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Abstract— The Stadtpilot project aims at fully automated
driving on Braunschweig’s inner city ring road. The TU
Braunschweig’s research vehicle Leonie is one of the first
vehicles having the ability of fully automated driving in real
urban traffic scenarios. In this paper, we present our ap-
proaches for context representation and environment modeling
for automated driving. The demonstrated approach allows to
provide a simple and yet universal information storage layer for
the development of complex driving applications. Moreover, we
present our approach for aggregating and fusing information
between dynamic traffic objects detected by the sensor systems
and a-priori map information.

I. INTRODUCTION
During the last 20 years the driving abilities of automated

vehicles have progressed rapidly. Particularly the DARPA
Grand Challenges put automated driving into the focus of
many research teams around the world. After a successful
participation in the DARPA Urban Challenge in 2007 [1], the
TU Braunschweig continued its effort in the automated driv-
ing field with the Stadtpilot project. The goal of the Stadtpilot
project is to drive fully automated on Braunschweig’s inner
city circular ring road. First accomplishments of fully auto-
mated driving in heavy inner city traffic have successfully
been demonstrated to the public already [2]. In this paper,
we present our approaches for context representation and
environment modeling. Our goal is to combine all kinds
of information from environment perception modules and
an a-priori map into an aggregated graph representation to
serve following driving functions as an information base for
behavior decision making. So far our team used a very simple
context model representing the ego vehicle’s environment
by a two-parallel-lanes model only consisting of the ego
lane and a neighbor lane, either on the left or on the right.
Our former context model was not able to provide detailed
information about intersections, sidewalks, bike lanes and
similar complex situations. Although being very simple it
was sufficient for driving the show case maneuver in [3] with
a -to some extend- limited situation awareness. Nevertheless,
for more foresight in fully automated driving, it is necessary
to facilitate a more sophisticated context model. E.g., if a
crosswalk is represented in the context model, tactical driving
behavior planning algorithms can consider a pedestrian,
which is about to cross the road at the crosswalk, even if
he is still on the sidewalk and has not yet entered the road.
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The main contribution of this paper is to present a more
sophisticated context model for complex, urban driving situ-
ations as in figure 1 or 9 compared to those typically being
used in the assisted driving field for less complex traffic
situations. Moreover, we present an efficient algorithm for
dynamic traffic object to a-priori map matching. It allows
matching objects at complex intersections accurately and
works well for narrow/off-centered objects like bicycles.

Fig. 1. Abstract graph-based context representation with approximated lane
boundaries [red/green], Delaunay triangles [grey] and sensor object points

This paper is structured as follows: First of all, we
introduce the reader to the problem of context modeling. We
present different general approaches for context modeling
and point out different relationships between context entities
and layers of information. In section III, we discuss a graph
based context representation approach to accommodate any
of those information and relationships. Section IV shows
our approach for information fusion and aggregation. In-
formation of dynamic objects and lane segment locations
are aggregated into abstract information like the distance to
the next vehicle on the ego lane. Section V provides an
evaluation of the algorithms being presented in this paper.
The evaluation is particularly focusing on the information
aggregation step since the other steps are hard to evaluate
quantitatively, except from proving their general feasibility
for complex environments.

II. BACKGROUND

According to Brown [4], context is ”a combination of
elements of the user’s environment which the computer
knows about.” In the field of automated driving the word
”user” needs to be replaced with the automated vehicle
itself. Different approaches have been proposed for context
modeling, see [5], [6] and [7] for a detailed discussion.

Several concepts have been used for object based context
representation. Most of them are not clearly distinguishable
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Fig. 2. Context model as a part of a simplified system architecture, based on
Matthaei [8]. Modules incorporating the described context model in yellow

and share certain aspects and features with other meth-
ods. Among them are logic based and world modeling
approaches.

A general approach is to use (first order) logic as a
language to describe the information about the environment
presented, e.g., by Russell et al. [9]. Here the information
is stored in a set of first order logic clauses. This allows
reasoning in the domain, but typically tends to limit the
possible domain complexity.

A second approach is sometimes referred as a ”world
model” approach. It is similar to a graph representation of
the automated vehicle’s environment. Concepts (abstract or
physical objects) are linked by relationships. Among those
relationships there could be geo-spatial relationships like
proximity or ontological relationships like ”A is a subtype
of B.” Gheta et al. [10] provide more details. A world
model can be seen as an instantiated (or: grounded) semantic
network. All in all, it aligns very well with the object oriented
programming paradigm in C++.

Maurer [11] and Rieder [12] (both from University of the
German Federal Armed Forces, Munich) use a scene tree
as a representation of context for those aspects discussed in
this paper. Every node in a scene tree is a physical entity
in the ego vehicle’s environment or part of the ego vehicle,
e.g., a sensor. Every branch in a scene tree represents a geo-
spacial relationship and can be modeled by a homogeneous
transformation. If another vehicle is detected by several
redundant sensors, e.g., by a vehicle’s sensor and a camera
mounted on a traffic light, the scene tree no longer stays
a tree but rather turns into a scene graph because every
node might have several parent nodes. If a scene graph
also contains semantic relationships between entities and the
meaning of those entities for the ego vehicle like mentioned
by Maurer [13, p. 63] the line between a pure geo-spatial
scene tree and other world modeling approaches is blurred.

A formal representation of the crucial domain knowledge
is also called an ontology. Ontologies are used to specify
concepts and interrelations. ”An ontology is a specification of
a conceptualization. [. . . ] A conceptualization is an abstract,
simplified view of the world that we wish to represent for
some purpose” [14]. Feld and Müller [15] developed an on-

tology for advanced driver assistance systems. They focused
particularly on human-machine-interfacing and inter-vehicle
information exchange. Vacek [16] developed an ontology for
an automated vehicle. He based his ontology on the Ontology
Web Language (OWL) standard.

Knaup and Homeier [17] developed a graph based environ-
ment model for driver assistance systems for intersections.
They based their infrastructure model on standard maps
for navigation systems. Papp et al. [18] presented a ”local
dynamic map” as an object oriented context model serving
as an abstraction layer between data acquisition and high-
level behavioral functions for cooperation between different
vehicles. Schlenoff et al. [19] proposed a central ”knowledge
base” and presented a multi-resolution approach for infras-
tructure information representation and evaluated an object
prediction algorithm being based on that with some simulated
data.

Galindo et al. [20] and Oberlander et al. [21] grouped con-
text modeling approaches, in particular mapping approaches
into metrical, topological and semantic representations. A
metric representation subsumes aspects of measurable dis-
tances, lengths and sizes and is closely related to the physical
measurements being made by the sensor systems. A plain
scene tree is a commonly used method for representing
such metrical relationships. However, more abstract context
representations exist. Among them are topological and se-
mantic levels. The topological level describes the connections
between entities, e.g., like a road network of a city in
a traditional road map or even how lane segments are
linked together in an intersection. The semantic describes
the relationships between entities. Being connected is one of
them. However, it subsumes more abstract relationships like
”Is On” or even ”Will be on”. Regele [22] developed a hier-
archical world model for complex traffic and infrastructure
scenarios, in which lane segments are linked by conflict-,
neighboring-, opposing- or successor-relationships.

A central aspect for infrastructure context modeling is the
coordinate system being used. Lane detection and tracking
algorithms for driving on highways are typically performed
in an ego-relative world and use some kind of iterative
clothoid model or parabolic function fitting, e.g., with
Kalman filters, see McCall et al. [23] for a detailed survey.
These context modeling approaches assume small heading
angles between the automated vehicle and the lane being
driven on, low curvature rates of the road network and a
relatively short model fitting span. While this holds true for
most driving situations, it is a severe limitation for dense
urban areas with complex road geometries and intersections.
To address these limitations, Gregor et al. [24], [25, p.
51] introduced a second, not ego-relative but geo-stationary
context model for representing an a-priori infrastructure map
as a part of the scene tree. Manz et al. [26] developed a lane
tracking and infrastructure context modeling framework in a
geo-stationary world for rural terrain. In both publications,
each arm of an intersection is modeled by a geo-stationary
clothoid segment. In Manz et al. there was no need to model
each intersection arm by a series of several clothoid segments



(spline) because the lane segment length that was to be
modeled was rather short as it was limited by the rather
short field of view of a lane tracking camera system.

Reyher [27, pp. 93] used an arc to model a lane segment
and used the distance to the lane segment center line and an
estimated, but over its length constant, lane width from an
online lane tracking for an object-to-lane-matching. Rieder
[12, p. 91] used the distance to the clothoid modeled lane
segment center line and a linearly increasing/decreasing lane
width for an object-to-lane-matching. In both publications,
we did not find any description of an object-to-a-priori-map-
matching algorithm. Homeier and Wolf [28] presented an
approach for object-to-a-priori-map-matching. They assumed
the width of a lane segment to be constant over its length.
Hence, they based their object to lane association method on
the distance to the center of a lane segment.

III. GRAPH BASED INFORMATION
REPRESENTATION

In order to make coherent decisions, information needs
to be collected and aggregated as in figure 2. This sec-
tion presents our approach to represent static infrastruc-
ture information, dynamic environment information and the
automated vehicle’s ego information. Combining all those
information results in a scene representation of the current
local environment and a self representation for the state of
the automated vehicle itself. However, for automated driving
such a mission-independent scene needs to be augmented by
mission specific context information (cp. figure 2) like the
planned route or planned, future actions, e.g., lane changes
or parking maneuvers.

Thing
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Fig. 3. Proposed ontology for an automated vehicle’s context model

Figure 3 shows the developed ontology. Similar to the
OWL standard, we use a central root element ”thing” with
several child objects for physical objects like the ego vehicle
itself, other traffic objects and all kinds of infrastructure
objects. Moreover, we use constraints to represent, e.g.,
traffic rules or assumed dynamic models and general (logical)
attributes on different hierarchical levels. Last of all, it is
possible to incorporate situation specific information in the
context model, to represent information about the planned
route and planned actions. As introduced in the last section,
we propose a hybrid approach of different, hierarchical
information layers as shown in figure 4. On a high level,
only topological attributes and relationships are used, on

lower levels semantic and metric information will be used
for specific driving tasks.
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Fig. 4. Metrical, topological and semantic representation of information in
the proposed context model. (a) indicates geo-spatial distances of reflectance
points and lane markings. (b) shows topological relationships between lane
segments at an intersection. (c) illustrates a semantic layer of information.
(d) illustrates the overall hybrid context model containing all the individual
information layers. The semantic layer is hidden in (d) for readability

Figure 5 illustrates our implementation of our world
model context representation approach. It shows several
different kinds of information nodes. Among the nodes
for infrastructure representation are lane segments itself,
lane boundaries linking two neighbor lane segments in the
traversal direction toward each other and waypoints linking
lane segments longitudinally together. Each object may have
additional attributes to provide a more accurate description
of the object. These attributes could contain information,
e.g., if a lane boundary is allowed to be crossed, the speed
limit of a lane segment, etc. Likewise, occupancy grid
information is extracted and linked to lane segments with
an ”Is Drivable”-attribute. The arrows indicate relationships
among the objects/nodes; they allow to traverse to any node
from every other node. We follow the idea of Manz et
al. [26] and use a similar geo-stationary approach for a-
priori infrastructure context modeling. However, since our
context model is not necessarily limited to the short field
of view of a lane tracking camera system, we use a series
of multiple short lane segments (spline) instead of a single
clothoid representation. Instead of doing the rather complex
approximation of a clothoid’s integral, we use a simple
polynomial spline function for lane modeling.

IV. INFORMATION AGGREGATION

In this section, we describe our approach for information
aggregation. Information aggregation subsumes all aspects to
compile sensor data, infrastructure information or any other
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Fig. 5. Example of the implementation for a context model of a simple
traffic situation on a straight road of two parallel lane segments

kind of information into the ”context model.” More specif-
ically, this includes integrating static infrastructure informa-
tion like traffic lights, or conflicts between lane segments
and combining dynamic environment information from the
sensor systems with the a-priori infrastructure information.

In this paper, the authors focus on combining dynamic en-
vironment information and static infrastructure information.
Dynamic environment information is essentially a vector
of points representing a dynamic traffic object (other cars,
cyclists, pedestrians, etc.). These need to be located on
the lane segments. For simple traffic situations, e.g., on
a highway, this essentially boils down to locating those
object related points on the ego or neighbor lane segments’
polygons. However, at complex intersections this task is far
more complicated, because thousands of those point-in-lane-
segment operations are needed per second. Parked objects at
the side need to be accurately distinguished from objects on
the lane, while narrow objects outside the center of the lane
like bicycles must not be missed.

dmin

dmin

(a) (b) (c) (d) (e)

Fig. 6. Visualization of the spline approximation for lane boundaries

To achieve this data processing rate, some computational
ploys need to be exploited: First of all the lane segment
polygons are approximated by a Ramer-Douglas-Peucker
(DP) approximation [29], [30] as illustrated in figure 6.
The original piecewise linear polygon of the lane segment’s
boundaries is separated into the polygon of the left and right
lane segment boundary (a). Starting from the two maximally
separated vertices (b), the additional vertices are iteratively

added to the approximated polygon (c)-(e) until the approxi-
mation is closer to the initial polygon than a threshold dmin.
dmin = 0.1m was used for our implementation. It is a viable
compromise between geometric accuracy and computation
speed.

(a) (d)(b) (c)

Fig. 7. (a) Approximated lane segment, (b) circumcircles of the triangles
that fulfill the properties for a Delaunay triangulation, (c) Delaunay tri-
angulation, (d) bounding box [red] and minimum area bounding rectangle
[green] of the black triangle

As a next step, bounding boxes and minimal area bound-
ing rectangles are calculated for every lane segment as a
whole. It helps to avoid wasting time by trying to locate
a point on a lane segment physically far away from the
point’s location. As a last step, the Delaunay triangulation
[31] of every lane segment is calculated to decomposition
the point-in-polygon problem into faster to solve point-in-
triangle problems. The Delaunay triangulation is a commonly
used method in computational geometry to decomposition an
abstract shape into atomic, simple shapes, called simplices.
For a set of points P ∈ R2 these simplices are triangles.
The Delaunay triangulation DT (P ) is a triangulation that
fulfills the property that the circumcircle of each triangle
contains no other points of the input set of points P . DT (P )
maximizes the minimum angle, of all the triangles’ angles,
in the triangulation. This tends to avoid ”skinny” (=long and
thin) triangles. Figure 7 illustrates the Delaunay triangulation
for the lane segment from figure 6. Figure 7 shows the
Delaunay triangulation, bounding boxes and minimum area
bounding rectangles for a part of the road infrastructure in
Braunschweig. Figure 8 illustrates the four steps of the point-
in-lane-segment algorithm. First of all, it is checked if a point
is within the light blue bounding box of the lane segment.
E.g., in case of P1 it is not necessary to proceed with further
analysis. Nevertheless, further analysis is necessary for ob-
jects at the positions P2 till P4. As a next step, it is checked
if the points to be analyzed are located inside of the green
minimum area two dimensional bounding rectangle (P3, P4).
Many lane segments are almost rectangular, thus this is a
very good approximation, although it is computationally far
more expensive than a simple comparison of the x and y
coordinates for the point-in-bounding-box comparison. As a
third step, it is checked if a particular point is in any of
the Delaunay triangles’ bounding boxes of the lane segment.
This holds true for point P4 but not for point P3 for the
example in figure 8. For those points that are in one of the
triangles’ bounding boxes, it is finally checked if the point is
also inside of the particular Delaunay triangle. If this holds
true, the point is proven to be on the lane segment.

Further speedup could be achieved by utilizing the fact that
an object will only marginally move from the lane segments
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Fig. 8. Illustration of the steps for the point-on-lane-segment-algorithm.
Lane segment and its Delaunay triangulation [dotted lines], highlighted De-
launay triangle [red], bounding box of that triangle [blue], two dimensional
minimal area lane segment bounding rectangle [green] and lane segment
bounding box [light blue]

it was located on in the last iteration. However, since it
is already fast enough no additional efforts were made to
implement this idea.

V. EVALUATION

In this section, we evaluate the approaches being presented
so far. A direct quantitative evaluation of the context model
itself is hard to achieve. As a benchmark, figure 9 shows
our context model representing one of the most complex
intersections in Braunschweig. Table I presents a qualitative
evaluation. All kinds of information sources, e.g. traffic lights
with C2X-communication, or onboard sensor systems can be
integrated. The context model holds a detailed infrastructure
model and the algorithm in section IV allows to combine
dynamic traffic information and infrastructure information.
The skill and state representation for the ego-vehicle provides
basic vehicle information but is not yet able to provide
an abstract skill and ability model. The graph structure
allows to represent several, even contradicting semantical,
topological or metrical relationships between information
entities. Information quality and integrity can be represented
by attributes. Yet, a consistency checking and monitoring still
remains to be integrated. By avoiding the need for a sophis-
ticated database engine, logic solver or semantic reasoner,
information access is only limited by the RAM access delays
and thus sufficiently fast for real time information access.

TABLE I
QUALITATIVE EVALUATION FOR CONTEXT MODELING APPROACH

Requirements Assess-
ment

Handling of heterogeneous information sources ++
Representation of behavior relevant information

Infrastructure-related ++
Dynamic traffic environment-related +
Ego-Vehicle-related +

Representation of context relationships between information
nodes ++

Context information quality and integrity representation +
Context consistency representation and monitoring o
Real time information access ++

We did a more quantitative evaluation for our algorithm
to locate objects on lane segments for automated driving on
a stretch of Braunschweig’s inner city ring road in figure

Fig. 9. Lane network for a complex intersection

10. The chosen approach is capable to be used for real-
time driving applications. The road/lane segment network
graph for Braunschweig in its current complexity consists of
1079 lane segments and fits easily into a standard computer’s
random access memory. All in all, the computational ploys
in section IV help to reduce the processing time by a lot.
We measured the necessary time for an average point-in-
lane-segment operation based on 230 million point-in-lane-
segment operations on Leonie’s Core2Quad-system from
2008. On average, such a point-in-lane-segment operation
takes 0.126 µs. This translates into on average to about 40ms
processing time for one update cycle. Hence, sufficiently fast
for a cycle time of 100ms, being decided as a tradeoff be-
tween the required update rate for the context representation
and the speed the automated vehicle’s environment typically
changes. For a typical urban environment the sensor data
fusion in its state at the time of writing will generate at
most up to about 50 objects around the automated vehicle.
On average, they consist of about 6 points and they are
sent with an update rate of about 10Hz. Hence, this proved
to be enough even for extremely complex road intersection
situations.

Fig. 10. Stretch of Braunschweig’s inner city ring road used for the
evaluation

A central aspect for locating objects on lane segments is
the fact that sensor systems produce several object hypothe-
ses for objects being part of the static infrastructure like
buildings, trees, street lamps, or fences. Figure 11 shows
that only a small fraction (< 7%) of all tracked object
hypotheses are actually on the ego lane segment/route and
thus viable to be handled with a state-of-the-art lane tracking
and object-to-lane-matching algorithm (at least if not being
narrow/off-centered like bicycles). More specifically it shows
the lateral distance of the center of the ego lane/planned
route to object’s point being closest to that center line. With
an update cycle of 100ms and a setup of two Ibeo Alasca
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XT LIDAR sensors to the front and one Ibeo Lux LIDAR
sensor to the rear [2], we had 2.37 ·105 object hypotheses to
be located on lane segments for the track in figure 10. 78% of
the object hypotheses are found in locations not being part
of the road network. Particularly many objects are found
in distances of about 3 meters. Many of those are parked
cars, fences and trees. Most objects with a lateral distance
offset of less than 1.5 meters are located on the ego lane.
They are particularly relevant for lateral distance keeping
and adaptive cruise control driving applications. However,
for lane changes and other more complex driving maneuvers,
it is also important to handle the blue marked objects that
are also on the road network but not on the ego lane.
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Fig. 12. Number of points for the different steps of the point-on-lane-
segment algorithm as a function of the lateral distance to the center line of
the specific lane segment

Figure 12 illustrates the lateral distance of sensor object
contour points not as a function of the distance to the center
of the ego lane but with the distance to the center of any
lane segment. It shows the fraction of sensor object points
being assumed to be located on the lane segment in the
different steps of the algorithm. As shown in figure 8, the
algorithm consists of four steps. The cumulated frequency
of all four curves in figure 12 represents the fraction of

sensor object contour points being inside of the bounding
box of any of the road network’s lane segments. The light
blue curve shows the fraction of objects being inside of the
lane segments’ bounding boxes but not being inside of any
of the lane segments rotated two-dimensional minimal area
bounding rectangles. Accordingly, the green curve indicates
the fraction of points being part of a lane segment’s rotated
bounding box but not being part of any of the lane segment’s
Delaunay triangles’ bounding boxes. The red curve finally
indicates the fraction of objects being found to be inside
of at least one lane segments’ Delaunay triangles and thus
being on the lane segment. All in all, we based our analysis
on a representative part of the track in figure 10 with
2.2 · 108 point-in-(any)-lane-segment operations. In 99.81%
of the situations the point was not even in the lane segment
bounding box. Luckily, the point in bounding box test is
a computationally simple comparison of two coordinates
and thus extremely cheap. However, even for the remaining
4.2 · 105 points, which are in fact in a lane segments’
bounding box, the fraction of the points being part of the
red curve in figure 12 is very small. Figure 13 shows the
fraction of the points being only under the red curve (6%
being inside of a lane segment), under the red curve and the
blue curve (8% being at least in the bounding box of one of
the lane segments’ triangles and maybe even inside of the
lane segment), etc.

6%

8%

14%

72%On lane segment/triangle
On triangle bounding box
On rotated lane segment bounding box
On lane segment bounding box

72%

Fig. 13. Fraction of points that still have to be analyzed for the different
steps of the algorithm

VI. CONCLUSIONS

In this paper we presented our approach for context
representation, environment modeling and information ag-
gregation for automated driving in urban traffic scenarios.
The presented approach allows fast information access and
is yet able to cope with the complexity of environment in-
formation being faced in automated driving. Our algorithms
for information aggregation of dynamic traffic objects and
a-priori map information are able to differentiate relevant
traffic objects on the road precisely from other objects at the
shoulders of the road like trees, parked cars, etc. By using
the exact lane contour given by a lane’s left and right lane
boundary, our algorithm is also able to handle narrow objects
like motorbikes, bicycles or pedestrians being rather close to
the boundary of a lane than to its center line. Moreover, it



works well with oddly shaped lane segments to be found in
dense urban scenarios. It could even be used for matching
objects to oddly shaped lane segments directly obtained
from sensor based reflectance grid maps. The context model
itself is already relatively sophisticated for the application
of automated driving. However, room for improvement is in
the field of consistency checking and integrity monitoring.
So far our algorithms will blindly integrate all kinds of
information, no matter whether they align well with existing
information or being entirely contradictory. For providing
automatic driving functions it is essential to have some kind
of reliability measures to allow graceful degradation to a
lower degree of automation or even taking a human driver
back into the loop. First steps have already been undertaken
in that direction [32], but further research needs to be
conducted on finding appropriate measures and degradation
strategies.
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