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Abstract— The Stadtpilot project aims at fully automated
driving on Braunschweig’s inner city ring road. The TU
Braunschweig’s research vehicle ”Leonie” is one of the first
vehicles having the ability of fully automated driving in
real urban traffic scenarios. This paper shows our decision
making approach for performing lane changes while driving
fully automated in urban environments. We apply an online
Partially Observable Markov Decision Process (POMDP) to
accommodate inevitable sensor noise to be faced in urban traffic
scenarios. In this paper we propose a two step algorithm to
keep the complexity of the POMDP low enough for real-time
decision making while driving. The presented approach has
been integrated in our vehicle and was evaluated in real urban
traffic.

I. INTRODUCTION

In the past two decades the driving abilities of fully au-
tomated driving vehicles have progressed rapidly. Especially
the DARPA Grand Challenges put fully automated driving
into the focus of many research groups around the world.
After the participation in the DARPA Urban Challenge in
2007 [1], the Technische Universität Braunschweig continued
its effort in the automated driving field with the Stadtpilot
project. The goal of the Stadtpilot project is to drive fully
automated on Braunschweig’s inner city circular ring road.
First accomplishments of driving in heavy inner city traffic
have already been successfully demonstrated to the public
[2]. In this paper we present our approach for probabilis-
tic decision making for performing lane changes in urban
environments.

Inevitable sensor noise is a major challenge for coherent
decision making. Tracked sensor object’s positions and ve-
locities are to a certain degree noisy due to physical limits
of the sensor systems and unavoidable limitations for low
latency object tracking algorithms. Furthermore the de facto
viewing range of the LIDAR sensor setup being used in
our vehicle is limited to maybe 70 meters or less. Decision
making for lane changes is particularly difficult in urban
environments because there are many choices of actions in
inner city traffic - for the automated vehicle itself as well as
for other traffic participants. Moreover, drivers change their
driving intent quite often. Although they might have left a big
gap in front of them for several seconds they could suddenly
decide to accelerate because they changed their strategy to
achieve their individual driving target.

This paper is structured as follows: First of all we intro-
duce the reader to the problem of tactical lane change deci-
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sion making in the overall context of decision making and
maneuver planning for lane changes in automated driving.
Then we review other approaches for tactical lane change
decision making. Thereafter we shortly introduce the reader
toward Markov decision problems and approximation strate-
gies for real world applications. Section III provides details
about the lane change decision making model developed by
the authors. Section IV discusses our evaluation metrics and
evaluates our approach while driving in urban traffic. In the
end, section V concludes this paper and points out further
research directions.

Guidance (Tactical Level):
Maneuver Decision Making

Stabilization (Operational Level):
Trajectory Planning

Maneuver Execution/Hardware Layer

Navigation
(Strategic Level):
Route Planning

Fig. 1. Tactical decision making as a sub-problem of overall decision
making for lane changes in automated driving

II. BACKGROUND

A. Integration of tactical driving maneuver decision making
in the overall process

Different levels of decision making exist for automated
driving. Donges [3] introduced the classification of driving
tasks into navigation tasks (strategic level), guidance tasks
(tactical level) and stabilization tasks (operational level).
Figure 1 illustrates the different decision making levels. All
of them are necessary for successful execution of a lane
change. In this paper we focus on the tactical level. However,
we briefly introduce the reader to the overall problem of
decision making for lane changes and provide a short hint
how they are approached in the Stadtpilot project.
• Strategic level: A standard a-star graph search algorithm

is employed to find the optimal sequence of roads and
even driving lane segments to reach the driving desti-
nation. This a-priori route planning also encompasses
the planning of necessary lane changes to reach the



driving destination, e.g. for reaching a left turning lane
while driving on the rightmost lane of a multiple lane
road. The remaining distance along the route to the last
possible point of such a necessary lane change can be
used as an infrastructure related measure for the urgency
of a lane change.

• Tactical level: The tactical decision making level is
responsible for modifying the a-priori-planned lane-
level route in such a way that it fits well with the
driving maneuvers of other traffic participants. Hence
abstract necessary lane changes are rendered concrete
into collision-free decided lane changes at a certain
spatial location and point in time. Moreover, slow
vehicles might necessitate additional lane changes to
incorporate overtaking maneuvers. This tactical decision
making used for rendering an abstract pre-calculated
route into palpable driving maneuvers while considering
the dynamically changing environment is the focus of
this paper.

• Operational level: Operational tasks subsume every-
thing that is necessary to translate the maneuvers from
the tactical decision making into values for the steer-
ing, acceleration and braking actuators. Among those
operational aspects are control engineering tasks like
velocity control and steering control as well as low-level
trajectory planning for jerk-free comfortable driving.

B. Tactical decision making for lane changes and cognate
problems

Fig. 2. Typical scenario for lane change decision making with two dynamic
objects and three regions of interest rear left (RL), front left (FL) and front
ego (FE)

Figure 2 illustrates a typical decision making problem
for doing lane changes in urban environments. Whether a
lane change is possible depends on the relative distances,
velocities and accelerations of other vehicles around the ego
vehicle. Whether a lane change is beneficial depends on the
road network and the behavior of other vehicles around the
ego vehicle. Decision making for automatic driving requires
rapidity, coherency, providentness and predictability.
• Rapidity: Decision making needs to be fast. Despite

some strategic decisions (e.g. route re-calculation)
might be allowed to take some more time, at least
the tactical decisions for driving in urban environments
need to be taken fast (<100ms).

• Coherency: A decision should fit in the framework of
the decisions being taken so far. Similar to a human
driver, a decision making unit should not constantly
change its mind about the driving maneuvers to be
taken. All decisions should align well with a long

term goal. However, this does not necessarily imply
entirely greedy decision making or not reconsidering
a previously taken decision at all.

• Providentness: Decision making should have some fore-
sight to predict how the situation will look like after
execution of some maneuvers or simply after some time
has elapsed.

• Predictability: Last of all decision making should be
predictable in a sense of acting like a human driver is
supposed to act in the given situation as driving on an
urban road implies direct or indirect interaction with
several other (human) drivers.

The DARPA Grand and Urban Challenges stimulated
a lot of research efforts in the automated driving field.
Every participating team had some kind of decision making
instance. Some of them also implemented complex driving
maneuvers requiring tactical decision making tasks. Most
teams used some variant of a state machine. For the decision
making for lane changes and intersections the CMU’s team
”Boss” analyzed the gaps between cars by a set of analytic
equations and used thresholding and binary decisions [4].
Team Junior used some cost based approaches for global path
planning and a finite state machine for switching between
different maneuvers [5]. Team Odin from Virginia Tech [6]
used a set of behavior-based driver models with some special
arbitration method. Team Carolo from TU Braunschweig [1]
used a hybrid approach of a traditional rule-based decision
making engine and a behavioral model. In our experience, the
behavioral model did not provide the required predictability
needed for driving on public roads. Nevertheless we built
upon the idea of a cost based evaluation of decision alterna-
tives.

Pellkofer [7] and Naranjo et al. [8] used fuzzy logic
for modeling lane change decision making problems. The
advantage of such a fuzzy logic approach is its simplicity and
computational efficiency. Schubert et al. [9] used a Bayesian
network for situation assessment and decision making for
lane changes. Deceleration to safety time (DST) was used as
a central criterion for lane change situation assessment. Wei
et al. [10] used an analytic dynamic environment prediction
model for driving and doing lane changes on freeways. Their
model focused on the cooperative behavior with the vehicles
around the automated vehicle. They used a set of analytic
cost functions for decision making. Their approach did
not draw particular attention toward uncertainties in sensor
data and their evaluation was limited toward a simulation
environment. Wei et al. [11] extended on this by modeling
the task of single-lane automated driving under uncertainty
using a Markov decision problem approach. Brechtel et al.
[12] showed a way of using Markov decision problems for
lane change decision making. They based their decision
process’s state variables directly on measured values like
relative distances and velocities toward surrounding vehicles.
On the one hand this helped to keep the decision to be based
on physical quantities, on the other hand it made the overall
decision process more complex and thus hard to be extended



toward uncertain measurement data. Bandyopadhyay et al.
[13] applied mixed observability Markov decision processes
for the recognition and appropriate motion planning while
considering human agents’ intentions. However, they pro-
vided a more general framework rather than focusing on lane
change decision situations in particular.

Other related research problems can be found in the field
of maneuver prediction. E.g., Friedman et al. [14] trained
Bayesian belief networks for the prediction of lane changes.
They showed the general feasibility of the idea of learning
the structure and parameters of belief networks by testing
the belief network’s performance on simulated data. One
of the points for further evaluation is the applicability of
the approach toward real uncertain and inaccurate sensor
data. Similarly, Gindele et al. [15] used a dynamic Bayesian
network for behavior and trajectory prediction.

C. MDPs and POMDPs

Markov decision processes (MDPs) are a general frame-
work to model planning and decision making problems.
Executing an action u ∈ U , given the system is in state
x ∈ X , is what will be called a policy π : x → u. The
goal of such a planning problem is to find an optimal policy
(sequence of actions) π∗ that maximizes the expected reward
over the time horizon T :

RT = E[

T∑
τ=0

γτ ∗ rτ ] (1)

A commonly applied approach to find an optimal policy is
using value iteration see, e.g., [16, p. 499].

Anyhow, true system states are typically not observable.
Partially observable Markov decision processes help to ac-
commodate this issue by the introduction of the idea of a
belief bel(xt) of being in a state xt at time t.

A POMDP is represented by the tuple (X, U, T, R, Z, O)
where:

• X is the set of all the environment states xt at time t.
• U is the set of all possible actions ut at time t.
• T is the X ×U ×X → [0, 1] is the transition function,

where T (xt, ut−1, xt−1) = p(xt|ut−1, xt−1) is the
probability of ending in state xt if the agent performs
action ut−1 in state xt−1.

• R is the X × U → R is the reward function, where
r(x, u) is the reward obtained by executing action u in
state x.

• Z is the set of all measurements or observations zt at
time t.

• O is the X × U × X → [0, 1] is the observation
function, where O(xt, ut−1, zt−1) = p(z|u, x) give the
probability of observing z if action u is performed and
the resulting state is x.

In real-time applications, POMDPs are often avoided be-
cause of their computational complexity. Significant research
efforts have been spent on extending POMDP models and
finding approximation methods to solve POMDPs.

D. Solving POMDPs by approximations

For real world decision making problems it is necessary
to calculate a best possible strategy iteratively to incorpo-
rate new measurements. Typically the latest measurements
provide the best hints for the immediate actions that are
supposed to be taken. Hence decision making needs to be
done in real-time. Publications in the POMDP community
typically focus on solving POMDP models offline. In this
context offline means that the focus is typically not to calcu-
late the best possible action for the current belief state but
rather for every imaginable belief state. Hence they provide a
policy - prior to the execution - of the best action u to execute
in any possible situation. POMDP problems are PSPACE-
complete and thus getting computationally intractable for
bigger state spaces [17]. Even for relatively small POMDP
problems it takes several minutes to hours to calculate
approximate offline solutions. On the contrary, for decision
making in urban environments decisions need to get updated,
e.g., every 100ms. One way to apply current offline POMDP
algorithms to real world robotics problems is used, e.g., by
Bai et. al. [18]. They run an offline POMDP algorithm to
calculate best policies for a finite set of belief distributions
over the state space. For the online task, nearest neighbor
search is applied to find the best fitting belief distribution
in that finite set to match the current belief distribution in
real-time.

In this paper we apply an online decision making algo-
rithm [19], [20], [21] to avoid the complexity of computing
a sophisticated, long-term policy by planning online only for
the current belief state bel(xt). This is typically done by a
look ahead search in the belief state space to explore only
those belief states that are actually reachable from the state
right now.

P(z(1)|b5,u(0))P(z(1)|b5,u(0))

P(z(1)|b0,u(0))
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Fig. 3. AND-OR policy tree for a T step plan ahead policy with Branch-
and-Bound tree search [22]

We use a variant of Paquet et al. [20] real-time belief
space search (RTBSS) approach. Similar as in Ross et al.



[22] we use a blind policy (BP) [22], [23] to obtain a lower
bound for V ∗(x) and the QMDP algorithm [24] to obtain an
upper bound for V ∗(x). A blind policy is a policy, where the
same action is always executed regardless of the belief state.
We modified the blind policy approach slightly by exploiting
special knowledge about the problem structure itself. Policies
with numerous begins and abortions of lane changes every
few time steps are not likely to provide a tight bound. Our
blind policy for initiating/aborting a lane change will only
initiate/abort one lane change; only the drive ahead-policy is
a regular blind policy. After calculating a lower and upper
bound for a specific belief state, Branch-and-Bound tree
search is executed on the so called policy tree. Similar to
Ross et al. [22] and Paquet et al. [20] we expand actions in
descending order of their upper bound to maximize pruning.

Figure 3 shows a simple example with two possible actions
|U | = 2, two measurements |Z| = 2, a planning range of T
and a discount factor of γ. The policy tree is an AND-OR
tree. Belief nodes are represented by a triangular OR-node.
At every OR the system has to choose a single action. Every
action is represented by a round AND-node. For every action
it has to evaluate every subbranch. The edges under an action
node denote the probability that this action will result in the
child belief state. Vice versa the branches under a belief node,
reflect the reward/cost of executing a particular action in that
state.

The goal is to find that particular action that will result
in the highest expected overall reward for the current belief
state b0. The higher the search depth T is, the smaller the
gap between the lower bound and the upper bound will get.
The upper and lower bounds for a particular belief state are
calculated by a QMDP and BP approximation as introduced
above. Those values propagate according to the following
rules in the policy tree. F (Tree) denotes the set of fringe
nodes in the AND-OR tree. Ross et al. [22] provide a more
extensive discussion.

Vlo(b) =

{
VBP (b), if b ∈ F (Tree)

maxu∈U Vlo(b, u), otherwise
(2)

Vlo(b, u) = r(b, u) + γ
∑
z∈Z

p(z|b, u) · Vlo(B(b, u, z)) (3)

Vup(b) =

{
VQMDP (b), if b ∈ F (Tree)

maxu∈U Vup(b, u), otherwise
(4)

Vup(b, u) = r(b, u) + γ
∑
z∈Z

p(z|b, u) · Vup(B(b, u, z)) (5)

III. MODELING LANE CHANGE DECISION
MAKING

This section will describe the approach developed for
decision making for lane changes. Based on the situation
representation consisting of the dynamic objects in front and
behind the ego vehicle on its own lane, its left neighbor

lane and its right neighbor lane, our implementation follows
a simple two step procedure as in figure 4. The situation
is evaluated by a signal processing network. A signal pro-
cessing network is a graph, in which each node represents a
computation block and each edge a signal flow from one
block into another. The outputs of the signal processing
networks, whether a lane change is possible or not, and
whether a lane change is beneficial or not, are sent to the
POMDP decision making algorithm. The signal processing
networks are used to simplify the POMDP model.

Situation

Signal Processing Network:
Lane Change Possible POMDP

Decision
Making

Actions
Signal Processing Network:

Lane Change Beneficial

Fig. 4. Proposed steps for lane change decision making

The signal processing networks consider relative distances,
relative velocities and time to collisions with objects around
the automated vehicle. Figure 5 shows the signal processing
network used to find an aggregated measure if a lane change
is possible. Our signal processing network is a rather straight-
forward series of mathematical operations being applied to
aggregate some of the situation’s state variables into a single
number between zero and one to express if a lane change
is possible. We do a separate evaluation for every of the
three relevant regions of interest (ROIs) in figure 2. The
region of interest behind the ego vehicle on the neighbor
lane is the most critical for collision avoidance while doing
lane changes. Hence most fine-tuning has been dedicated
to it. If there is no object in the ROI it is assumed that
a lane change is possible regarding that particular ROI. If
there is an object we use the cumulative distribution function
of a Gaussian distribution Φ to translate the numeric value
of the objects’s distance into a random variable between
zero and one. Figure 5 shows the parameters µ and σ of
the Gaussian’s cumulative distribution function. A similar
operation is applied to the object’s time gap (tg = dist/vego)
and its time to collision (ttc = |dist/(vobj − vego)|) where
dist is the distance between the ego vehicle and the object
and vego the ego vehicle’s velocity. Depending on the ego
vehicle’s velocity as a parameter we use two different sets of
Gaussian distributions. In the end we use the minimum of the
different random variables to aggregate all of them into one
measure for the particular region of interest. The minimum
operation was selected due to the similarity of the overall
process toward describing the process with fuzzy logic rules.
However, other than in pure fuzzy logic we needed additional
operations like averaging and weighting by factors to get an
acceptable behavior.

All in all, we are convinced that there are other, theoret-
ically more profound ways to compute a random variable
describing if a lane change is possible or not. Anyhow, the
whole signal processing network can be replaced by any
other module, e.g. a Bayesian network or a soundly formu-
lated fuzzy logic while keeping the second POMDP decision



making stage unchanged. We used this signal processing
network because it performed well in practical driving in
real urban scenarios.

A second signal processing network was developed to
determine if a lane change is beneficial due to the dynamic
aspects in a traffic situation (e.g. slow car ahead). However,
due to space constraints and not having direct relevance for
the evaluation in section IV we do not discuss this second
signal processing network in detail.
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Fig. 5. Example of the signal processing network for lane change possible

For the moment our model does not consider any direct
state transitions from a lane change left toward a lane change
right state. Hence the POMDP model only need to have eight
states:

X = {(¬LcPos,¬LcInProg,¬LcBen),

(LcPos,¬LcInProg,¬LcBen),

(¬LcPos, LcInProg,¬LcBen),

(LcPos, LcInProg,¬LcBen),

(¬LcPos,¬LcInProg, LcBen),

(LcPos,¬LcInProg, LcBen),

(¬LcPos, LcInProg, LcBen),

(LcPos, LcInProg, LcBen)}

(6)

LcPos is a binary state variable describing whether a lane
change is possible, LcBen is a binary state variable to state
if lane change is beneficial and LcInProg is a binary state
variable to state if a lane change is currently in progress.

Moreover three actions have been modeled, regular driving
(straight) ahead, initiating a lane change to the neighbor lane
(InitiateLC) and aborting a lane change being currently in

progress (AbortLC):

U = {Drive, InitiateLC,AbortLC} (7)

All elements of the reward matrix are set to zero except
for:

r(u = InitiateLC, x = (:,¬InProg, :) ) = −100

r(u = InitiateLC, x = (:, InProg, :) ) = −10000

r(u = AbortLC, x = (:,¬InProg, :) ) = −10000

r(u = AbortLC, x = (:, InProg, :) ) = −200

r(u = Drive, x = (:,¬InProg,¬LcBen) ) = +5

r(u = Drive, x = (:,¬InProg, LcBen) ) = −5

r(u = Drive, x = (LcPos, InProg,¬LcBen) ) = −5

r(u = Drive, x = (¬LcPos,¬InProg, :) ) = −60

r(u = Drive, x = (LcPos, InProg, LcBen) ) = +50
(8)

Every ”:” denotes ∀xsub ∈ Xsub for the specific subsection
of the state space X . The state transition matrix for p(x′|x, u)
was initialized such that state transitions roughly fit with
observed state transitions in real world driving scenarios.
For the status quo the state transition matrices were set by
using expert knowledge. The authors do expect much room
for improvements when these matrices are learned from real
world scenarios, e.g., with reinforcement learning.

IV. EVALUATION

As a first step we used Virtual Test Drive (VTD)1 for
a purely virtual simulation of the lane change decision
situation against perfect noise free data. After all algorithms
were working correctly with simulated, noise free data, we
implemented the algorithms in our research vehicle ”Leonie”
and re-enacted a lane change situation as in figure 2 on a test
facility with two lanes. We used the setup in figure 2 to fine-
tune the reward parameters in equation 8. Due to the lack of
space we do not provide details about the evaluation results
in the simulation or on the test track. However, we focus our
discussion for this evaluation section toward the evaluation in
urban traffic. After the algorithms have passed our required
test procedure for being used on a public road, we started to
do first lane changes in urban traffic.

Compared to regular driving on a single lane, lane changes
are comparably dangerous maneuvers for being decided only
by the automated vehicle itself, especially because they are
hard to predict by a safety driver and because of the short
amount of time being available for overriding/aborting a
lane change once it is initiated. Therefore we currently only
announce a planned lane change to the safety driver and do
not execute it until the vehicle got a clearance from the safety
driver for that lane change. Later on we plan to simplify that
procedure to just announcing a lane change and not explicitly

1www.vires.com



asking for a confirmation, but just aborting the lane change
as soon as an overriding is detected.

Our resources did not allow an extensive field study,
whether a large group of human (safety) drivers judge the
lane change feeling as natural and comfortable. Hence we
reduce our evaluation toward more technical metrics in state
estimation rather than judging the overall feeling of appropri-
ate action selection. Therefore we limited our evaluation to
automated driving without actually executing lane changes.
Hence our evaluation only evaluates the lane changes our
algorithms are planning without actually executing them
during evaluation. We recorded the raw data from the sensors
as well as the decision algorithm’s results. Since there is
no way of getting hard ground truth data for abstract state
variables like LcPos we manually labeled our training data
by averaging the results of three human experts judging the
lane change situation based on a video in a range from
zero to one. For evaluation we used a stretch of inner
city driving on a two lane street. We assumed that a lane
change was necessary during all the time. Hence the LcPos
belief of the POMDP directly translated into lane change
announcements/suggestions. We drove a stretch of 2.5 km
in urban traffic as in [2]. We excluded situations where an
evaluation would not be meaningful, e.g., during the U-turn
in figure 6, etc. All in all we used 300 seconds of driving in
urban traffic for evaluation.

Fig. 6. Track used for evaluation of algorithm

Choosing the right policies depends on two things: On
the one hand the correct rewards/penalties for conducting
the specific actions in specific system states and on the
other hand the correct beliefs of the system state. For the
sake of simplicity, the authors will limit the quantitative
performance analysis on the system state estimates and using
only subjective driving feeling for parametrization of the
action selection.

A common way to evaluate decision making algorithms is
using receiver operator curves (ROC). This is a plot of the
true positive rate P (Tp) as a function of the false positive rate
P (Fp). A true positive is a situation where a lane change is
possible, a false positive one where a lane change is assumed
to be possible, but in reality it is not. The area under the
ROC curve (AUC) can be used as an aggregated measure of
the classifier’s performance [26]. We sorted the data by the
lane change possible state estimate for different situations

Fig. 7. ROC curves for different decision making approaches

while driving on the route shown in figure 6. In the lower
left corner of the ROC curve we find all situations where a
lane change is easily possible. The upper right area shows
all situations where a lane change is clearly not possible.
Hence the effect of this sorting is the same of varying the
decision threshold for a binary decision making for the lane
change possible state estimate. Figure 7 shows the resulting
ROC curve for different decision making approaches. In
our performance analysis we compared an existing manually
crafted decision making algorithm (Old) [25], directly using
the estimates from our signal processing networks (SPN),
the low pass filtered output of the signal processing net-
work (SPN+Filter) and the state estimate of the POMDP.
The curves indicate that the POMDP-based as well as the
SPN-based decision making algorithms outperform the old
handcrafted decision making algorithm. Moreover, they point
out that the POMDP-based approach outperforms the bare
signal processing network and the filtered signal processing
network output at least slightly.

Anyhow, ROC curves assume binary decision making
situations. Performing lane changes is typically not a binary
decision. There is typically no hard threshold until which a
lane change is still perfectly possible and vice versa. It is
more a gradual decision. Hence we suggest using Pearson’s
linear correlation coefficient [27, p. 636 ff.] between the al-
gorithm’s state estimate X and the manually labeled ground
truth data Y

ρ(X,Y ) =
Cov(X,Y )√

Var(X) ·
√

Var(Y )
(9)

or the normalized mutual information Inorm.(X,Y ). The
normalized mutual information is based on Shannon’s def-
inition of the information entropy. It measures the mutual



information between two random variables:

I(X,Y ) = I(Y,X)

= H(X) +H(Y )−H(X,Y )

=
∑
x∈X

∑
y∈Y

p(x, y) ∗ log2
(

p(x, y)

p(x) ∗ p(y)

) (10)

For the ease of use, it should be normalized. We followed
the suggestion of Kvalseth [28], Press et al. [27] and
Witten/Frank [26, pp. 290 ff.]. They used 0.5 ∗ (H(X) +
H(Y )) as a normalization factor and thus they obtain
Inorm.(X,Y ) = 2 · I(X,Y )

H(X)+H(Y ) = U(X,Y ) also named
symmetric uncertainty by [26, pp 291].

TABLE I
PERFORMANCE EVALUATION AGAINST HUMAN OPERATOR WITH

PERSON CORRELATION AND NORMALIZED MUTUAL INFORMATION

Method Pearson correla-
tion

norm. mutual in-
formation

Old 0.620 0.27
SPN 0.876 0.38
Filtered SPN 0.884 0.39
POMDP 0.889 0.48

In table I it is obvious that all decision making methods
are better than the existing handcrafted decision making
method. Considering the absolute decision performance, the
mutual information or the Pearson correlation indicate that
the POMDP algorithm is at least on par or even better than
the other decision criteria. However, absolute decision perfor-
mance is only one of the criteria. So far we did not consider
the coherency of decisions. Figure 8 shows a representative
sample of driving in urban traffic. It shows the number of
decision changes of any of the algorithms compared with
a human expert. Traffic situations necessitated 16 decision
changes. Although the signal processing network provided a
good overall decision performance it changed its decisions
more than 4 times more often than a human driver would
have done. Low-pass filtering and a hysteresis improved
the coherency of the lane change decisions. However, the
POMDP decision making outperformed by far the other
approaches and resulted in much more human like coherency
of lane change decision making.

Summarizing the results, they show that the POMDP based
decision making approach is superior for our application.
Revisiting the criteria in section II-B, decision making should
be fast, coherent, provident and predictable. POMDP based
decision making fulfills all of them. If approximation meth-
ods like QMDP and Branch-and-Bound based online eval-
uation is used, decision making is fast (<10ms) and hence
possible in real time. As shown in figure 8 it exhibits a good
coherency; and by its problem definition with considering
the discounted future reward it will act with foresight. The
high decision correlation toward those of a human driver will
result in, for other traffic participants predictable, human-like
behavior.

Another nice benefit of the POMDP decision making is
that the model can be fully separated from the algorithms.

Fig. 8. Number of decision changes

Hence it is easily possible to re-parameterize the decision
making to be, e.g., more conservative and comfortable.

V. CONCLUSIONS

In this paper we presented our approach for performing
lane changes for automated driving in urban traffic scenarios.
Evaluating the algorithm in real world inner city traffic we
showed that we gained a significantly higher level of decision
coherency while maintaining a high level of decision quality.
In this paper we did not focus on driver in the loop scenarios.
We asked the driver for a confirmation of the lane changes
solely for safety purposes. However, for transferring our
approach to the wide field of driver assistance systems, this
human-machine-interaction becomes more relevant. Any-
how, our approach scales remarkably well toward these
applications by introducing additional states like ”prepare
lane change” or ”announce lane change”. Particularly for
human-machine-interaction the decision consistency which
we gained by this approach is a major aspect to address the
warning dilemma for human-machine-interaction. Another
point which did not receive particular attention in the paper
is, how to handle extraordinary scenarios (snowy, slippery
roads or foggy weather). We see two ways to tackle those
issues: First, we could model those conditions as a part
of the state space and hence do an online estimation as
with any other hidden state variable. Though, this comes
to the cost of state space complexity. Second, and most
likely more viable is a modification of the reward matrix
r(u, x) according to those weather conditions. Apart from
these application oriented points, we will try to improve the
decision making further on the modeling side. In our future
work we will try on improving our decision making model in
a way that we allow continuous state spaces [18] and make
use of simplifying the POMDP problem by exploiting mixed
observabilities of the state variables [29].
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