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Abstract— Research in the field of automated driv-
ing has created promising results in the last years.
Some research groups have shown perception systems
which are able to capture even complicated urban
scenarios in great detail. Yet, what is often missing are
general-purpose path- or trajectory planners which
are not designed for a specific purpose. In this paper
we look at path- and trajectory planning from an ar-
chitectural point of view and show how model predic-
tive frameworks can contribute to generalized path-
and trajectory generation approaches for generating
safe trajectories even in cases of system failures.
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I. Introduction
In recent years, the field of automated driving has

gained much attention not only from research groups,
but also from industry and even the public. In public
reception, the timespan until ”autonomous” vehicles will
be ready for market seems to be a matter of years rather
than decades, also due to the high expectation raised by
marketing strategies in industry.

The field of environment perception has recently seen
impressive progress, also boosted by the developments
in the field of machine learning. This has increased the
level of detail of the representation of the vehicle’s envi-
ronment as a basis for decision making and, eventually,
for trajectory generation. However, in most cases, the
driver is still considered to be the ultimate fallback in
case of system failures, so that current systems have to
be considered partially automated (level 2) according to
the definition of SAE [1].

When moving towards fully automated (level 5) or even
autonomous vehicles, safety requirements emerge as the
system must be able to handle system failures without
external intervention. Thus, a detailed representation of
the vehicle’s environment alone is not sufficient. Fur-
thermore the external representation must be combined
with a detailed representation of the vehicle’s internal
states and its internal capabilities which are required
to fulfill the vehicle’s mission, as already demanded by
Dickmanns [2], Maurer [3], Pellkofer [4], Siedersberger
[5], and Reschka [6]. By fusing the internal represen-
tation, e.g. about available actuators, with the external
context extracted from sensor data, the vehicle becomes
self-aware and is enabled to take safe driving decisions
at any time, even in case of system failures.
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Extracting the required information about the internal
state and the external context is only one part of the
realization of safe driving strategies. Decision algorithms
and eventually trajectory generation and control algo-
rithms must be designed in such a way, that available
information can be utilized efficiently at each level of
abstraction. As an example, a degradation of the steering
system due to a failure has immediate impact on vehicle
stability when turning so that control algorithms must be
immediately reparameterized in order to keep the vehicle
stable. Additionally, a trajectory generation module –
which is running at a lower frequency – must also plan
trajectories which conform to the resulting actuator ca-
pabilities after degradation e.g. by generating trajectories
with reduced curvature. Eventually, decision algorithms
must be aware of possible degradation effects in order to
generate reachable target poses for the vehicle.

In this paper, we propose model predictive control
(MPC) as a framework which can be utilized for reflect-
ing performance degradation and mitigating the emerg-
ing degradation effects at the lower levels of a system
architecture. Corresponding to the above example, we
will map decisions about constraints and optimization
parameters to a functional system architecture and de-
scribe an actually implemented MPC framework for our
full-by-wire research vehicles MAX and MOBILE.

This paper is structured as follows: Section II gives
a short overview over related work regarding functional
system architectures, the demand for self-awareness, and
recent approaches to MPC for automated road vehicles.
After this, Section III describes the utilized functional
system architecture and how MPC can be mapped to it in
combination with information about the internal vehicle
state. Section IV presents a multi-stage MPC framework
for autonomous vehicles, considering active rear steering.

II. Related Work
For the development of complex vehicle systems, the

ISO 26262 standard requires architectural designs that
feature modularity, adequate level of granularity, and
simplicity [7, Part 3, 7.4.3.7]. Functional system archi-
tectures provide the possibility to fulfill these design
requirements demanded by the ISO26262. In the field
of automated driving, architectures which relate to the
robotics sense, plan, act scheme are utilized.

One of the more recent approaches to a functional
system architecture for level 3 to level 5 automated
vehicles is presented by Matthaei and Maurer [8]. Their
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Fig. 1. Functional system architecture based on [8] and [19]: This paper focuses on Guidance and Stabilization in Mission Accomplishment.

contribution is based on earlier works of Rasmussen [9],
Donges [10], Dickmanns et al. [11], and Maurer [3]. A
more detailed presentation of this contribution [8] is
presented in Section III. A deeper review of existing
architectural approaches for automated road vehicles has
also been published by Matthaei and Maurer [8]. Taş
et al. [12] compare architectures of selected automated
vehicles in a unified graphical representation and also
state the necessity for self- and performance monitoring.

With regard to the internal representation of capabili-
ties of automated vehicles, first demands for representing
the ability to accelerate, brake and turn have been stated
by Dickmanns [2]. Based on Passino and Antsaklis [13],
Maurer provides a first concept for a runtime represen-
tation of the performance of control algorithms in auto-
mated vehicles [3]. Further developing and implementing
the idea, Pellkofer [?] and Siedersberger [5] introduce
the concept of skill networks. A further differentiation
between skills and abilities is made by Bergmiller [14] and
Reschka [15], the latter introducing the concept of ability
and skill graphs for runtime monitoring and support of
development processes.

With regard to MPC, several contributions have re-
cently been made for trajectory generation and control
in the field of automated driving. An approach for lateral
vehicle guidance, using MPC for trajectory planning and
control is presented and evaluated in simulation by Götte
et al. [16]. A similar approach utilizing more advanced
collision avoidance constraints is described by Gutjahr
and Werling [17]. Yi et al. [18] propose an approach
to MPC-based trajectory planning for critical driving
maneuvers. They introduce a quadratic MPC problem
for considering friction limits in evasion maneuvers.

III. MPC-Based Trajectory Generation in a
Functional System Architecture

Model predictive control aims at generating optimal
control inputs for a given plant. Thus, a weighted cost
function as well as optimization constraints are required

in order to fully describe the related optimization prob-
lem. In case of trajectory generation for automated
vehicles, optimization constraints are e.g. based on the
vehicle’s environment, as the generated trajectory must
always be collision free. Moreover, the internal state of
the vehicle can introduce additional constraints, e.g. by
incorporating actuator limitations such as the maximum
angular steering change rate. Weights in the cost function
emerge from additional mission parameters (e.g. comfort,
actuator wear or energy consumption).

In the following subsections, we will describe how these
constraints and weights are generated at different levels
of the functional system architecture. For this, we will re-
late to the architectural approach proposed by Matthaei
and Maurer [8]. The resulting architecture is displayed
in Fig. 1. The authors consider the sense, plan, act
scheme and derive a three-layer architecture operating
at road level (navigation), lane level (guidance), and at
a quasi-continuous level (stabilization). The three levels
are divided into three columns each: global localization &
mapping, environment and self-perception, and mission
accomplishment.

Fig. 2 depicts a closer view at the guidance and
stabilization level for mission accomplishment, which is
the focus in the following. However, a short description
for the navigation level is given, as the planned route
provides the basis for selecting a target pose at lower
architecture levels.

A. Navigation
At the navigation level (cf. Fig. 1), the most recent

available information about the road network is provided
from the environment perception column supported by
a-priori external data (maps) according to Matthaei and
Maurer [8]. Applied algorithms for route planning are
typical graph-based approaches such as Dijkstra or A*
derivatives. Mission goals as well as possible information
from self-representation modules can be represented as
edge weights or costs in the respective graph. Thus, only
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Fig. 2. Detailed view at Guidance and Stabilization

routes will be planned, which conform with mission goals
and the vehicle’s abilities (e.g. sloped roads could be
avoided if the braking system can only provide reduced
functionality). Typical cycle times at this level are several
ten seconds or even minutes. Finally, the planned route
will then be input for the algorithms at guidance level.

B. Guidance

At the guidance level, all tactical decisions which
concern the immediate surroundings of the vehicle are
made. The goal at the guidance level is twofold: On
the one hand, a target pose as input for trajectory
generation shall be generated. This target pose must
be reachable and it must conform to all (i.e. legal)
given constraints. As an example, in ordinary driving
scenarios, the target pose will be located either in the
ego-lane or in a neighboring lane in case a lane change
is desired. On the other hand, a unique reference path
which leads to that target pose must be calculated
to facilitate the application of MPC. In a structured
environment, this typically is the lane center line. By
this, a trajectory can be generated along that reference
path, making the trajectory a function of lateral distance
from the reference. The reference path does not need to
be smooth, as smoothness of the resulting trajectory will
be ensured by the trajectory generation modules at the
stabilization level. The reference generation (cf. Fig. 2)
can be seen as a coarse path planning in the immediate
static environment of the vehicle with a horizon of up to
several hundred meters. Thus, graph based approaches

can be applied at this level of granularity, e.g. based on
visibility graphs, cf. [20].

In order to generate a target pose and a reference
path, the scene (cf. [19] for definition), which is the
result from context and scene modeling, is combined
with the planned route, mission aspects (e.g. drivable
area or cooperation aspects), as well as constraints and
parameters generated from self-representation (cf. Fig.2,
Ability Monitoring).

In terms of MPC, the static as well as the dynamic
environment will be transformed to spatial constraints
in the vehicle’s coordinate frame. This does not only
include rigid objects, but also those areas which must
not be crossed due to legal regulations (e.g. solid lines).
However, all decisions about constraints at this level
are of tactical implication. Actuation constraints can
be imposed at this level, if they are part of an op-
timization process. Furthermore, actuator degradation
can be considered at this level. In case degrading ac-
tuator performance has been detected, an immediate
reaction to stabilize the vehicle must be performed at
the stabilization level. However, the system must also
plan degraded trajectories, which account for degraded
actuation abilities (e.g. constraints on maximal available
steering angles).

Additionally, tactical decisions about optimization
costs will be made here. For instance, if the vehicle is
driving with passengers, optimization weights for limit-
ing jerk and yaw rate will be increased, in order to in-
crease passenger comfort. If the vehicle is driving without
passengers, a higher maneuverability might be desirable,
such that those weights will be lowered.

Eventually, the guidance level must ensure that at least
one trajectory is available which can be used for safely
stopping the vehicle. This can be reached by making use
of the least valid trajectory in case of infeasible opti-
mization problems as visualized in Fig. 3. In emergency
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Fig. 3. Sequential display of a low-level controller using a fallback
trajectory (e.g. for braking the vehicle) in case of infeasible
optimization problem at time t2.

situations, the above requirement can also demand a re-



parameterization of optimization constraints. To clarify
this, consider the following situation: An imminent crash
can only be avoided by performing an evasion maneu-
ver. The target pose is located in a valid place, but
it is not reachable because a solid line would need to
be crossed. Under normal conditions, legal constraints
would prohibit this maneuver, which would be reflected
in the spatial optimization constraints. The resulting
optimization problem would be over-constraint, without
possessing a feasible solution. This is why the guidance
level needs additional feasibility information from the
stabilization level.

If a non-feasible optimization problem is detected,
several strategies could be applied. Providing several
levels of drivable area could be considered: Normally,
solid lines must not be crossed, as this is prohibited
by law. In emergency situations, this constraint could
be lifted at the tactical level if no feasible trajectory is
found. In the following iteration, with changed spatial
constraints, the subordinate MPC framework could then
find a feasible solution.

C. Stabilization
Taking the reference path and the spatial constraints

from the guidance level as an input, Matthaei and Mau-
rer [8] divide the stabilization level into two sub levels.
These levels are responsible for trajectory generation and
for trajectory following control. Typical cycle times for
the generation layer are multiple ten to hundred millisec-
onds and several milliseconds for the control layer.

With regard to MPC, multiple approaches can be
considered: On the one hand, the MPC framework can
be utilized for model based trajectory generation only in
combination with a subordinate lateral and longitudinal
controller as proposed by Falcone et al. [21]. This is a
feasible approach, e.g. if the model reflects basic vehicle
properties, but lacks accuracy to perform actual model
based control, particularly if appropriate disturbance
models are lacking. In addition, the problem of long cycle
times due to a slowly solvable optimization problem can
be circumvented using an additional controller: While
the MPC framework calculates a new trajectory, the
controller(s) can always work on the last valid reference
values. On the other hand, if the MPC algorithm is real-
time capable and can be provided with highly accurate
vehicle models, the additional controller can be omitted.

Considering data from self-perception modules, actu-
ation constraints are modified in order to adopt to the
actual system state. For instance, in case of a mechan-
ical brake with degraded performance, trajectories with
reduced decelerations will be planned.

From a functional safety perspective, MPC as frame-
work at the stabilization level allows exploiting func-
tional redundancies to compensate for degradation of
the actuation system due to failures, wear, or insufficient
energy supply. Perceived degradation is mapped to the
constraints related to the affected actuators. In case of

safety relevant degradation, the controller will access all
other available actuators in order to follow the planned
trajectory. For instance, a free-running wheel due to a
failure of a mechanical brake leads to reduced decelera-
tion capabilities as well as to undesired yaw torque when
decelerating. In this case, the controller compensates for
reduced deceleration capabilities by utilizing the drive
train to reduce speed as well as other available actuators
in order to compensate for the yaw moment induced by
the degraded brake (e.g. by additional steering angle,
differential braking, or torque vectoring).

Output data of the stabilization level consists of di-
rect physical reference values (e.g. steering angle, motor
torque) for the respective actuators.

IV. MPC Framework for an Automated
Vehicle with Active Rear Steering

The following section will present an actual imple-
mentation of an MPC framework for our electric, over-
actuated, full-by-wire experimental vehicles. Implemen-
tation will be described related to the architectural
concerns presented in Section III.

A. Experimental Vehicles & Problem Statement
The proposed MPC framework for trajectory planning

was implemented for our research vehicles MOBILE and
MAX. Both vehicles are part of a rapid-prototyping
tool chain (Fig. 4) developed at the Institute of Control
Engineering. This MATLAB/Simulink tool chain was
implemented to perform early tests of vehicle control
algorithms on a 1:5 model vehicle (MAX) in order to
allow for safe testing, before moving to full-scale valida-
tion (MOBILE).

Idea

Simulation
(MATLAB / Simulink)

1:5 Scale
Verification

Full Scale
Verification

Fig. 4. Tool-chain with vehicles MOBILE (left) and MAX (right)

Both vehicles are equipped with the same ECUs and
feature a FlexRay communication backbone as well as
CAN bus connections for communication with sensors
and actuators. Regarding the actuator topology, both
vehicles are equipped with four close-to-wheel drives
and four individually steerable wheels. For further de-
tails about the drive train and network topologies, refer
to [14]. Regarding the actuator topology, model based
control strategies can serve as a tool for efficient vehicle
dynamics control e.g. by utilizing torque vectoring or



force allocation approaches. Moreover, functional redun-
dancies can be synthesized e.g. by utilizing single wheel
steering and recuperation to generate additional brake
force, if the brake system is only available with degraded
functionality. In addition, the full-scale vehicle MOBILE
is equipped with a set of LiDAR Sensors (2× Velodyne
VLP-16 PUCK and a Velodyne HDL-32) for basic envi-
ronment perception.

For exploiting the vehicle’s capabilities even under
ordinary driving conditions, coordination between ac-
tuators needs to be performed as the driver’s input
capabilities are limited. E.g. for steering, the driver can
only command a single steering angle δ at the steering
wheel, while the wheels are steered with a front (δf ) and
a rear steering angle (δr). By coordinating rear and front
steering, the turn radius of the vehicle can be modified
depending on the actual driving scenario. On the one
hand, a smaller turn radius can be realized by counter
steering (e.g. δf = −δr), thus creating higher yaw rates
and making the vehicle more agile, for instance when
parking. On the other hand, a larger turn radius, or even
parallel steering (e.g. δf = δr) can be used at higher
velocities to increase driving comfort for the passengers.

Our proposed MPC framework shall be able to per-
form the above mentioned coordination between rear-
and front axle steering, as well as the enforcement of
constraints derived from self-representation as described
in Section III in a static and unstructured vehicle en-
vironment. For this purpose, we focus on the example
of lateral planning, such that constraints regarding the
ability to steer the vehicle will be reflected in terms of
available steering angle and steering angle rate at the
front and rear axle. Additionally, as this paper shall
focus on the trajectory planning framework. We assume
that our system is provided with information about
the static environment and that information about the
maximal available steering angles can be derived from
self-representation. As a first step, the implementation
is evaluated in simulation. The vehicle model used for
simulation is a continuous time non-linear double track
model, while the MPC strategy is based on an LPV single
track model (equations 4, 5, and 7).

B. Implementation
In conformance with the proposed functional system

architecture, we propose a two staged approach: At the
guidance level (cf. Section III-B) an unambiguous refer-
ence path is extracted from the static environment, tak-
ing into account all static obstacles. Spatial constraints
which are required for performing actual MPC at the sta-
bilization level (cf. Section III-C) are transformed from a
vehicle relative cartesian frame to a Frenet frame along
the reference. Actual trajectory planning is performed at
the stabilization level in Frenet space.

1) Guidance Level: For reference path generation we
assume, that the static environment is represented by an
occupancy grid based. By extracting occupied as well as

α
s

initial position

initial orientation

Fig. 5. Penalty for vehicle’s orientation relative to first node
starting from initial position node

free space from this grid based representation we arrive at
a polygonal based description of impassable areas around
the vehicles.

In a first step, a visibility graph is constructed from
the polygonal environment utilizing [20]. This visibility
graph contains all polygon vertices as well as the start
and the goal point as nodes. The graph’s edges are
determined by connecting all nodes which are in line
of sight, to prevent edges going through an obstacle.
Weights for this edges are given by euclidean distance
s between two vertices.

In order to determine the shortest path through this
visibility graph, we use an A* approach [20]. However,
in order to not only consider the initial and terminal
position of the vehicle, but also the initial and terminal
orientation, additional edge weights have been defined
which are added to the initial weight s in the A* imple-
mentation. These weights wstart,end penalize the angle
αstart,end between the vehicle’s longitudinal axis and the
edges connected to the first/last node in the visibility
graph (cf. Fig. 5). The total cost C for traveling along
the respective edges is then modified to

C = s+ wstart,end · |αstart,end |. (1)

The resulting shortest path will be utilized as a reference
path and is represented by a polyline through the static
environment. In order to derive the spatial constraints
required for the MPC framework, a maximal and a
minimal deviation emax,min from the reference path are
defined and superimposed with the orthogonal distances
of the given polygon edges from the polyline (cf. Fig 6).

This way, linear spatial constraints for the static en-
vironment are generated for each sampling interval k in
the MPC framework.

k 0 1 2 3 4 5

e
(5)
max

e
(12)
min

6 7 8 9 10 11 12

Fig. 6. Definition of constraints in relation to reference path

Additional constraints to those already mentioned



(Section IV-A) which are generated at this level are
constraints for maximal side slip angle and maximal
yaw rate in order to influence overall driving behavior.
In our example, strategic decisions about optimization
weights relate to weighting front and rear axle steering
by formulating penalizing either high yaw rates (for more
side slip angle in the resulting trajectory) or high side slip
angle (for more yaw rate in the resulting trajectory).

2) Stabilization Level: The actual MPC for trajectory
generation is performed at the stabilization level imple-
mented with the MATLAB MPC Toolbox. As a first step,
we assume that an extended linearized single track model
with active rear steering is suitable to generate a basic
collision free lateral trajectory. I.e. we assume linear tire
dynamics as well as small side slip and heading angles.
For the required states we follow an approach presented
by Gutjahr and Werling [17]. Apart from the side slip
angle β and the vehicle’s yaw rate ψ̇, we introduce the
heading difference to the reference frame ∆ψ and lateral
deviation in Frenet coordinates e in order to describe the
motion of the vehicle. Thus, our state space vector x is:

x =
[
β ψ̇ ∆ψ e

]T (2)

Inputs to the model are front and rear steering angles
δf , δr, as well as a disturbance term ∆ψref to model the
trajectory’s curvature in the world frame (cf. Fig. 7).

v
ψ̇

δf

δr

reference

∆ψ

e

β

Fig. 7. Single track model

The resulting input vector u is

u = [δf δr ∆ψref ]T . (3)

By considering a linear parameter variant (LPV) single
track model with vehicle mass m and velocity v (v as
a time-variant parameter), the front and rear cornering
stiffness cα,f and cα,r, front and rear distance from the
vehicle’s center of gravity lf and lr as well as the moment
of inertia around the vehicle’s z-axis Jz, the resulting
system matrix A(v) and input matrix B(v) are given by

A(v) =


− cα,f+cα,r

m·v
cα,r·lr−cα,f ·lf

m·v2 − 1 0 0
− cα,f ·lf−cα,r·lr

Jz − cα,f ·l2f+cα,r·l2r
Jz·v 0 0

0 1 0 0
v 0 v 0


(4)

and

B(v) =


cα,f
m·f

cα,r
m·v 0

cα,f ·lf
Jz

cα,r·lr
Jz

0
0 0 −1
0 0 0

 . (5)

In order to check for collisions during MPC calculation, it
is not sufficient to impose optimization constraints on the
center of gravity of the vehicle, as this does not consider
the vehicle’s orientation. Hence, we do not only consider
the lateral distance of the vehicle’s center of gravity e,
but also the lateral distances of the vehicle’s front ef and
the vehicle’s rear er from the reference path, which are
given by

ef ,r = e± lf ,r · sin(∆ψ). (6)

By introducing the linearized distances in the measure-
ment matrix C, all required dimensions can be constraint
during optimization:

C =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 lf 1
0 0 −lr 1

 (7)

For applying the MPC scheme to the defined system,
we formulate a cost function as follows: The total cost
J(zk) for a given series of p future system inputs u at
the current control step k

zk
T =

[
u(k|k)T u(k + 1|k)T . . . u(k + p− 1|k)T

]
(8)

can be described as the sum of costs of depending on
the following properties (ny = dim(y), wyi,j weight for
output yj at prediction step i):
1) the weighted deviation of measured outputs y from
their given reference r

Jy(zk) =
ny∑
j=1

p∑
i=1

(
wyi,j [rj(k + i|k)− yj(k + i|k)]

)2
, (9)

2) the weighted deviation of calculated inputs u from
a targeted series of input vectors ut

Ju(zk) =
nu∑
j=1

p∑
i=1

(
wui,j [uj(k + i|k)− ut,j(k + i|k)]

)2
,

(10)
3) the weighted difference between input vectors in

subsequent time steps

J∆u(zk) =
n∆u∑
j=1

p∑
i=1

(
w∆u
i,j [uj(k + i|k)− uj(k + i− 1|k)]

)2
.

(11)
Combined, this yields the complete cost function

J(zk) = Jy(zk) + Ju(zk) + J∆u(zk). (12)

Please note, that slack variables are omitted for brevity
(please refer to [22] for further information).



In the actual implementation, we utilize the output
weights wyβ , w

y

ψ̇
, wy∆ψ, and wye for tracking the corre-

sponding output variables. Absolute front and rear steer-
ing angles and their corresponding rates are minimized
using the weights wuδf and wuδr as well as w∆u

δ̇f
and w∆u

δ̇r
The full optimization problem, including all con-

straints for states and inputs, results in solving

min(J(zk)) subject to

βmin(i) ≤ β(k + i|k) ≤ βmax(i)
ψ̇min(i) ≤ ψ̇(k + i|k) ≤ ψ̇max(i)
emin(i) ≤ e(k + i|k) ≤ emax(i)

ef,min(i) ≤ ef (k + i|k) ≤ ef,max(i)
er,min(i) ≤ er(k + i|k) ≤ er,max(i)
δf,min(i) ≤ δf (k + i|k) ≤ δf,max(i)
δr,min(i) ≤ δr(k + i|k) ≤ δr,max(i)
δ̇f,min(i) ≤ δ̇f (k + i|k) ≤ δ̇f,max(i)
δ̇r,min(i) ≤ δ̇r(k + i|k) ≤ δ̇r,max(i)

. (13)

As already stated, weights will be derived from the
tactical level, constraints can originate from either the
tactical or the stabilization level. Yet, as the stabilization
level is ideally immediately aware of sudden actuator
degradations (e.g. by residual fault diagnosis techniques
as proposed by Ding [23]), while it can take several hun-
dred milliseconds until the planning level is aware of such
degradations, constraints imposed at the stabilization
level need to possess higher priority compared to con-
straints imposed at the planning level. Regarding MPC
there are two drawbacks, which must be considered:
First, if MPC is used for actual control, the performance
is highly dependent of accurate models for predicting
model states. In addition, MPC can only adapt to new
parameters between two optimization cycles. As this can
take several ten to hundred milliseconds, this might be
to slow for sudden actuator failures. Thus we require
an underlying low level controller to be present for
performing actual trajectory following control.

C. Results
The following results have been obtained in simulation,

using a model of the research vehicle MAX to show
several scenarios for tactically chosen optimization pa-
rameters. For an exemplary parking scenario, the results
of trajectory generation and according steering angles are
shown in Fig. 8a. The LPV model has proven to deal with
slowly varying velocities during parking. The optimized
trajectory is plotted in green, the vehicle contour is
plotted in black. It can be stated, that no collision occurs
when following the calculated trajectory. Also, vehicle
heading is nearly zero for the final vehicle state in the
parking lot. The trajectory is based on a steering config-
uration using counter steering and common steering, to
achieve optimal results as shown in Fig. 8b.

Fig. 9a and Fig. 9b show the results of a trajectory
generation in an unstructured environment. In Fig. 9a,
the blue line segments depict the shortest path from start
to target point, the collision-free trajectory is shown in
green. Fig. 9b shows the calculated steering angles to
follow the generated trajectory. In this case, common
steering is applied for the whole trajectory, to minimize
yaw rate and thus increasing driving comfort. It can be
stated, that trajectories for a variety of scenarios can
be generated without changing optimization criteria. If
high maneuverability is required, a trajectory based on
counter steering is generated, otherwise common steering
is applied to increase driving comfort. This underlines the
generic character of the presented approach.

However, weight tuning can be applied if necessary.
Fig. 10 shows the effects of different weights applied
for the steering angles at front and rear axle when
planning a slalom maneuver. The blue lines result from
optimization if a high weight on rear axle steering is
applied. The tactical decision to choose a high weight for
one axle could be performed due to information from self-
representation modules to reduce wear on the actuators
of one axle. In case high weights are introduced for both
axles the resulting steering angles switch to continuous
counter steering, as this steering configuration requires
lower steering angles to complete the slalom maneuver.

The MPC framework runs with an average cycle time
of ca. 100 ms on an Intel Pentium G3450 (3.4 GHz) using
Mathworks’ Embedded Coder for code generation.

V. Conclusion & Future Research
In this paper, we presented an architectural approach

to MPC for path planning in autonomous vehicles. The
approach considers the tactical formulation and refor-
mulation of optimization parameters and constraints,
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Fig. 10. Influencing trajectory by tuning weights

based on self-assessment and feasibility information from
the MPC framework. The applicability of the chosen
approach has been demonstrated in a simulative set-up
for several planning scenarios.

Further research will focus on the integration of tire
dynamics (e.g. as proposed by Yi et al. [18]). Additionally
we will extend the implementation of the self-aware
MPC approach to vehicle dynamics control at the lower
stabilization level (e.g. brake-blending).

Eventually, the presented control concepts shall be
evaluated on the research platforms MOBILE and MAX.
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Fahrzeugführung in Sehenden (Semi-)Autonomen Fahrzeu-
gen,” dissertation, Univ. der Bundeswehr München, 2003.

[6] A. Reschka, “Fertigkeiten- und Fähigkeitengraphen als
Grundlage des sicheren Betriebs von automatisierten Fahrzeu-
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