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Abstract—This paper proposes an approach for optimized
control of vehicle actuators as far as wear of individual
components is concerned. The system is intended to improve
the performance of existing balancing and protection systems
working on component level. Well-tested and commonly known
optimization algorithms are integrated into the onboard soft-
ware to handle mutual dependencies of wear of components
by generating an optimal coordination strategy. A suitable
system architecture facilitates safe operation of the system
and reduction of computational load. The approach especially
focuses on electric vehicles with functional actuator redundancy
and several power-supply units.

Proper operation of the algorithm is demonstrated based
on a full electric experimental vehicle. Thereby, tire wear is
balanced while equalizing usage of the traction batteries and
temperature levels of the drive motors.

I. I NTRODUCTION

Modern automobiles feature a multitude of actuators and
power consuming units. Thus, proper coordination of the
actuators is important to optimize energy efficiency and to
avoid overload of individual components. This increases the
lifetime of the vehicle and contributes to driver safety, as
critical components of the drive train are protected. In full
electric vehicles (EVs) the situation becomes even more
challenging. The total available energy for driving is strongly
limited and expensive components of the drive train (e. g.,
batteries or inverters) have to be protected from overloads.
At the same time, EVs can provide additional degrees
of freedom for vehicle control, e. g., the option to drive
individual wheels or to recuperate braking energy [1], [2].

This paper proposes an approach for optimal coordination
of actuators in an EV to achieve balanced load, and thus
wear, for components of the drive train (Fig. 1). Additionally,
reduction of overall wear seams possible, but is not main
focus of this paper. A flexible experimental vehicle featuring
four-wheel drive, one motor per axle, four wheel steering
and one power supply per axle serves as test bed (Fig. 2).

Related Work and Contribution of This Paper

Reduction and balancing of wear as well as protection of
expensive components is already an important goal in the
design of modern vehicles. According measures target at the
mechanical design as well as vehicle electronics:

• A proper design of the steering geometry reduces tire
wear while driving curves, e. g., the ackermann-steering
geometry is proposed for driving at low speed [3].
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Fig. 1. Balancing of wear of multiple components and overallwear
reduction

• Battery Management Systems ensure safe operation of
the drive battery in EVs or Hybrid-EVs [4], [5].

• Energy Management units in series vehicles prioritize
power consuming units and control energy distribution
in the onboard network [6].

• Start-Stop Systems switch off combustion engines dur-
ing short halts of the vehicle to save fuel if sufficient
electrical energy is available for a quick restart [7].

In operations research, similar challenges have to be
solved. Thereby, the output of an industrial plant has to be in-
creased while dealing with restricted resources. E. g., Alcaraz
et al. and Zhang et al. discuss different genetic algorithms
to minimize lead times in production processes with mutual
dependencies, parallel actions and several constraints [8], [9].

The proposed approach combines existing research results
to add a coordination layer on overall vehicle level for
further improvement of energy and load management. Mutual
dependencies of system components are taken into account
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Fig. 2. Schematic overview of the experimental vehicle



and new actuator flexibilities provided by EVs are exploited.
For demonstration, a simplified, but highly real-time critical
scenario dealing with tire wear is chosen.

II. SYSTEM ARCHITECTURE

The system architecture plays a key role to safely inte-
grate optimization algorithms into a safety-critical real-time
system. Therefore, the following requirements were defined:

• Safe operation of the vehicle has to be guaranteed also
in case of failure of the optimization system.

• The optimizer must not modify lateral vehicle handling.
Longitudinal handling can be influenced in case vital
components, e. g., the batteries, have to be protected.

• Requirements on computational power should be ad-
justable depending on the demanded quality of results.

A. Integration of the Optimization Algorithm

Fig. 3 shows the system architecture proposed by this
work. Driver commands are transmitted to a drive controller.
The drive controller derives commands for the actuators.
Thereby, the controller can perform simple command for-
warding or emulate desired vehicle behavior. The commands
by the drive controller are passed to the distribution unit.
There, the optimizer modifies the commands to balance
wear and prevent overload of individual components. The
modified commands are forwarded to the actuators. The
optimizer is fed with the driver commands, constraints for
the optimization tasks and the current vehicle state. This
architecture provides several advantages that allow to fulfill
the requirements given above:

1) Execution Frequency:The execution frequency of the
optimizer is adjustable independently from the execution
time of the real-time control task. If the optimizer does
not update the distribution pattern in the distribution unit,
the previous distribution pattern is kept until an update is
received. This is especially useful if the optimization goals
change slowly compared to the driver inputs or vehicle
dynamics. Then, the update rate can be lowered, and thus
computational load is reduced.

2) Driver Perception: Driver perception of interventions
by the optimizer is limited, as constraints prohibit inter-
ventions of the optimizer that influence vehicle handling
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Fig. 3. System architecture with optimization functionality
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Fig. 4. Internal structure of the distribution unit

significantly. Additionally, the drive controller compensates
remaining influences. Experiments have shown that these
measures ensure adequate vehicle handling.

3) Safety: As detailed in the following section, the dis-
tribution unit serves as monitoring and safety system. It can
easily decouple the optimizer from the main signal path for
vehicle control in case of errors.

B. Fault Compensation

Fig. 4 details the internal structure of the distribution unit.
During normal operation, the optimizer sets the distribution
parametersp1 to pQ according to the calculated optimal
solution. The command values from the drive controller are
multiplied with these parameters. A monitoring subsystem
checks the commanded parameters for compliance with basic
constraints A basic constraint can, e. g., be that the average
of the left and the right steering angle has to equal the
steering angle commanded by the driver. If a failure occurs
or critical driving maneuvers are detected, the distribution
unit separates the optimizer from the signal path. Thus, a
safe fall-back operation can be achieved. In case of transient
failures, the old distribution parameters are kept and the
faulty update is discarded. If long-term malfunctions are
detected, the parameters are reset to save default values.

III. SELECTION OF AN OPTIMIZATION ALGORITHM

The automotive application puts special demands on the
used optimization algorithm. For this work, different ap-
proaches were evaluated based on the following criteria:

• Low requirements on computational power facilitate fre-
quent updates of results and usage of cheaper hardware.

• If possible, the solution generated by the optimization
algorithm should be a global optimum.

• Good usability of the algorithm is desirable to facilitate
usage in different application scenarios.

As a result of the evaluation, an approach for multi object
optimization (MOO) was chosen. This allows the developer
to easily integrate new optimization goals into the system.
To solve the MOO problem, evolutionary and gradient based
optimization approaches were compared. Evolutionary op-
timization algorithms are less susceptible to local minima,



while gradient based systems feature significantly lower
execution times. Due to the execution times, a gradient
based algorithm was chosen and combined with a multi-
start strategy to improve the performance to detect a globally
optimal solution. The optimization problem was solved by
the sequential quadratic programming algorithm (SQP) [11]
due to its superior computational performance [12]. For
comparisons with evolutionary systems, the Multi Objective
Model Based Evolution Strategy (MOMBES) introduced by
Meyer was used [10].

IV. OPTIMIZATION CRITERIA AND CONSTRAINTS

To balance wear of components, optimization criteria and
constraints focusing on tire wear, temperature of actuators
and state of charge (SOC) of the power supplies in the
experimental vehicle are defined. Thereby, wear is not only
balanced between units of the same type, but also across
different types, e. g., between motors and tires. Additionally,
temporary overload and in-total critical wear are taken into
account. To achieve these goals, relative and absolute mea-
sures are introduced to quantify the wear of a component.

A. Constraints

Constraints ensure that the interventions of the optimizer
during normal operation of the vehicle are not noticeable by
the driver, and actuator limitations are obeyed. The proposed
application includes the following constraints:

• Actuator limits: For temperatures, torques and steering
angles maximal/minimal values are set.

• Maximal change:The maximal acceptable change per
time step of each of the distribution parametersp1 to pQ
is limited to avoid rapid changes in vehicle handling.

• Command forwarding:The mean value of left and right
steering angle commanded by the optimizer has to equal
the reference set by the driver. As long as a linear
tire model approximates reality, this makes interventions
of the optimizer imperceptible by the driver. In highly
dynamic driving scenarios, the optimizer is turned off.

B. Optimization Criteria

Based on optimization criteria, the optimizer evaluates the
current situation and short term predicts the effects of a set of
commands on objective attainment. This section introduces
a set of criteria implemented to achieve balanced wear and
overload protection for components.

1) Reference Torque:Deviation of the torque command
sent to the motors from the reference torque set by the driver
is minimized. Thus, the mean value of all torque commands
in the experimental vehicle should equal the torque reference
set by the driver. Deviations are only acceptable if expensive
components as the motors or the battery have to be protected
from, e. g., over-heating. The corresponding normalized
optimization criterionnM (t) for the current point in time
t is calculated according to:

nM (t) =
G ·Mset(t)−

∑g=G

g=1 Mg(t)

Mset(t)
, (1)

whereMg(t) denotes the commanded torque for motorg,
G the total number of motors andMset(t) the torque per
motor demanded by the driver. The normalization is required
to guarantee the same scale for all optimized inputs before
weighting the criteria relative to each other.

2) Tire Wear: The optimization criterion ”tire wear” fo-
cuses on a common problem especially in metropolitan areas
where one tire of an axle or both tires of one axle are
used up more than other tires. The driver has to perform
maintenance on the car as soon as one of the tires can no
longer guarantee safe driving or features a tread depth bellow
the one required by law. The optimizer tries to balance the
tire wear. According to Huang et al. [13], one of the main
influence factors on tire wear is the tire slip. Therefore, a
simplified online estimation of tire wear in the experimental
vehicle is implemented based on tire slip and was verified in
practical experiments:

1) The normal forcesFNi
are calculated for each of the

i = 1..4 wheels based on static weight distribution and
dynamic loading of each wheel.

2) The longitudinal slipsli of each tire is estimated. As
the slip estimation is not focus of this paper, the follow-
ing empirical formula identified based on simulation
results and real measurements is implemented:

sli = (0.8 · |δi|+1) · (0.007 · (Mi− 0.0453 · v2i )). (2)

δi denotes the steering angle in radiants,Mi the torque
in Nm andvi the speed at wheeli in m

s
.

3) The lateral slipssi is estimated according to [14]. For
a driven wheel the absolute value is calculated as:

ssi = |tan(αi)|. (3)

α denotes the side slip angle of the current tire deter-
mined based on the current speed, side slip angle of
the vehicle and yaw rate.

4) The overall tire slipsi is calculated according to [14]:

si =
√

s2li + s2si . (4)

5) As the optimizer is only supposed to operate during
normal driving, a linearized function to calculate the
current friction coefficient is used:

µeffi = C · si (5)

The proportional factorC was determined based on
practical experiments with the experimental vehicle.

6) Based onµeffi , the vehicle speed at wheeli and the
normal forcesFNi

, the powerPi transmitted by each
wheel is approximated as:

Pi = µeffi · FNi
· vi. (6)

7) The transmitted power of thei-th wheel is integrated
over time to determine the transmitted energyWi(t)
up to the current point in timet. Wi(t) is used to
approximate the tire wear of thei-th wheel.



8) The resultingWi(t) are normalized each time step:

nWi
(t) = 0.1 + 0.9 ·

Wi(t)−Wmin(t)

Wmax(t)−Wmin(t)
. (7)

Wmax(t) andWmin(t) denote the maximal and min-
imal wear at the current time stept. The normalized
wear for the tire with the lowest wear is set to 0.1, the
tire with the highest wear is set to 1.0.

3) Motor Temperature:A maximal temperature for the
motors and power electronics in the experimental vehicle
is defined. To reduce wear, the optimizer tries to avoid
critical temperature states by keeping the temperature of
the components well bellow this threshold. Alternatively,an
optimal target temperature could have been defined. A first-
order lag element serves as simple model of the temperature
development of the motor when demanding a certain torque.
More complex models could be used for higher precision of
temperature prediction as, e. g., presented by [15]. For basic
prediction, a first-order lag element has proven to deliver
sufficient precision and reduces computational load. The
predicted temperatures of all components are normalized:

nT (t) =
T (t+∆t)− Ta

Tmax − Ta

(8)

Ta andTmax denote the ambient temperature and the maxi-
mal acceptable temperature of a motor, respectively.

4) Battery State of Charge:The SOC of a battery is
monitored based on the current pack voltage. This is a
strong simplification but experimental results have shown
that the SOC of the batteries in the experimental vehicle
is approximated sufficiently, and the basic operation of the
presented algorithm can be demonstrated. More complex
battery models to estimate the SOC depending on the used
type of battery are investigated by several research groups,
e. g., by Sen et al. [4]. The normalized state of chargenB

of the battery at the current point in timet is calculated as:

nB(t) =
Vmax − Vmeas(t)

Vmax − Vmin

. (9)

Thereby,Vmax andVmin denote the maximal and minimal
allowed pack voltage,Vmeas(t) the measured voltage. Thus,
the normalized value can change between0 (fully charged
battery) and1 (empty battery).

C. Dynamic Weighting

To improve the optimization results and integrate expert
knowledge into the system, the presented normalized opti-
mization criteria are weighted before they are provided to
the optimization algorithm. Due to the normalization, these
weights define the absolute importance of each individual
criterion also across different types of optimization criteria.

For weighting of the criteria, a unified weighting curve
according to the formula:

weight(η) = 1 +
1

e−(C1·η−C2)+C3

(10)

is introduced. The parametersC1, C2 andC3 are set individ-
ually for each of the optimization criteria. The input valueη
resembles the normalized absolute tire wear, the percentage
of maximal acceptable temperature, or the percentage of
minimal acceptable pack voltage rated from0 to 1.
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Fig. 5. Curve of dynamic weighting factor of optimization criteria

Fig. 5 illustrates the weighting curve for the parameters
C1 = 10, C2 = 8 andC3 = 0.86. The weighting curve is
designed to increase the weight of an optimization criterion
if it gets closer to the absolute wear or energy limit of the
component. The flattening of the curve towards the maximum
serves to limit the weight of one criterion even if for some
reason one component is used up to a critical level or beyond.
The range of values is chosen to be1 to 2 and not0 to
1 in order to ensure that all optimization criteria can be
weighted with a predefined static weighting factor at any
time. The static weighting factor multiplies the return value
of Equ. 10. All components apart from torque deviation are
weighted equally (static weight =1). Torque deviation is
weighted inversely to the temperature, battery SOC and tire
wear criteria and scaled by a minimal factor of20 to stress
the importance of this optimization goal:

weighttorque = 40− 20 ·max(other weights) (11)

Due to the inverse weighting, torque reduction is facilitated
if other components reach critical states.

V. EXPERIMENTAL RESULTS

A 1:5 scale model and simulations based on a non-
linear double track model form the basis for evaluation of
the optimization approach. The scale model is a functional
model of a full scale prototype that is built up in parallel
to this research project. With the scale vehicle the real-
time performance of the approach is demonstrated. The
experimental vehicle and the vehicle dynamics simulation
are configured as four wheel drive vehicle with one electric
motor per axle and independent steering of the front wheels.

A. Comparison: Evolutionary MOMBES vs. SQP Algorithm

Fig. 6 shows the tire wear balancing results for the
SQP and MOMBES optimization algorithm for a73.5s test
run with arbitrary course. Both optimization systems are
triggered every0.15s of simulation time.

MOMBES balances tire wear throughout the drive. From
the pareto frontier provided by MOMBES, the solution with



the lowest overall tire wear parametertw is chosen.tw is
calculated as sum of all tire wear values and the deviation of
each individual wear value from the average wear of all tires.
SQP cannot achieve the same quality of results (total wear
and balancing) but approximates the optimal solution. The
execution time of SQP is significantly lower than the one of
MOMBES. The evolutionary algorithm requires more than
9 hours to perform all required calculations on a2.16 Ghz
Intel Dual Core platform. The SQP algorithm requires less
than one minute for the same virtual test drive. A real-time
execution of the SQP algorithm on the onboard Intel Atom
1.6 GHz processor is possible.

Identification of global optima by the SQP algorithm can
be improved by the multi-start strategy. If the deviations in
tire wear surpass a given threshold, four SQP optimization
routines with different starting points are started in parallel
for one time step. The starting points are generated such
that a set of reasonable torque and steering distributions is
resembled. Afterwards, the solution with minimal wear is
chosen. The positive effect of the multi-start phase can be
seen in Fig. 6. At about22s a multi-start cycle facilitates
shift to a better, potentially global, minimum.

B. Tire Wear Benchmark

To demonstrate real-time capabilities and performance of
the presented approach, tire wear generated during a test
drive using an optimized steering geometry is compared to
the tire wear generated by an ackermann steering geometry.
Therefore, the model vehicle accelerates to2m

s
(correspond-

ing to approx.10m
s

in full scale) on a straight segment and
then turns into a constant left curve with a steering angle
of 15 degree. For this driving scenario, ackermann steering
resembles a good benchmark as this steering geometry is
designed to generate little tire wear at low speeds. Fig. 7
shows the tire wear for the front wheels and the rear axle
calculated according to the formulas introduced in Sec. IV-B2
during a real test drive. The sum of left and right steering
angle for the optimized geometry is constrained to the sum
of steering angles for the ackermann steering geometry. This
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Fig. 6. Tire wear balancing for evolutionary and gradient based optimiza-
tion

generates comparable handling of the experimental vehicle
during the test runs. The tire wear values of the rear wheels
are not regarded separately as the optimization algorithm has
no possibility to balance the wear between left and right
wheel in the current vehicle configuration. Instead, the mean
value for left and right wheel is provided to the optimization
system and illustrated in Fig. 7.

The optimizer balances the wear between front and rear
axle and left and right wheels of the front axle. The wear
of the wheel with highest load is reduced significantly by
shifting drive power partially to the rear axle and increasing
side slip at the curve-inner front wheel to take over an
increasing part of the lateral forces. Due to nonlinear increase
of tire wear with increasing load, the total wear for optimized
driving is reduced slightly to97.5% of the wear generated
by the ackermann steering geometry. Still, the simplified tire
wear estimation formula used in this paper lacks precision
for detailed benchmarks on absolute wear.

C. Battery Charge Levels

Fig. 8 shows the reaction of the optimization system to
dropping voltage in the drive batteries during a simulated
test run. Thereby, a speed controller tries to keep a constant
vehicle speed on a straight segment. A battery pack voltage
of 10V is set as critical cut-off voltage and the voltage levels
of the two batteries are initialized to different levels. While
the voltage is well above the critical level, the sum of the
torque distribution factors set for front and rear axle is close
to 200%. As soon as one battery nears the critical level,
the optimizer tries to balance the battery levels by changing
the torque distribution. At the end of the drive, the vehicle
is forced to a stop as both battery levels are critical. The
”virtual driver” detects the upcoming stop at about24 s of
simulation time as a significant increase in accelerator pedal
command is required to keep the commanded speed.

D. Motor Temperatures

Motor temperature is regarded by the optimizer to avoid
overheating. The maximal temperature for the motors is set to
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Fig. 7. Tire wear for driving a constant left curve with optimized steering
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Fig. 8. Battery pack voltage and torque distribution factors

70 degree celsius. A straight acceleration serves as test sce-
nario. Fig. 9 shows the torque commanded by the driver and
the torque request sent to each of the motors. During main
acceleration, torque commands are limited due to overheating
of the motors. As soon as both motors have cooled down
sufficiently (after about120 s), the optimization algorithm
increasingly starts to balance wear deviations between front
and rear axle introduced by the acceleration scenario. Thus
non-critical differences in motor temperature result.

E. Influence of Execution Frequency

Fig. 10 illustrates the standard deviation of all tire wear
values for a course with several curves and straight sections
for different execution frequencies of the optimization sys-
tem. The standard deviation increases almost linearly with
decreasing execution frequency and thus indicates reduced
quality of the optimization results. Obviously, the tire wear
criterion imposes high demands on execution frequency
to allow proper optimization. Still, the chosen architecture
decouples optimization task and vehicle control well.

VI. CONCLUSION

This paper proposes an approach to optimize wear and
energy distribution in vehicles and limit overloads of com-
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Fig. 10. Standard deviation of tire wear values depending onthe execution
frequency of the optimization algorithm (SQP)

ponents based on classical optimization algorithms. The
approach does not replace protection measures for individual
components, but can improve the performance of the overall
system. As a result, the system helps to increase life time
of the overall vehicle. The demonstration scenario showed
that the approach can be applied to highly real-time critical
applications in vehicles. Thereby, the system performanceis
scalable depending on the available computational resources.
Future work will focus on further evaluation of the proposed
approach in a full scale experimental vehicle with indepen-
dent four wheel steering and drive.
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