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Abstract— Future advanced driver assistant systems put high
demands on the environmental perception especially in urban
environments. Today’s on-board sensors and on-board algo-
rithms still do not reach a satisfying level of development from
the point of view of robustness and availability. Thus, map data
is often used as an additional data input to support the on-board
sensor system and algorithms. The usage of map data requires
a highly correct pose within the map even in cases of positioning
errors by global navigation satellite systems or geometrical
errors in the map data. In this paper we propose and compare
two approaches for map-relative localization exclusively using a
lane-level map. These approaches deliberately avoid the usage
of detailed a priori maps containing point-landmarks, grids or
road-markings. Additionally, we propose a grid-based on-board
fusion of road-marking information and stationary obstacles
addressing the problem of missing or incomplete road-markings
in urban scenarios.

I. INTRODUCTION

The development of future advanced driver assistant sys-
tems (ADAS, e.g. an inner-city intersection assistant) and
autonomous vehicles points out the importance of an ex-
tensive scene representation for robust decision-making. A
central element of the scene representation is the course of
the lanes. Today’s perception systems are not able to detect
the lane markings and to estimate the course of the lanes in
urban scenarios with the required availability and robustness
[1]. Beside the research efforts in optimizing the sensor-
based perception of robots and vehicles, the possibility of
using a priori map data is often pursued. The usage of map
data leads to two advantages: The integration of map data
supports the perception system within the sensors’ field of
view on the one hand, and on the other hand it extends
the sensors’ field of view by adding information about the
surroundings outside the sensors’ field of view. For example,
it becomes possible to associate obstacles to lanes outside
the field of view of the lane detection system by the use of
map data. To do so, a highly accurate map-relative pose of
the host vehicle is required. Currently, such a pose cannot
be provided with a sufficient robustness and availability due
to geometrical errors in the map data and errors of the
GNSS1-based positioning systems in urban environments.
This problem can be solved by matching perceived stationary
structures of the environment with the known map data.
The host vehicle’s pose relative to the extracted stationary
structures is highly accurate due to the high-precision sensors
for environmental perception. In contrast the GPS-signal only
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gives a rough pose relative to the map. So, the matching
process would compensate both the errors in the map and the
error of the localization system up to a certain total error. The
availability of such an approach can be improved by using
not only road-marking information as stationary structures,
but also by including stationary obstacles in the matching
process. This enables the use of such a system even in smaller
inner-city streets without lane-markings. Furthermore, we do
not expect that highly accurate maps with point-landmarks
(posts, trees, etc.) or grid-based maps covering a large area
will be available for production vehicles in the near future.
That is why we focused our research on less detailed and
less accurate map data (lane-level maps) especially for the
use in ADAS but also for the use in autonomous vehicles.

II. RELATED WORK
Even though they are vulnerable to GNSS-issues and

geometrical errors in map data, some research projects just
use GNSS-based localization systems fused with the data
of an inertial-measurement unit (e.g. INS-DGPS system) to
locate the host vehicle in digital map data (e.g. [2], [3], [4]).

One possibility to become independent from these errors
is to match environmental features with map data. This can
be done in three different ways:

1) Abstracting the incoming sensor data by model assump-
tions until they reach the same representation level as
the map data.

2) Concreting the map data by model assumptions until
the representation level of the sensor data is reached.

3) Striking a balance between the first two options.
An example for a complete abstraction of the incoming

data is given by [5]. They extract the topology of the road
from a grid-based representation and estimate the position of
the vehicle with a particle filter by matching the extracted
road topology with the topology stored in the map. Based on
the experiences of the DARPA Urban Challenge an approach
matching the lane-center-lines is proposed in [6]. The lane
centers and the position of stop-lines are detected by vision.
The vehicle’s map-relative position is estimated using a
particle filter as well.

The other way round, the concreting of the map data, is
proposed e.g. by [7, p. 42 ff] and [8]. In these publications
the marker-prior is defined by an estimation based on the
RNDF map data and matched with the raw laser-response.
As the matching-process is only done on the rear axis of
the vehicle, only the lateral position error can be compen-
sated. Errors in orientation and longitudinal direction persist.
Furthermore, an interpretation of the perceived features is
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required. Another approach in this category is published in
[9]. This approach estimates the model parameter (road-
width) as well as the pose in the map by a particle-filter.
Similar to the approach in [7, p. 42 ff] high intensities at the
borders of the road and low intensities at the road center are
expected. The matching process is done at several positions
along a road section directly with a grid-based representation
of radar intensities. A very similar approach is presented in
[10].

An approach where the incoming data is abstracted as
well as the map data is concreted is presented in [11]. In
this matching process the boundaries are extracted from
an occupancy grid and then matched with the boundaries
derived from map data.

Other approaches like [12] or [7, p. 15ff] use more detailed
map data (landmarks or grids) and thus work on another
abstraction level of the features (not lane-course).

III. GRID FUSION AND FEATURE EXTRACTION

For the two localization approaches presented here we
use two different environmental features: the street- and
building-lines to approve the host vehicle’s heading on the
one hand and on the other hand the center-lines of the lanes to
additionally support the host vehicle’s lateral position within
the lane. Depending on the applied sensor it may be possible
that the lane-center-lines cannot be extracted. This is our
motivation for researching a less challenging approach (using
the street- and building-lines) which allows us to support the
host vehicle’s pose even with close-to-production sensors.

A. Grid for Ground Representation

We have two different ways of representing the ground
by a grid-based approach. The first one is similar to the
occupancy grid. This approach is presented by [13] and
also used in [14]. The incoming laser reflections classified
as ground-targets are accumulated in a Bayesian grid. This
allows us to collect data of the road markings even with
a close-to-production laser scanner which does not provide
sufficient data about the reflection’s intensity.

For filtering gray-scale values as well, we introduce a
second layer: the reflectance layer. This reflectance layer can
be filled by laser data (e.g.[7]) or camera data (e.g. [11]).
The reflectance layer accumulates the gray-scale values of
a laser-scanner or a gray-scale camera. We use a low-pass
filter to fuse the incoming data over time. Three different
representations are shown in Figure 1.

B. Fusion of Occupancy Grids and Ground Grids

In the current state of development we fuse two grid-based
representations into one single representation (see Figure 2).

The fusion is done on an abstracted representation of the
cell’s state. Each layer of the grid is converted by a threshold-
decision into the three states unknown, free and occupied.
We call this representation "tristate". This step makes it easy
to change the state vector of the original layer (e.g. from
reflectance value to occupancy value or from Bayesian repre-
sentation to a Dempster-Shafer representation). Additionally,

Fig. 1: Our two representations of the ground filled by
three sensors. Left: Occupancy grid filled by close-to-series
production laser-scanner. Center: Reflectance grid filled by
camera data. Right: Reflectance grid filled by Velodyne laser-
scanner.

only with this abstraction step it is possible to fuse different
state vectors of the grid (e.g. reflectance with occupancy) to
get a complete image of the stationary surroundings.

In the resulting fusion layer we can distinguish between
areas which are occupied by raised obstacles and areas which
are occupied by markings (see Figure 2).

C. Extraction of Street- and Building-Lines

The extraction of these two feature-types is based on our
approach presented in [14]. Due to fewer model assumptions
about the environment, the street- and building-lines are
more robust and have a higher availability than the extracted
center-lines of the lanes in urban scenarios. This is an
important fact concerning the availability of the localization
solution.

D. Extraction of Lane-Center-Lines

The extraction of the lane-center-lines is also based on
the free-space extraction presented in [14]. In comparison to
the extraction of the street- and building-lines some model-
assumptions have to be introduced for estimating the center-
lines of the lanes. First of all, the extracted free space
peaks of neighboring road elements are connected in the
same manner as the connections for the road boundaries
described in [14]. This leads to the green lines in Figure 3,
center. Additionally, we determine the typical lane width by a
histogram. Every extracted free space, which is significantly
wider than the typical lane width, is divided into several
lanes. Furthermore, interruptions of the free spaces by lane
markings (e.g. arrows) are compensated. The result of the
lane-center extraction is shown in Figure 3, right.

For localization purposes this extraction needs not to be
complete. Only a sufficient length has to be extracted. This
is a big difference to approaches for scene estimation and
lateral controlling where 100% are required.
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Fig. 2: Processing-Steps for grid fusion. In this case a
Velodyne laser-scanner is used.

Fig. 3: Extraction of the features. Left: Fused grid, center:
extracted features, right: modeled features. Street-lines by
lane markings (white), building-line (red), center-lines of the
lanes (gray), connected free spaces (green).

IV. LOCALIZATION IN LANE-LEVEL MAPS

A. Requirements

The requirements of a localization solution should be
derived from the specific application. A very challenging
example is an intersection assistant as known from the EU-
projects Intersafe22 or GENEVA3. The intersection assistant
warns the driver in a case of an impending collision with
oncoming traffic. The knowledge about the correct lane of
the oncoming vehicle helps to reduce the false-alarm rate

2http://cordis.europa.eu/projects/rcn/87267_en.html
3http://www.geneva-fp7.eu

[15]. This approach of estimating the intention of the other
driver is an alternative to a C2C-communication or vision-
based direction indicator detection. On this assumption, the
system must be able to associate the detected object with the
correct lane at a distance d of about 60 m. This requires a
maximum localization error of the object Errobj within the
map of half a lane width (about 1.5 m).

ΨErr
latErr objErr

d

Fig. 4: Illustration of the relation between d, Errobj , Errlat,
and Errψ .

Neglecting the longitudinal error within the lane of the
host vehicle’s pose in the map, Equation 1 gives the calcu-
lation rule for the allowed heading error ErrΨ in the case
of a given lateral position error Errlat based on Figure 4:

ErrΨ = arctan

(
Errobj � Errlat

d

)
(1)

Assuming an error in lateral position of the host vehicle
of Errlat = 0.75 m we obtain a maximum allowed heading
error of the host vehicle of 0, 7◦ to ensure a localization of an
object at a distance of d = 60 m better than Errobj = 1.5 m.
Uncertainties of the environmental perception are neglected
for this rough estimation.

B. Lane-Matching with Heading Correction

In [16] the estimated global pose is supported by the
orientation of the current road under the assumption that the
car is oriented in parallel to the road. In addition to the
approach of [16] we try to weaken the road-constraint (or
more precisely "lane-constraint" in our case) by introducing
step by step environmental data obtained by on-board sen-
sors. In this first step we replace the heading-constraint by a
matching process of the perceived street lines and building
lines with the direction of the lanes stored in the map, as
already published in [17].

Due to the matching of the perceived environment with
the map data it is possible to directly estimate the vehicle’s
heading Ψest in the map. So, it is also possible to adapt the
structure of the filtering process to these favorable conditions.
In our approach, the coupling between heading and position
is only allowed in one direction. We explicitly avoid a
feedback from the change in position of (xmatch, ymatch)
to the heading. That is why discontinuities in position
(xmatch, ymatch) do not have any influence on the vehicle’s
heading and we can provide a robust map-relative motion-
vector with the velocity v and heading Ψest which can
be converted to Cartesian changes in position (∆x,∆y). A
possible solution for such a filter is shown in Figure 5.
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Fig. 5: Filter architecture for a map-relative pose estimation
supported by an estimation of the map-relative heading Ψest

based on [17]. The map-relative heading Ψmatch is derived
from a matching-process of map data and environmental fea-
tures. The position (xmatch, ymatch) is derived by matching
the GPS-position to the lane-level map ("lane-constraint").

The vehicle’s map-relative heading Ψest is estimated with
a Kalman-Filter. We use the yaw rate Ψ̇ of the the vehi-
cle’s motion estimation to support the map-relative heading
estimation via the control input of the Kalman-Filter. The
variance varΨ of the map-relative heading Ψmatch is deter-
mined by the statistical analysis of the numerous matchings
of each single street- and building-line extracted from the
grid (see Figure 6).
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Fig. 6: Left: Gaussian approximation of the heading’s devi-
ation. Right: Matching process (black) of each line segment.
We neglected the associations of the stationary obstacles
(red) for better visualization. [17]

The estimated heading Ψest is used to determine together
with the vehicle’s velocity v the incremental way lengths
(∆x,∆y). These way lengths support the vehicle’s map-
relative position estimation via the control input of the filter-
ing process. The position (xmatch, ymatch) is derived from
the GPS-position which is corrected by an estimated lateral
bias. The lateral bias is determined based on a geometric
lane-matching process with a "lane-constraint" equivalent to
the known map-matching process with the "road-constraint".
As we cannot derive any reasonable variance of the position
from the matching process, we define some fixed values. The

values for the variances are chosen in a way that the map-
relative position follows the GPS-position along the lane
and that the lane-relative lateral position is mainly estimated
based on the driven way length (∆x,∆y). In so doing the
"lane-constraint" is weakened again. To achieve this behavior
we have to define a small variance in x-direction and a high
variance in y-direction relative to the host vehicle, which we
transform to an equivalent covariance-matrix in map-relative
coordinates.

Only the heading Ψest of the estimated map-relative
pose (xest, yest,Ψest) is completely decoupled from GPS.
In longitudinal direction along the road the GPS-signal is
dominant and prevents the position from long-time drift. In
the lateral direction to the road we have the bias-estimation
which reacts on smooth GPS-drifts and map errors. Because
we mainly follow the motion-vector in the map, we do not
follow each GPS-jump in lateral direction to the road.

C. Pose Estimation with an Extended Kalman Filter

In addition to the heading correction in the last section we
propose an approach for pose estimation with an Extended
Kalman Filter (EKF). Figure 7 shows the architecture of the
estimation. The estimation process consists of three steps
which are explained in the following section.

Pose 
Estimation

Map-
Matching

Data 
Migration

Features

GPS

Map

Odometry &
Inertial Sensors

),,,,( vyx  

),,( yx ),,( yx

),( v

Fig. 7: Architecture for pose estimation with EKF based on
lane-center-lines.

The map-matching uses a GPS-pose, the lane-level map,
and lane-center-lines extracted e.g. from the grid, as men-
tioned in section III-D, or directly from a camera image.
The result of the matching process is a map-relative pose
(x, y,Ψ). Once an initial guess of the vehicle’s map-relative
pose is calculated by a topological map-matching as de-
scribed in [18], we can extract the surrounding lane-center-
lines from the map and transform them into a vehicle-
referenced coordinate system. For calculating the homoge-
nous transformation between the lane-center-lines from the
grid and the lane-center-lines from the map we use the
iterative closest point (ICP) algorithm, which is introduced
in [19]. The variances for (x, y,Ψ) are derived from the ICP-
process and are calculated by the mean-square-error between
the corresponding points in the extracted features.

Figure 8 shows the ICP-processing-step. The extracted
lane-center-lines from the grid (green) are used as the point-
cloud which has to be transformed according to the course
of the lane-center-lines extracted from the map (red). The
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Fig. 8: Result of the matching process using lane-center-
lines. Yellow lines: map data, orange dot: GPS-position,
green dot: reference-position, car: estimated pose, gray box:
lane-matched position.

result of the calculated transformation is shown in cyan and
illustrated by the car in Figure 8. With this transformation
we can correct the pose of the host vehicle (orange dot, see
Figure 8). The longitudinal information of the pose can be
determined if the car is near to curves or crossings because
in these scenarios there is only one consistent result of the
ICP-transformation.

Due to failures in the matching-process or in the
extraction-process of the lane-center-lines the ICP cannot
determine the correct pose at every time step. To compensate
this lack of consistency we additionally filter the estimated
pose in an Extended Kalman Filter. The state space of this
EKF is described by ~x = (x, y,Ψ, Ψ̇, Ψ̈, v, a)T . This model
extends the Constant Turn Rate and Acceleration (CRTA)
model from [20] by the second derivation of the heading
Ψ̈. The extension is needed to smooth the turn-rate signal
implicitly in the filter-structure without any pre-processing.
With this state-space-model it is possible to fuse the ICP-
based pose estimation in the map with the vehicle´s motion
sensors based on a gyroscope and the velocity-signal. The
measurement vector ~z = (x, y,Ψ, Ψ̇, v)T is calculated in the
Data Migration block shown in Figure 7. This filter inte-
grates the measurements from the gyroscope and calculates
the average speed over the last samples. As soon as a new
pose estimation from the Map Matching is calculated the
turn-rate is calculated from the integrated angle and the time
period since the last match result. The variances of (Ψ̇, v) are
derived from sensor-specifications and exemplary test-drives
with referencing sensors.

V. RESULTS

Our test vehicle is equipped with close-to-production
sensors and a referencing system. We have a laser-scanner
with 4 scan layers and about 140◦ field of view mounted at
the front of the vehicle at about 30 cm above the ground and a
camera for lane-detection. For the global localization we use
a standard Novatel receiver without any inertial support. The
motion of the car is obtained from series sensors. A RT3k
(INS-DGPS system from Oxford) and a manually created
highly accurate map with lane-level information are used
for referencing. The map data provides continuous curves
for referencing purpose. The test course is about 3 km of

an inner-city main road. The test sequence includes several
lane changes, other cars and red traffic lights where the car
stopped.

A. Evaluation of the Heading Correction

The heading correction approach is only based on the
measurements of the laser-scanner. We do not use the camera
data.

The applied close-to-series production laser-scanner does
not provide sufficient features concerning the reflectivity of
the laser-reflections for lane-marking detection. But the laser-
scanner mainly detects ground targets on road-markings.
Therefore, we use another occupancy-grid for the ground-
targets in this case. Due to the fusion on the more abstract
"tristate" representation of the grids, the different grid type
induces no changes on the further processing in comparison
to the introduced reflectance grid. The algorithms run in real-
time on a standard PC (Intel Core i5 processor) including the
grid-based processing. The processing result is illustrated in
Figure 9.

Fig. 9: Matching-process exclusively using the heading in-
formation and a bias-estimation based on a lane-matching
to weaken the lane-constraint. In this case we only used a
close-to-series production laser-scanner. Left: extraction of
the road course. Occupancy Grid in the background. White
lines: markings and curbs, red lines: raised obstacles. Right:
Matching to the lane-level map data. Green dots: Position
of the referencing system. Gray box: Result of the lane-
matching for bias-estimation (erroneous here). Car: estimated
map-relative pose. [17]

We did four different analyses:
1) the pure GPS-signal
2) the pure lane-matched position
3) the GPS-signal supported by heading information and

bias-corrected GPS-position and
4) the GPS-Signal supported by heading information and

map-matching and extensive simulated GPS-outages (up
to 94% of the driven way length)
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A comparison to an ego-motion supported GPS-position
does not make sense due to the drift in combination with
long GPS-outages. The values of interest for the application
are the vehicle’s heading and the vehicle’s lateral position
within the lane. Furthermore, we need a statement about the
availability of the position at lane-level precision of an object
at a distance of 60 m which must have an error smaller
than 1.5 m. The resulting availabilities are shown in Table
I. The characteristics of the lateral and angular errors of this
heading-supported approach are shown in Figures 10 and 11.

Pure
GPS

Lane-
Matching

Map-
Matching

Map-
Matching

without GPS-outages with GPS-
outages

Heading
err.< 0.7◦

79.1% 69.1% 83.7% 83.9%

Lat.
err.<0.75m

7.9% 77.8% 72.3% 67.3%

error of
object in
60m<1.5m

41.3% 75.3% 81.2% 74.5%

TABLE I: Resulting availabilities of the heading supported
pose estimation. Percentages are relative to the driven way
length. We had GPS-outages on 94% of the course.

B. Evaluation of the EKF-Pose Estimation
The EKF-based pose estimation was tested under real

conditions on the mentioned test course and the algorithms
fulfill the real-time conditions on a standard PC, too. In this
case we only compared the results to those of the heading-
supported localization. Table II shows the results according
to the availabilities. The availability of a precise heading
nearly equals the result of the heading-supported approach.
Additionally, we can significantly improve the availability of
a sufficient localization for objects at a distance of 60 m due
to a significant improvement of the lateral position of the
host vehicle. The characteristics of the lateral and angular
errors of this ICP-EKF-based approach are also shown in
Figures 10 and 11.

Heading-sup.
map-

matching

ICP-
Matching
with EKF

Heading err.< 0.7◦ 83.7% 82.1%
Lat. err.<0.75m 72.3% 97.7%
error of object in
60m <1.5m

81.2% 95.9%

TABLE II: Results of the ICP-matching of the lane-center-
lines in comparison to the heading supported pose estimation.
Percentages are relative to the driven way length.

VI. CONCLUSION AND FUTURE WORK

The experiments with real sensor data show that with
our modular approach we can improve the availability of
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Fig. 10: Boxplot of the lateral error. Both approaches pre-
sented in this paper can reduce the lateral offset of the GPS-
position. Due to the explicit matching of the center lines the
ICP-EKF-approach outperforms the heading-supported map-
matching significantly. The outliers are caused by failures in
the lane-association due to a significant lateral offset of the
GPS-signal.
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Fig. 11: Boxplot of the angular error. For better visualization
we neglected the occurrence of a 180◦-error within the GPS-
signal. The heading-supported map-matching can reduce the
error of the heading. Even in this case the ICP-EKF-solution
outperforms the heading supported matching due to a more
robust data-input (stabilized center lines).

a correct host vehicle’s heading using lane-level map data
and a close-to-series production laser-scanner in comparison
to the pure GPS-heading and the heading from a lane-
matching approach. This helps us to provide a correct map-
relative pose even having extensive GPS-outages whereas a
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pose estimation only based on dead-reckoning with close-to-
production sensors drifts away after a short period. As we
drove – apart from some lane-changes – in the lane center
and fulfilled the "lane-constraint", the position of the lane-
matching results in a good availability.

In both cases, the lane-matching and the map-relative pose
estimation with environmental features, the availability of a
correct lane-association of detected objects at a distance of
60 m could be improved in comparison to the pure low-cost
GPS. The robustness of our matching approach is founded
in the very low requirements on the interpretation as well as
the high amount of the environmental features, which have
a high availability in inner-city scenarios. But it becomes
also clear that the improvement of an overall map-relative
pose is limited using these low-level features together with
lane-level maps.

The second approach, matching the lane-center-lines and
estimating the entire pose in an Extended Kalman Filter only,
annuls the "lane-constraint" completely. The main advantage
is (assumed lane-changes can be detected in the sensor data)
that we can make lane-changes in the map plausible and
are thus more robust against spontaneous failures in the
lane-association. But the problem of finding the correct lane
remains as long as we are not able to completely detect the
entire road. Even a highly accurate GNSS-based position
does not help if we assume the map data to have absolute
errors of up to 2-3 m.

In our future work we will therefore enforce the detection
of the road network on the one hand, and on the other
hand we will apply the particle filter as a filter technique
addressing the multi-modality of our problem.
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