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Abstract—This paper proposes an approach for optimized without optimization
control of vehicle actuators as far as wear of individual
components is concerned. The system is intended to improve
the performance of existing balancing and protection systas
working on component level. Well-tested and commonly known
optimization algorithms are integrated into the onboard sdt-
ware to handle mutual dependencies of wear of components
by generating an optimal coordination strategy. A suitable Y s s> B
system architecture facilitates safe operation of the sysm
and reduction of computational load. The approach especiyf
focuses on electric vehicles with functional actuator redndancy
and several power-supply units. component 1 component 2 component 3 component 4

Proper operation of the algorithm is demonstrated based
on a full electric experimental vehicle. Thereby, tire wearis Frig. 1.  Balancing of wear of multiple components and overaiar
balanced while equalizing usage of the traction batteriesrad reduction
temperature levels of the drive motors.

. with optimization (wear balancing)

i-_3-_‘: with optimization (overall wear reduction)

critical wear level

proportional wear

. INTRODUCTION )
q biles f titude of q° Battery Management Systems ensure safe operation of
Modern automobiles feature a multitude of actuators an the drive battery in EVs or Hybrid-EVs [4], [5].

power consuming units. Thus, proper coordination of the | pnoray Management units in series vehicles prioritize

actqgtors IIS 'g‘p?r_‘adr!t 'Ijo olptlmlze energy Efﬁc_lency and :10 power consuming units and control energy distribution
avoid overload of individual components. This increases t in the onboard network [6].

lifetime of the vehicle and contributes to driver safety, as
critical components of the drive train are protected. Id ful
electric vehicles (EVs) the situation becomes even more
challenging. The total available energy for driving is sty , .
limited and expensive components of the drive train (e. g.,'ln ccj)pe;atlotr;s Lesearch, sflmllgrdchalllﬁngl]es r:\ave LO be
batteries or inverters) have to be protected from overloadQ!V€d- Thereby, the output of an industrial plant has tobe |
At the same time, EVs can provide additional degre&&€@sed while dealing with restricted resources. E. gamir

of freedom for vehicle control, e. g., the option to drivét @- and Zhang et al. discuss different genetic algorithms
individual wheels or to recuperate braking energy [1], [2]_to minimize lead times in production processes with mutual

This paper proposes an approach for optimal coordinatiffPendencies, parallel actions and several constrain{S8

of actuators in an EV to achieve balanced load, and thusThe proposed approach combines existing research results

wear, for components of the drive train (Fig. 1). Additidgal to add a coordination layer on overall vehicle level for

reduction of overall wear seams possible, but is not maffi'ther improvement of energy and load management. Mutual

focus of this paper. A flexible experimental vehicle feaigri dePendencies of system components are taken into account

four-wheel drive, one motor per axle, four wheel steering
and one power supply per axle serves as test bed (Fig. 2).

o Start-Stop Systems switch off combustion engines dur-
ing short halts of the vehicle to save fuel if sufficient
electrical energy is available for a quick restart [7].

Related Work and Contribution of This Paper

Reduction and balancing of wear as well as protection of
expensive components is already an important goal in the
design of modern vehicles. According measures target at the
mechanical design as well as vehicle electronics:

« A proper design of the steering geometry reduces tire

wear while driving curves, e. g., the ackermann-steering
geometry is proposed for driving at low speed [3]. Fig. 2. Schematic overview of the experimental vehicle




and new actuator flexibilities provided by EVs are explaited optimizer results
For demonstration, a simplified, but highly real-time cati |
scenario dealing with tire wear is chosen.

basic constraint
monitoring

Il. SYSTEM ARCHITECTURE
access control
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The system architecture plays a key role to safely inte-
grate optimization algorithms into a safety-critical réate
system. Therefore, the following requirements were defined

« Safe operation of the vehicle has to be guaranteed also
in case of failure of the optimization system.

« The optimizer must not modify lateral vehicle handling.
Longitudinal handling can be influenced in case vital
components, e. g., the batteries, have to be protected.

o Requirements on computational power should be ad-

justable depending on the demanded quality of resultssrgnificantly. Additionally, the drive controller compeates

A. Integration of the Optimization Algorithm remaining influences. Experiments have shown that these

: . measures ensure adequate vehicle handling.
Fig. 3 shows the system architecture proposed by th'SS) Safety: As detailed in the following section, the dis-

work. D_nver commands are transmitted to a drive Controlletrribution unit serves as monitoring and safety system. it ca
The drive controller derives commands for the actuator

; &asily decouple the optimizer from the main signal path for
Thereby, the controller can perform simple command for- 'y pie b ghal'p

) . . ) \(/jeh|cle control in case of errors.
warding or emulate desired vehicle behavior. The commands

by the drive controller are passed to the distribution uni8. Fault Compensation
There, the optimizer modifies the commands to balancery 4 getajls the internal structure of the distributioritun

wear and prevent overload of individual components. Th ring normal operation, the optimizer sets the distrituti
modified commands are forwarded fo the actuators. T(Eﬁrametersrpl to po according to the calculated optimal
optimizer is fed with the driver commands, constraints Q) sion. The command values from the drive controller are
the pptlmlzann .tasks and the current vehicle statg. Tmﬁhltiplied with these parameters. A monitoring subsystem
architecture provides several advantages that allow fdl ful .\ .\ < the commanded parameters for compliance with basic

the requirements given above: , constraints A basic constraint can, e. g., be that the agerag
1) Execution FrequencyThe execution frequency of the ¢ 1o left and the right steering angle has to equal the

optimizer is adjustable independently from the executifjeering angle commanded by the driver. If a failure occurs
time of the real-ime control task. If the optimizer doeg cyitical driving maneuvers are detected, the distraimuti
not update the distribution pattern in the distributiontuni,; separates the optimizer from the signal path. Thus, a
the previous distribution pattern is kept until an update iy f4)1-hack operation can be achieved. In case of transie
received. This is especially useful if the optimization §0a¢aj res, the old distribution parameters are kept and the
change slowly compared to the driver inputs or vehiclg i, yndate is discarded. If long-term malfunctions are

dynamics. Then, the update rate can be lowered, and thyi§e teq, the parameters are reset to save default values.
computational load is reduced.

2) Driver Perception: Driver perception of interventions  |ll. SELECTION OF AN OPTIMIZATION ALGORITHM

by the optimizer is limited, as constraints prohibit inter- The automotive application puts special demands on the
ventions of the optimizer that influence vehicle handlinggeq optimization algorithm. For this work, different ap-

proaches were evaluated based on the following criteria:
« Low requirements on computational power facilitate fre-

»1 °PQ >

drive controller commands
commands to actuators

Fig. 4. Internal structure of the distribution unit

——=— low execution frequency
—— high execution frequency quent updates of results and usage of cheaper hardware.
driver T « If possible, the solution generated by the optimization
commands [~~~ "7 [T 7] constraints ! algorithm should be a global optimum.
F‘L“L‘ ““““ o Good usability of the algorithm is desirable to facilitate
| optimizer S 1 usage in different application scenarios.
R | As a result of the evaluation, an approach for multi object
dr'ive distril:ution Veh'icle optimization (MOO) was chosen. This allows the developer
controller " it ™ (actuators) to easily integrate new optimization goals into the system.
ry T To solve the MOO problem, evolutionary and gradient based

optimization approaches were compared. Evolutionary op-
Fig. 3. System architecture with optimization functiotali timization algorithms are less susceptible to local minima



while gradient based systems feature significantly lowerhere M, () denotes the commanded torque for mogor
execution times. Due to the execution times, a gradie@t the total number of motors and/,..(¢) the torque per
based algorithm was chosen and combined with a multihotor demanded by the driver. The normalization is required
start strategy to improve the performance to detect a dipbalo guarantee the same scale for all optimized inputs before
optimal solution. The optimization problem was solved bweighting the criteria relative to each other.

the sequential quadratic programming algorithm (SQP) [11] 2) Tire Wear: The optimization criterion "tire wear” fo-
due to its superior computational performance [12]. Fauses on a common problem especially in metropolitan areas
comparisons with evolutionary systems, the Multi Objextivwhere one tire of an axle or both tires of one axle are
Model Based Evolution Strategy (MOMBES) introduced byised up more than other tires. The driver has to perform
Meyer was used [10]. maintenance on the car as soon as one of the tires can no
longer guarantee safe driving or features a tread deptbvbell

o ~ _ the one required by law. The optimizer tries to balance the
To balance wear of components, optimization criteria anfle wear. According to Huang et al. [13], one of the main

constraints focusing on tire wear, temperature of actsatGffyence factors on tire wear is the tire slip. Therefore, a
and state of charge (SOC) of the power supplies in tRgnpjiied online estimation of tire wear in the experiménta

experimental vehicle are defined. Thereby, wear is not onj¢picle is implemented based on tire slip and was verified in
balanced between units of the same type, but also acrgssctical experiments:

different types, e. g., between motors and tires. Additigna

temporary overload and in-total critical wear are takew int
account. To achieve these goals, relative and absolute mea-
sures are introduced to quantify the wear of a component.

IV. OPTIMIZATION CRITERIA AND CONSTRAINTS

1) The normal forced’y, are calculated for each of the
1 = 1..4 wheels based on static weight distribution and
dynamic loading of each wheel.
2) The longitudinal slips;, of each tire is estimated. As
A. Constraints the slip estimation is not focus of this paper, the follow-
Constraints ensure that the interventions of the optimizer N9 eémpirical formula identified based on simulation
during normal operation of the vehicle are not noticeable by ~ results and real measurements is implemented:
the Qrivgr, gnd actuator Iimitatipns are obeyed. The pregos 51 = (0.8-16;] + 1) (0.007 - (M; — 0.0453-v2)). (2)
application includes the following constraints: ‘
« Actuator limits: For temperatures, torques and steering  d; denotes the steering angle in radiats, the torque

angles maximal/minimal values are set. in Nm andwv; the speed at wheelin =*.
« Maximal changeThe maximal acceptable change per 3) The lateral slips,,is estimated according to [14]. For
time step of each of the distribution parameterso p¢ a driven wheel the absolute value is calculated as:

is limited to avoid rapid changes in vehicle handling. i 4 3
« Command forwardingThe mean value of left and right $a; = |tan(es)]. (3)

steering angle commanded by the optimizer has to equal  , denotes the side slip angle of the current tire deter-
the reference set by the driver. As long as a linear  mined based on the current speed, side slip angle of
tire model approximates reality, this makes interventions  the vehicle and yaw rate.

of the optimizer imperceptible by the driver. In highly  4) The overall tire slips; is calculated according to [14]:
dynamic driving scenarios, the optimizer is turned off.

2 42
B. Optimization Criteria $i =[Sy, 85, (4)

Based on optimization criteria, the optimizer evaluates th 5) As the optimizer is only supposed to operate during
current situation and short term predicts the effects ot afse normal driving, a linearized function to calculate the
commands on objective attainment. This section introduces current friction coefficient is used:

a set of criteria implemented to achieve balanced wear and
overload protection for components. prefs = C s ()

1) Reference TorqueDeviation of the torque command
sent to the motors from the reference torque set by the driver
is minimized. Thus, the mean value of all torque commandse)
in the experimental vehicle should equal the torque refaren
set by the driver. Deviations are only acceptable if expensi
components as the motors or the battery have to be protected

The proportional factoilC' was determined based on
practical experiments with the experimental vehicle.
Based oru.sy,, the vehicle speed at whegland the
normal forcesFly,, the powerP; transmitted by each
wheel is approximated as:

from, e. g., over-heating. The corresponding normalized P = piesys, - Fn, - vi. (6)
optimization criterionn,(t) for the current point in time ) , L
¢ is calculated according to: ) The transmitted power of theth wheel is integrated

G over time to determine the transmitted enefigy(¢)
G- Myer(t) — Y977 My(t) up to the current point in time. W;(t) is used to

— g
na (t) = Mo () ’ () approximate the tire wear of theth wheel.




8) The resultinglV;(¢) are normalized each time step: is introduced. The parametet§, C» andC3 are set individ-
ually for each of the optimization criteria. The input valye
Wi(t) — Wiin(t) . .
. (7) resembles the normalized absolute tire wear, the percentag
Winaw (t) = Winin (t) of maximal acceptable temperature, or the percentage of
Winaz(t) andW,,,;,, (t) denote the maximal and min-minimal acceptable pack voltage rated fronto 1.
imal wear at the current time step The normalized

nw,(t) =0.1+0.9-

wear for the tire with the lowest wear is set to 0.1, the g Jf
tire with the highest wear is set to 1.0. 8
3) Motor Temperature:A maximal temperature for the .§’1'8-
motors and power electronics in the experimental vehicle %1'6'
is defined. To reduce wear, the optimizer tries to avoid 51-4'
critical temperature states by keeping the temperature o € 1.2
the components well bellow this threshold. Alternativels, S 1 s s
) 0.2 0.4 0.6 0.8 1

optimal target temperature could have been defined. A first- absolute wear or power consumption [-]

order lag element serves as simple model of the temperature

development of the motor when demanding a certain torque.Fig. 5. Curve of dynamic weighting factor of optimizatioriteria

More complex models could be used for higher precision of

temperature prediction as, e. g., presented by [15]. Fdcbas Fig. 5 illustrates the weighting curve for the parameters
prediction, a first-order lag element has proven to delivéfl = 10, C2 = 8 andC3 = 0.86. The weighting curve is
sufficient precision and reduces computational load. TK€signed to increase the weight of an optimization criterio

predicted temperatures of all components are normalizedif it gets closer to the absolute wear or energy limit of the
component. The flattening of the curve towards the maximum
T+ AT,

np(t) = ————H~ -2 (8) serves to limit the weight of one criterion even if for some
Trnaz — Ta reason one componentis used up to a critical level or beyond.
T, andT,,.. denote the ambient temperature and the maxihe range of values is chosen to beto 2 and not0 to
mal acceptable temperature of a motor, respectively. 1 in order to ensure that all optimization criteria can be

4) Battery State of ChargeThe SOC of a battery is weighted with a predefined static weighting factor at any
monitored based on the current pack voltage. This istigne. The static weighting factor multiplies the returnuel
strong simplification but experimental results have shov@f Equ. 10. All components apart from torque deviation are
that the SOC of the batteries in the experimental vehicf¢eighted equally (static weight %). Torque deviation is
is approximated sufficiently, and the basic operation of theeighted inversely to the temperature, battery SOC and tire
presented algorithm can be demonstrated. More compMgar criteria and scaled by a minimal factor2sf to stress
battery models to estimate the SOC depending on the u$Bg importance of this optimization goal:
type of battery are investigated by several research groups . _ ,

e. g., by Sen et al. [4]. The normalized state of chaige weighttorque = 40 =20 -maz(other weights) — (11)
of the battery at the current point in tinieis calculated as: Due to the inverse weighting, torque reduction is fac#itht

© if other components reach critical states.
Vmaz - Vmeas t
Vv v 9) V. EXPERIMENTAL RESULTS

max min

A 1:5 scale model and simulations based on a non-
linear double track model form the basis for evaluation of
the optimization approach. The scale model is a functional
model of a full scale prototype that is built up in parallel
to this research project. With the scale vehicle the real-
C. Dynamic Weighting time performance of the approach is demonstrated. The

To i h o | di experimental vehicle and the vehicle dynamics simulation
0 Improve the optimization results and integrate expetf., configured as four wheel drive vehicle with one electric

kn_owl_edge _mtq the syst_em, the presented normahz_ed ORlfotor per axle and independent steering of the front wheels.
mization criteria are weighted before they are provided to

the optimization algorithm. Due to the normalization, thesA. Comparison: Evolutionary MOMBES vs. SQP Algorithm
weights define the absolute importance of each individualFig. 6 shows the tire wear balancing results for the
criterion also across different types of optimization eni. SQP and MOMBES optimization algorithm for7.5s test
For weighting of the criteria, a unified weighting curvgyn with arbitrary course. Both optimization systems are
according to the formula: triggered every).15s of simulation time.
1 MOMBES balances tire wear throughout the drive. From
weight(n) =1+ (GG 1G5 (10)  the pareto frontier provided by MOMBES, the solution with

TLB(t) =

TherebyV,,.... andV,,;, denote the maximal and minimal
allowed pack voltageV,...s(t) the measured voltage. Thus
the normalized value can change betw@e(fully charged
battery) andl (empty battery).



the lowest overall tire wear parameter is chosentw is generates comparable handling of the experimental vehicle
calculated as sum of all tire wear values and the deviation adiring the test runs. The tire wear values of the rear wheels
each individual wear value from the average wear of all tireare not regarded separately as the optimization algoritisn h
SQP cannot achieve the same quality of results (total wear possibility to balance the wear between left and right
and balancing) but approximates the optimal solution. Theheel in the current vehicle configuration. Instead, themmea
execution time of SQP is significantly lower than the one ofalue for left and right wheel is provided to the optimizatio
MOMBES. The evolutionary algorithm requires more thasystem and illustrated in Fig. 7.
9 hours to perform all required calculations ored6 Ghz The optimizer balances the wear between front and rear
Intel Dual Core platform. The SQP algorithm requires lessxle and left and right wheels of the front axle. The wear
than one minute for the same virtual test drive. A real-timef the wheel with highest load is reduced significantly by
execution of the SQP algorithm on the onboard Intel Atorshifting drive power partially to the rear axle and incregsi
1.6 GHz processor is possible. side slip at the curve-inner front wheel to take over an
Identification of global optima by the SQP algorithm caimcreasing part of the lateral forces. Due to nonlinearaase
be improved by the multi-start strategy. If the deviations iof tire wear with increasing load, the total wear for optigtz
tire wear surpass a given threshold, four SQP optimizatiadniving is reduced slightly t®7.5% of the wear generated
routines with different starting points are started in fiata by the ackermann steering geometry. Still, the simplified fi
for one time step. The starting points are generated sueRar estimation formula used in this paper lacks precision
that a set of reasonable torque and steering distributi®nsfar detailed benchmarks on absolute wear.
resembled. Afterwards, the solution with minimal wear is
chosen. The positive effect of the multi-start phase can fe Battery Charge Levels
seen in Fig. 6. At abou?22s a multi-start cycle facilitates Fig. 8 shows the reaction of the optimization system to
shift to a better, potentially global, minimum. dropping voltage in the drive batteries during a simulated
test run. Thereby, a speed controller tries to keep a constan
vehicle speed on a straight segment. A battery pack voltage
To demonstrate real-time capabilities and performance §f 10V is set as critical cut-off voltage and the voltage levels
the presented approach, tire wear generated during a §Sthe two batteries are initialized to different levels. Mgh
drive using an optimized steering geometry is compared e voltage is well above the critical level, the sum of the
the tire wear generated by an ackermann steering geomejygue distribution factors set for front and rear axle issel
Therefore, the model vehicle accelerate2 (correspond- to 200%. As soon as one battery nears the critical level,
ing to approx.1022 in full scale) on a straight segment andne optimizer tries to balance the battery levels by changin
then turns into a constant left curve with a steering angige torque distribution. At the end of the drive, the vehicle
of 15 degree. For this driving scenario, ackermann steerifg forced to a stop as both battery levels are critical. The
resembles a good benchmark as this steering geometry\igtual driver” detects the upcoming stop at abaut s of
designed to generate little tire wear at low speeds. Fig.sfmulation time as a significant increase in acceleratoaped

shows the tire wear for the front wheels and the rear a)%mmand is required to keep the commanded Speed.
calculated according to the formulas introduced in SedB2/-

during a real test drive. The sum of left and right steering. Motor Temperatures
angle for the optimized geometry is constrained to the sumpotor temperature is regarded by the optimizer to avoid
of steering angles for the ackermann steering geometrg. TBiverheating. The maximal temperature for the motors isoset t

B. Tire Wear Benchmark

——tire wear front left
----- tire wear front righ
- - -tire wear rear axle

——tire wear front left
------ tire wear front righ
- - -tire wear rear axle
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Fig. 6. Tire wear balancing for evolutionary and gradierseshoptimiza- Fig. 7. Tire wear for driving a constant left curve with opiied steering
tion geometry and ackermann steering geometry
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time [s] ponents based on classical optimization algorithms. The
approach does not replace protection measures for indilidu

components, but can improve the performance of the overall
system. As a result, the system helps to increase life time

70 degree celsius. A straight acceleration serves as test Llethe overall vehicle. The demonstration scenario showed
nario. Fig. 9 shows the torque commanded by the driver aH#t the approach can be applied to highly real-time ctitica
the torque request sent to each of the motors. During ma&RPlications in vehicles. Thereby, the system performasce
acceleration, torque commands are limited due to overgatfcalable depending on the available computational ressurc
of the motors. As soon as both motors have cooled doiiture work will focus on further evaluation of the proposed
sufficiently (after about20 s), the optimization algorithm @Pproach in a full scale experimental vehicle with indepen-
increasingly starts to balance wear deviations betweart frélent four wheel steering and drive.

and rear axle introduced by the acceleration scenario. Thus
non-critical differences in motor temperature result.

Fig. 8. Battery pack voltage and torque distribution fastor
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