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Abstract—Environment perception is one of the most im-
portant tasks for Advanced Driver Assistance Systems and
Automated Driving. Various types of sensors are used con-
currently and fused into a consistent representation of the
vehicle’s surrounding. With more than one device involved,
timing behavior becomes a relevant aspect of such systems.
Delays due to processing and transferring data need to be
considered when fusing sensor data. While some sensors, such
as camera devices, perceive the environment as a snapshot,
other sensors are based on a scanning technique. The iterative
acquisition principle of scanning sensors lead to considerable
time differences between single measurements within a scan. In
addition to transfer and processing delays, these time differences
have to be considered properly for a comprehensive environment
representation.

This paper focuses on time-related effects resulting from
using a scanning sensor. The influence on two commonly utilized
environment representations is discussed, grid-based and object-
based approaches for stationary and movable elements, respec-
tively. We present a comprehensive approach to incorporate
the ego motion into grid-based models. We propose an adaptive
prediction horizon for object tracking algorithms, based on sen-
sor scan timing characteristics. Performance gains are evaluated
with simulated data and verified within a real-world application.
The presented algorithms are computationally feasible and real-
time capable on a standard PC.

I. INTRODUCTION

Advanced Driver Assistance Systems (ADAS) and Auto-
mated driving have gained much attention during the last
few decades. Many industrial and scientific projects have
shown impressive demonstrations in this field of research.
The perception, abstraction and understanding of the vehi-
cle’s environment are fundamental parts of these projects.
Precise perception and representation of relevant elements
are key prerequisites to offer a safe and comfortable driving
experience for the passengers as well as other traffic.

Various types of sensors are combined for the perception
task, either to provide redundancy or to overcome sensor-
specific limitations. Information obtained from different sen-
sors is fused in order to generate a comprehensive environ-
ment representation. Independent of the abstraction level of
the fusion process, e.g. at sensor-level or track-level [1], and
its domain (temporal, spatial), accurate timing information
is crucial for this task. This demands precise knowledge
about the timing behavior of the involved systems and the
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Fig. 1. Left: Schematic of a distributed environment perception system.
Sensor device, data pre-processing and data fusion are located at different
computation units. Each component of the processing chain requires process-
ing time and thus delays data fusion; relevant time spans and timestamps
are plotted on the right hand side. Scanning sensors do not perceive their
environment at an instance, but at several consecutive measurement times.
This results in a considerable duration of the scanning process, which needs
to be regarded.

perceived sensor data. Constant as well as varying delays
(i.e., latencies and jitter) resulting from data acquisition, pre-
processing stages, and data transfer need to be considered.
Apart from processing delays, the knowledge of the time-
stamp at which a specific measurement was obtained by the
sensor is an important factor. Vision-based sensors, such as
mono and stereo camera devices, perceive the environment as
a snapshot of the current scene. Rotating sensor devices such
as laser scanners (Lidar sensors), however, require time for
their sampling process. In general, this time span is referred
to as scan duration or sensor sweep time. The measurements
of a rotating system are usually not reported instantaneously,
but are collected and transferred to the next stage at a given
condition. In addition to other delays, the timing behavior of
such a rotating sensor requires special consideration.

Problem statement

For automated road vehicles, the environment and the host
vehicle itself move during the scan process of a rotating
sensor device. In general, Lidar sensors retrieve multiple
measurements from a physical target’s contour, thus leading
to multiple changes of the relative position between the
sensor and a given target during the scan. In order to cluster
measurements for a complete contour extraction, multiple



measurements are commonly collected and processed as a
single scan. Although assumed in many cases, each cluster
was not perceived at one single timestamp, but within a
given scan duration. This influences the contour estimation
of moving targets [2].

The fact that every element of the vehicle’s environment
is perceived at a different time within a sensor scan has
considerable influence on environment perception tasks. For
simplification, all measurements within a scan, and thus the
extracted clusters, are usually assumed to be observed at the
same timestamp. This assumption leads to systematic errors
during the modeling and filtering process, which become
even more critical at higher relative velocities between the
objects or longer scan durations of the sensor devices.

Contribution and outline of this paper

This paper focuses on the effects on environment per-
ception algorithms resulting from the usage of scanning
sensor devices. We will introduce a simple model of rep-
resenting the scanning properties of such devices and use
this model to improve the perception algorithms. For the
modeling of stationary environments with grid-based models,
we will consider precise ego motion information during
the sensor scan to improve the estimation quality. We will
present an adaptive prediction scheme for object tracking
algorithms which accounts for the different timestamps of
new objects hypotheses. The performance of this algorithm
will be compared to a standard approach which assumes all
measurements to be generated at the same time. Evaluation is
done by simulation and the application to real-world sensor
data in the context of the project Stadtpilot [3]. In this paper,
we focus on the effects within these two modules. Additional
algorithms required for perception tasks are out of scope and
further described in previous publications [4], [5], [6], [7].

The remaining part of this paper is organized as follows.
Sec. II gives an overview of approaches for timing and delay
consideration within perception systems. Sec. III explains
system prerequisites regarding clock synchronization and ego
motion representation. Sec. IV and V deal with the proposed
adaptions made for grid-based and object-based representa-
tions, along with an evaluation of accuracy improvements.
Sec. VI concludes with a summary and outlook on further
research.

II. TERMINOLOGY AND RELATED WORK

The need for modeling and accounting of timing-related
parameters has been addressed in several publications. Many
approaches consider timing-related effects within a specific
application or bounded to a specific functional context. An
overview of these approaches is given in the next paragraphs.

Various timestamps and delays appear during the process-
ing and fusion of sensor data. Fig. 1 illustrates the basic
composition of these timing parameters. Each measurement
is extracted from the sensor’s signal processing at the mea-
surement acquisition time. In order to integrate measurements
correctly, they must be processed taking this timestamp into
account.

It is typically impossible to integrate new raw measure-
ments into the environment model directly at their creation
time. Signal conditioning and processing are required to
extract relevant information from the raw signal. This ex-
traction process takes time resulting in delays in the overall
data processing and fusion process. Among these delays, the
computation time of pre-processing algorithms (data pre-
processing time) is usually the most dominant type. If the
pre-processing and/or the fusion module are located outside
the sensor device itself, additional delays occur from data
transfer times between involved systems.

Measurement timestamps and different delays need to be
known and considered for time-consistent data fusion. In
general, the use of timestamps for measurements is required
to keep track of the creation time of the data. Once a
timestamp can be assigned to the measurements, the delays
of pre-processing and data transfer can be accounted for in
the fusion process.

A time-consistent generation of these timestamps relies
on synchronized clocks among the involved devices. Basic
principles on this topic are discussed by the authors in [8].
Different approaches to synchronize clock systems of dif-
ferent distributed entities in a multi-sensor network can be
applied [9].

Estimating the occurring time spans can be tackled in
different ways. Some approaches aim to determine specific
parts of the overall processing delay (e.g. [10], [11]). Timing-
relevant parameters might be estimated during runtime of a
data fusion system [12] .

Other approaches focus on the consideration of specific
effects related to timing parameters. In the case of different
sensor devices with different non-constant latencies, the
receive sequence of their data might not be in time-ascending
order. This requires special consideration if typical recursive
state estimators such as Kalman filters are applied. This
is known as the Out Of Sequence Measurements (OOSM)
problem in the field of object tracking and is topic of
research (cf. [13], [14], [15]). In those tracking algorithms,
multiple measurements within one sensor scan are typically
considered as created at one single timestamp. In general,
the internal timing structure of the measurements is not
considered.

This becomes a relevant aspect when synchronizing raw
data between different sensors. The authors in [16] consider
the movement of the sensor during a scan sweep for the
synchronization of a Lidar sensor with a camera system in
order to create a proper assignment of Lidar range data to
image color information.

Correct consideration of timing-related parameters is also
mandatory for the estimation of stationary elements with
moving platforms. Among others, grid-based approaches [17]
are typical representation models for this purpose. In this
concept, the pose of a sensor upon each scan has to be known
[18], which can be derived from the ego motion between two
consecutive scans. For higher accuracy, the ego motion during
the creation of the scan might be considered additionally [19].

The ego motion in relation to its stationary environment



is also relevant for sensor-based localization approaches,
like Simultaneous Localization and Mapping (SLAM). By
considering the movement of the sensor throughout the scan
process, an improvement of the localization quality can be
achieved [20].

Regarding pre-processing algorithms on point cloud data,
such as shape extraction and contour estimation, scanning
a moving target leads to a distortion of its range image.
This is known as Motion-scan effect and was investigated on
simulated data [21] as well as for applications with sensors
mounted on automated road vehicles [2].

Sensor scan timing characteristics are considered for sta-
tionary environment models already, but none of the afore-
mentioned approaches addresses those effects for the detec-
tion and tracking of moving targets on the abstraction level
of object hypotheses. To our best knowledge, an integrated
concept for considering the sensor scan characteristics in
an environment perception framework for automated road
vehicles has not yet been published.

III. SYSTEM PREREQUISITES

The demand for time-correct processing of sensor data
yields some requirements for the underlying system and its
components, such as sensor devices and processing units. The
algorithms presented in this contribution require a synchro-
nized timebase among these components. Detailed descrip-
tions of the techniques applied for synchronization are out
of scope here and are further explained in e.g. [9] and [10].
It is assumed here, that the acquisition timestamp of each
measurement is available and can be obtained either using
a synchronized clock network or detailed internal timing
information of the sensor.

In addition, a proper representation of the ego motion is
required to address its changing poses while perceiving the
environment. Sensors related to the ego motion estimation are
regarded as an additional component for the perception task.
Hence, they have to be synchronized to the same timebase
as the environment sensors as well. Ego motion information
can be obtained by using dead-reckoning systems which
utilize incremental sensors such as wheel speed encoders for
position and movement estimation. Fusing additional inertial
movement data (from accelerometers and gyroscope sensors)
leads to increased performance [22]. Dead-reckoning systems
suffer from a long-term drift of their position estimate due to
wheel slip effects and sensor drifts. This effect is negligible
for the representation of the vehicle’s environment as only a
short-term, yet continuous movement estimate is required.

In the application at hand, a new position is estimated upon
each new dataset and stored with the corresponding time-
stamp. A ring buffer structure is utilized to store movement
information within a given time range. This concept provides
access to a unified ego motion model for the subsequent
modules within a short history and is expected to lead to more
precise estimation results especially during high-dynamic
driving maneuvers.

scan angle at tstart

scan angle at tend

host vehicle track during scan

Fig. 2. Trace of the sensor scan point during one turn under moving
conditions. Here, the scan angle trace for a 360◦ Velodyne HDL-64E S2
Lidar sensor is illustrated. The shown effect applies for other scanning
systems as well.

IV. SCAN TIME COMPENSATION FOR GRID MODELS

Grid-based approaches are a common representation form
of the stationary environment. A grid map divides a given
area into a finite number of cells. Each cell acts as a storage
for information about the assigned area subset. A common
piece of information is the presence or absence of obstacles
(occupancy grid), but arbitrary types of information might be
stored and considered for a comprehensive description of the
stationary environment (e.g. [5], [6], [7]). For simplification,
we will focus on a general grid model here; the presented
algorithms are independent of the actual information type
stored in the grid cells. The grid is typically defined in a
local frame with the host vehicle moving through the covered
area. By this, information about stationary environment can
be inferred over several sensor scans.

This requires knowledge about the sensor pose for each
scan. Each new sensor scan s, received at time t, is coupled
with a time-dependent pose of the host vehicle p (t) =

(x (t) , y (t) , ϕ (t))
T . The current pose p (t) of the host

vehicle and the sensor mounting position are utilized to
calculate the position of the scan origin within the grid frame.

When processing data from moving scanning sensors, as
depicted in Fig. 2, accounting for the movement of the host
vehicle during the scan process leads to increased accuracy.
Each measurement is integrated into the grid cells by an
inverse sensor model based on the pose p (tm) valid for the
acquisition time of the measurement tm. The relative pose is
estimated from the ego motion data for timestamp tm. The
results of this extended update process are shown in Fig. 3. In
particular, structures oriented perpendicular to the ego motion
direction gain a sharper contour.

V. ADAPTION OF OBJECT TRACKING ALGORITHMS

While the compensation of the ego motion is sufficient for
modeling the stationary environment, additional effects need
to be regarded when dealing with movable elements.

For the application at hand, a multi-object tracking ap-
proach based on an Extended Kalman Filter is utilized. Each
object hypothesis establishes its own filter instance; the set
of filter instances is referred to as track database. Each
element of this database uses a dynamic model to describe the
hypotheses’ kinetic characteristics. New measurements are



(a) Grid map without ego motion compensation (b) Grid map with ego motion compensation

Fig. 3. Effects of the ego motion compensation for grid models. The images show a reflectance intensity grid accumulated while driving on an inner-city
road with the host vehicle driving in upward direction. Fig. 3a shows the resulting grid map without considering the ego motion during the scan. Lane
markings perpendicular to the ego moving direction, in particular, are blurred. Fig. 3b shows the resulting grid map with proper ego motion compensation.
The perpendicular lane marking features form sharper contour edges.

integrated by a prediction-correction scheme. The elements
in the track database are predicted to the measurements’
timestamp using the selected dynamic model. Association
algorithms are utilized to solve the assignment problem
between the existing elements of the track database and the
measurements of the current sensor scan.

A. Problem statement

In case of a rotating sensor device, the extracted object
hypotheses have different timestamps based on the sensor
characteristics. Thus, a common prediction timestamp cannot
be applied, but needs to be adjusted according to each
measurement’s creation timestamp.

Neglecting this leads to an incorrectly assumed time inter-
val and thus a time error ∆t toward the correct timestamp
for the prediction process of each object. This shows as
systematic error in the hypotheses’ state estimates. Here, we
focus on the estimate of the targets’ distances. However,
similar effects arise for other state estimates as well. The
error in the distance estimation scales with the time error and
the relative velocity between the target object and the host
vehicle. If assuming a constant velocity during the relevant
time difference, the error of the estimated target distance
∆derror is proportional to:

∆derror ∼ ∆t · vrel (1)

For scanning sensors, the time error is usually dependent on
the angle ϕ under which the measurement is obtained:

∆derror ∼ ∆t (ϕ) · vrel (2)

As the predicted state estimates are utilized in the asso-
ciation step as well, erroneous state estimates influence the
results of this assignment task. This leads to false assign-
ments and in consequence to track losses and/or delayed
object initializations.

This systematic error only has small impact on the esti-
mated state variance in single-sensor systems. Assuming ∆t
stays approximately constant over two subsequent scans the
error shows as an offset of the objects’ positions as far as
the distance estimation is concerned. In multi-sensor systems,
however, the systematic error is likely to propagate into the
state variance estimation because multiple sensors updating
one hypothesis usually do not share the same timing error.

B. Basic approach

An exact way to account for the different generation times-
tamps of the hypotheses is to provide the predicted states of
the current tracks for each timestamp occurring in the in-
coming measurement list. The individual prediction approach
ensures that the association step is performed without the
systematic errors arising from different timestamps between
the predicted hypotheses and the incoming measurements.

However, high computational costs arise from large num-
bers of prediction iterations, especially when dealing with a
large number of existing hypotheses in combination with a
large number of incoming object hypotheses. For n existing
hypotheses and m new measurements, a total number of m·n
predictions is required. In urban environments, a mean of
100 object hypotheses (tentative as well as stable tracks) and
about the same number of new measurements were found to
be processed by the object tracking module in each update
cycle, making this approach computationally demanding. In
this basic approach, the timestamps of measurements might
be distributed arbitrarily within the incoming measurement
list. For a scanning system, however, this approach can be
optimized by taking the sensor scan timing properties into
account.

C. Runtime-efficient approximation

For the subsequent processing of sensor data, a model of
the sensor timing generation is required. Based on typical



sensor designs, we use the following description of the
rotation properties to approximate the sensor timing gener-
ation. We focus on horizontally rotating sensors within the
following paragraphs. However, similar approaches can be
applied to regard vertically rotating devices as well. Scan
timing behavior of a sensor device is defined by three sensor-
specific values, as also shown in Fig. 4:

• Scan start angle ϕstart
• Scan end angle ϕend
• Rotation rate ωsensor

The scan start and end angle describe the field of view of each
rotating sensor. The total scan duration ∆t is calculated based
on this field of view and the rotation rate ωsensor. In addition
to these parameters, the scan start timestamp of each sweep,
assumed to be located at ϕstart, is required to approximate
each measurement’s timestamp:

tmeas,approx. = f (ϕ, tstart, ωsensor) (3)

Next to tstart and ωsensor, which are assumed constant within
one scan, the approximated measurement time tmeas,approx.
depends on the azimuth angle ϕ of a detected target. Given
Eq. 3 and the azimuth angles of the tracked object hypothe-
ses, individual prediction time ranges can be calculated. This
adaptive prediction horizon is utilized to reduce the number
of required prediction steps.

At the beginning of each update cycle, all object hy-
potheses in the track database are expected to have the
same timestamp tbase. A sensor-specific mapping function
implements Eq. 3 and maps the azimuth angle ϕobjectn of
each object hypothesis to an individual prediction target time
tpredictn . The resulting timestamp is then utilized to calculate
an individual prediction time range ∆tn = tpredictn − tbase for
each object hypothesis.

Being predicted by ∆tn, each hypothesis will approximate
potentially detected objects, which a sensor might have
perceived at the given azimuth angle, more accurately. Hence,
object state prediction and ego motion compensation need
to be performed only once for each hypothesis in the track
database.

ϕstart; t = tstartϕend; t = tstart +
∆ϕ

ωsensor

ωsensor

x

y

Fig. 4. Definition of sensor scan timing parameters for a rotating sensor
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Fig. 5. Principle of the adaptive prediction horizon algorithm. Target 1 and 2
(solid blue boxes) are valid at timestamp tbase with their corresponding
azimuth angles ϕn. If one single measurement timestamp tcommon time for
all incoming measurements is wrongly assumed, all object hypotheses
are predicted by the same time range (dashed blue boxes). The adaptive
prediction horizon algorithm, in contrast, accounts for the sensor’s timing
characteristics and applies a customized prediction time tpredict,n for each
target. Hence, the predicted hypotheses (dotted red boxes) fit the position
of the incoming measurements (dotted green boxes, perceived at tmeas,real,n)
more accurately. (For this example, ego motion is neglected and all targets
are assumed to move with constant velocity; positions and dimensions not
drawn to scale.)

The mapping function can have arbitrary form. A typical
mapping function for a rotating sensor describes a linear
relation between the azimuth angle and the prediction time.
As a result of this approximation, each object is predicted
along with the movement of the sensor scanning point, like
depicted in Fig. 5. An example plot of the proposed mapping
function is shown in Fig. 6. For the presented example, the
scan break point for completing a scan was set to 270◦ in
the vehicle local frame. This provides consistent segments for
hypothesis generation in the front, left and rear area of the
host vehicle. Particular consideration of the segments near the
scan break point is required to prevent possible segmentation
issues, but is out of scope here.

D. Results

The presented algorithm is evaluated in two steps. In the
first step, the benefit of the algorithm is evaluated in a simu-
lation framework. A single object was simulated approaching
and passing the host vehicle on its left. This simulates a large
relative velocity as well as a change of the object’s relative
azimuth angle. For the simulation, a virtual sensor device
was extended to imitate a scanning sensor system based on a
ray-tracing approach. This virtual sensor is part of an existing
simulation framework [23]. The generated object list contains
each object’s position and the timestamp of the first hit by a
virtual laser beam. The timestamp of the object is set to the
time the corresponding beam was fired; this complies with
the timing characteristics of a scanning system.

The results of two different configurations of the object
tracking algorithm are compared to ground truth data ob-
tained from the simulation framework. The first configuration
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Fig. 6. Sensor scan timing description (Fig. 6a) and the resulting mapping
function (Fig. 6b) between the azimuth angle and the prediction time tpredict
for a Velodyne HDL-64E S2 sensor with a scan duration of 100 ms and a
scan break angle at 270◦. Fig. 6c shows exemplary point cloud data of this
sensor when mounted on the vehicle’s roof, generated during a 360◦ sweep.
Sensor points are colored by their generation age relative to the scan end
(red: same age, green: 50 ms old, cyan-blue: 100 ms old).
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Fig. 7. Comparison of object tracking results for two different timing
configurations (common timestamp assumption and the adaptive prediction
horizon) with simulated data of an approaching object. The plots show the
track’s x-distance compared to ground truth (∆dx = dx,[ct, a] − dx,ref). The
position difference of the common timestamp assumption-configuration is
dependent on the target’s azimuth angle ϕobject and increases with larger
angles (ϕobject plotted for comparison). The adaptive prediction horizon
algorithm is independent of the object’s azimuth angle and is able to estimate
the object’s position with a maximum difference of ∆dx,max < 4 cm
compared to ground truth.

assumes all objects as generated at the same timestamp (e.g.
the latest timestamp of the scan). The second configuration
uses the object’s individual timestamp and implements the
adaptive prediction horizon.

Fig. 7 illustrates the performance of the different con-
figurations by showing the position estimate error obtained
with ground truth data. The first configuration leads to an
increasing error proportional to the azimuth angle ϕobject of
the tracked object. For larger azimuth angles near the end
of the sequence, association of the incoming measurement to
the existing object hypothesis fails in some update iterations
resulting in an unstable position estimation. In contrast, the
adaptive prediction horizon configuration is able to reduce
the error to almost zero. Minor differences to ground truth
(∆dx < 4 cm) occur due to the assumption of a constant
azimuth angle for the target timestamp calculation. The
considered object might change its relative position as a result
of the prediction step; this change in position in turn might
lead to an azimuth rate ϕ̇ (t) of the object. This is relevant
for objects performing a tangential movement in relation to
the sensor, such as approaching traffic, but the resulting time
error is negligibly small for the application at hand. Hence,
this effect is not considered for now.

In the second step, the algorithm is evaluated with real-
world sensor data using the aforementioned Velodyne Lidar
sensor. The results are shown in Fig. 8. Both diagrams plot
the position difference between the tracked object hypotheses
resulting from a common timestamp assumption and those
hypotheses estimated using the presented adaptive prediction
horizon algorithm.

Fig. 8a illustrates the influence of neglected sensor timing
behavior when tracking approaching and passing traffic left
of the host vehicle. In this scenario, the relative velocity is
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Fig. 8. Results based on real-world data: The plots show the object’s position
estimate difference between the results of two timing configurations (com-
mon timestamp (dx,ct) and adaptive prediction horizon (dx,a)) in exemplary
traffic situations.
Fig. 8a illustrates the position difference between the state estimates for an
oncoming vehicle (∆dx = dx,ct − dx,a). The changing azimuth angle of the
tracked object results in a larger time error, which shows in a false position
estimate when assuming all measurements at the same timestamp.
Fig. 8b shows the position difference when approaching a stationary target.
The timing error is constant, but the relative velocity towards the tracked
object leads to a false position estimate and lets the target appear at a further
distance.

nearly constant, but the relative angle between the sensor
and the tracked object changes rapidly. Due to the scanner’s
rotation characteristics, the timing error increases with the
target’s relative angle. This leads to a larger position error
for larger relative angles up to half of the vehicle’s length.
The tracked object appears in a closer distance to the host
vehicle when neglecting timing characteristics. These results
are consistent with those from the simulation stage.

Fig. 8b illustrates the results when approaching an ongoing
vehicle waiting at a traffic light. The tracked object keeps its
relative angle towards the host vehicle. Hence, the timing
error is constant in this sequence; during the approach
phase a relative velocity is estimated. The position error
is proportional to the negated relative velocity. Thus, the
target object appears in a greater distance when neglecting
the timing characteristics.

VI. CONCLUSION AND OUTLOOK

In this paper, we have focused on timing characteristics
of rotating sensor devices and their proper consideration in
environment perception tasks of a moving platform within
moving environments. We have outlined the influence of
sensor rotation characteristics on different perception tasks,

namely grid-based approaches for stationary elements and
object-based approaches for movable elements.

We have shown, that the correct consideration of sensor
timing characteristics leads to more accurate results within
both representations. Ego motion compensation based on
the exact measurement timing leads to sharper features in
grid-based models and thus increases the performance of
subsequent extraction modules. We have identified systematic
errors arising from neglecting the proper sensor timing within
object tracking algorithms. By deriving an accurate hypothe-
ses creation time based on the sensor’s timing characteristics
and considering them during the filtering process, a consistent
representation of the surrounding moving traffic has been
achieved.

Based on the presented algorithms, we have been able
to create a time-consistent view for stationary as well as
movable elements in the host vehicle’s surrounding. Future
research will address the incorporation of multiple sensor
systems into the grid and tracking modules; for this step, the
proposed algorithms define the basis for a time-consistent
data fusion and environment representation.
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