change to the left.

The maneuver is visualized by a sequence of images from
the lane tracking camera and a situation visualization widget

6http://www.vires.com
7https://automotive.elektrobit.com/products/eb-assist/adtf/
8https://audimedia.tv/en/vid/550-miles-piloted-drive-the-last-stage-2
9http://www.stern.de/auto/news/jack-das-selbstfahrende-auto-von-audi-

erstmals-auf-einer-deutschen-autobahn-2174446.html



Fig. 9. Video and situation visualization for lane change situation assessment. Blue=ego vehicle; white arrows indicate squeezed vehicle distances.
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Fig. 10. State variables during an overtaking scenario.

in figure 9. Initially, the automated vehicle drives on the
middle lane of a three lane highway. In front of it appears a
slow truck (green). As overtaking on a highway in Germany
is only allowed on the left, a situation assessment for a
lane change to the left is evaluated. The forth till sixth
plot in figure 9 illustrate the distances and velocities of the
immediate next vehicles on the left neighbor lane and on the
ego lane in front. Starting from t = 442 s a slower vehicle
with a velocity of about 33m/s is detected 150m in front.
The first few seconds, a lane change to the left is still to some
extent considered possible at the current time step (cf. Lane
change possible left) in the eighths plot. However, due to the
planning ahead into the future and due to a still relatively
low disadvantage of staying behind a vehicle being 150 m
away, no lane change gets executed. Till t = 463 s the
rear left neighbor lane’s vehicle approaches the automated
vehicle from behind until it is next to the automated vehicle.
Here, the blindspot radar sensors do not allow an accurate
position estimation but only an object existance estimation.
At t = 463 s the same object is seen again by the front
laser scanners and the distance towards this object increases,
again.

A second vehicle approaching the automated vehicle on
the left neighbor lane is detected −30m behind with a
velocity of 44m/s at t = 465 s. This has passed the
automated vehicle at t = 470 s. Behind this fast vehicle, no
other vehicle follows. Hence a gap opens up to the left. In the
mean time, the automated vehicle has approached the slow
vehicle in front of it on the ego lane to a relative distance of
42m. To avoid a collision, the automated vehicle decreased
its speed to 33m/s. Hence, it obtains a high dynamic benefit
of performing a lane change to the left to reach its target
velocity of 40m/s, again (cf. Lane change beneficial left in
the seventh plot). The lane change decision making module
decides to activate the indicator and perform a lane change
to the left. This can be seen by the lateral offset to the center
of the ego lane dpos,ego to increase until the lane markings
have been passed and the automated vehicle re-centers to the
left neighbor lane.

C. Runtime

The algorithm runs in real time on an Intel i7 4800MQ
CPU sharing resources with trajectory planning, situation
modeling and visualization modules. Typical peak loads for



any of the cores are below 20%. Per cycle, the situation
assessment is executed several thousand times. This is be-
cause according to Ulbrich & Maurer [1] a tree of future
situations is predicted. Observable state variables are pre-
dicted according to a car following model for each vehicle
and a recalculation of hidden situation aspect estimates is
performed by the dynamic Bayesian network. On average a
resulting tree of actions and future situations has about 100
situation nodes. An unscented transform with 11+1 sigma
points is executed for every situation to estimate resulting
variances in the dynamic Bayesian network. Scene updates
from the perception modules are obtained with a rate of
25Hz. Therefore, the dynamic Bayesian network is executed
on average 100 · 12 · 25 = 30, 000 times per second. As
there are no big for-loops in the dynamic Bayesian network
implementation, most evaluation time is used for floating
point operations and some if conditions.

V. CONCLUSIONS

In this paper, the authors present an approach for situation
assessment in tactical lane change behavior planning for
automated vehicles. It provides estimates for hidden state
variables in uncertain, high-dimensional, mixed-integer state
spaces in real-time. A dynamic Bayesian network provides
temporal consistency. An unscented transform allows the
propagation of uncertainties within the situation assessment.
An ability and skill monitoring facilitates not only the
consideration of the scenery and dynamic objects but also the
consideration of an automated vehicle’s self-representation.

The paper evaluates the algorithms’ performance in a
simulation environment and online in real traffic.

Despite demonstrating a solid performance already, several
areas of improvement exist. So far, many random variables
and their relationships within the situation assessment are
hard coded by rules and impact weights. While this provides
simplicity and application specific fine tuning options, it in-
volves significant engineering efforts. It would be interesting
to learn these models or parameters for those. Except for
this, the handling of uncertainties leaves room for improve-
ments. So far, the existence of objects is assumed to be
binary. However, once stable object existence probabilities
are estimated on the perception side, those could be used for
a more accurate situation assessment, too. The gap quality
estimation is still limited, mainly by the persistent detection
of objects and gaps.
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