Development of Software for Open
Autonomous Automotive Systems in the
Stadtpilot-Project

Andreas Reschka, Jiirgen Riidiger Bohmer

Institute of Physics and Technology
Universitdat Hildesheim
Hildesheim, Germany

{andreas.reschka, boehmer } @uni-hildesheim.de

+49 (0) 5121 883-923

Jan Gacnik, Frank Koster
Institute of Transportation Systems
German Aerospace Center (DLR)
Braunschweig, Germany
{jan.gacnik, frank.koester} @dIr.de
+49 (0) 531 295-3437

Jorn Marten Wille, Markus Maurer
Institute of Control Engineering
Technische Universitit Braunschweig
Braunschweig, Germany
{wille, maurer} @ifr.ing.tu-bs.de
+49 (0) 531 391-3886

Abstract— Following the successful participation in
the DARPA Urban Challenge with the CarOLO-Project
[1], the Stadtpilot-Project [2] aims at implementing and
evaluating autonomous driving with passenger vehicles
in regular urban traffic on the inner city ring road of
Braunschweig. Transferring autonomous driving from
an artificial urban environment as in the Urban Chal-
lenge! in 2007 to regular urban traffic has a major im-
pact on the quality requirements for both hardware
and software systems to be developed.

This paper focuses on the development process of
the safety-critical software — including functions, ar-
chitecture and tests for prototyping open autonomous
systems in urban traffic. The key issue is to establish
flexibility in development and openness for Car-to-Car
(C2C) and Car-to-Infrastructure (C2I) communication
while still guaranteeing a high level of safety. This pa-
per points out new techniques and lessons learned used
with respect to the current standards in the field of
functional safety for automotive systems (esp. ISO/DIS
26262 [3]).

Index Terms— Autonomous Driving, Urban Mobil-
ity, Functional Safety, Software Engineering.

I. INTRODUCTION

The Stadtpilot-Project aims at driving au-
tonomously along the inner city ring road of
Braunschweig, Germany, with a length of 11 km

http://www.darpa.mil/grandchallenge/

(Fig. 1). Autonomous vehicles have to perform com-
plex driving maneuvers like merging into moving
traffic, driving on two-lane roads, performing lane
changes, and passing intersections according to traffic
regulations. In October 2010 the Stadtpilot-Project
demonstrated first public rides on a north-eastern
part of the ring road?, which is a representative part
of an urban environment. The autonomous vehicle
was able to follow a given trajectory along its lane, to
pursue other road users with a safety margin and to
stop at traffic lights. Also a u-turn on an intersection
in the middle of the track was done autonomously.

For this challenging task, the project team has
set up a modified Volkswagen Passat station wagon
called Leonie (Fig. 2). It is equipped with an addi-
tional generator, a full set of automotive sensors, a
server rack, and an interface to the relevant actuators
to fulfill all the requirements of an autonomous vehi-
cle for urban environments. A second vehicle called
Henry is under development and will be equipped in
a similar way.

However, most of the complex functionality is ex-
pressed in terms of software. For the demonstration in
2010, about 130,000 lines of C++ code were involved
in the autonomous driving on public roads. Achiev-
ing high quality of this code is a complex task as well,

ZPress Information 134/2010 from TU Braunschweig:
http://tinyurl.com/37yqxga

Fig. 1. Map of the Fig. 2. The autonomous vehicle
inner city ring road of Leonie.
Braunschweig.

especially with respect to safety, flexibility and open-
ness, and demands the use of state-of-the-art software
engineering methods.

This paper shortly describes the architecture of
the Stadtpilot software, presents the way how the
Stadtpilot team copes with software development, re-
sumes insights into lessons learned and sketches fu-
ture changes to the software engineering process to
achieve even better results. The whole process is
derived from the approach taken in the CarOLO-
Project[4].

II. ARCHITECTURE

The overall software architecture (Fig. 3) is
strongly modularized.
| o | =
777 [@an}
Environment S %
Information System oc" S
[-%

I Environment

Path Planning /
Recognition

Vehicle Control

Closed
PC Layer

Layer

Fig. 3. Simplified Stadtpilot-Architecture [2].

Each major component can be exchanged to test,
compare and benchmark different approaches and
thus guarantees a high flexibility to developers. For
the projects KOLINE?® [5] and AIM* an interface for
C2C and C2I technology is integrated and will be
used for further improvements.

The following section describes three layers with
different jobs in the overall system and therefore
slightly different requirements.

3Cooperative and Optimised Traffic Signalling in Urban Net-
works (KOLINE): http://www.projekt-koline.de/

4Application Platform for Intelligent Mobility (AIM):
http://tinyurl.com/3ymmbtd

A. ECU Layer

The Sensors and Actuators are controlled by elec-
tronic control units (ECUs). This allows fail-safe op-
eration for low-level functions like braking, acceler-
ating and steering. The interface to the actuators is
a CAN bus gateway that connects the vehicle CANs
to an additional CAN bus used in the Stadtpilot PCs.
Some sensors are connected via CAN as well and the
others are connected via Ethernet.

B. Closed PC Layer

The PCs in this layer handle the sensor data and do
the low-level Path Planning and Vehicle Control. In
Enviroment Recognition sensor data is collected and
partly analyzed to generate object lists or occupancy
grids as a basis for driving decisions. The complexity
of these tasks is another main reason for the usage of
PCs. The Path Planning component computes a tra-
jectory which the vehicle should follow and the Vehi-
cle Control contains controllers for the actuators. All
of these components communicate in real-time using
RTI DDS? with well-defined interfaces and can be ex-
changed easily.

C. Open PC Layer

This layer collects information from the Stadtpilot
system and provides an interface to external systems.
Itis also responsible for making high-level driving de-
cisions like lane changes and turns. C2C and C2I ap-
plications will be integrated into this layer thus can
provide further information for decision making.

Additionally an HMI system has been developed
for the co-driver to monitor Leonie’s state. This in-
volves the actual position on high-resolution aerial
photos, the position of recognized objects and some
vital information like the current positioning reliabil-
ity. A text-to-speech system informs the safety driver
and the co-driver about the actual system state. Fur-
thermore, this HMI fulfills requirements derived from
the homologation documents.

III. REQUIREMENTS FOR SOFTWARE
DEVELOPMENT

Sufficient high quality of software can only be
achieved through a structured and easy-to-apply de-
velopment process. Advanced tool support is nec-
essary to help developers manage complexity. Be-
sides software quality, system robustness, traceability

SReal-Time Innovations Data Distribution Service:

http://www.rti.com/products/dds/index.html

regarding requirements, implementations, test cases
and documentation are major concerns.

A. Safety

When driving autonomously on the city ring road
of Braunschweig, safety is the most important issue.
To be allowed to drive autonomously on public roads,
a homologation procedure for Leonie was done, in-
volving public authorities, including a safety concept.
The major requirements derived from this safety con-
cept are a structured development process which is
described in this paper, intensive testing, process doc-
umentation, HMI and a safety driver who is able to
gain control over the vehicle in every situation by ap-
plying the brake or accelerator pedal, by turning the
steering wheel, changing the gear or activating the
electric parking brake. This intervention is meant to
be the last safety mechanism in case of a total system
failure.

When thinking about taking autonomous vehicles
or at least part functions into mass market one day,
even more has to be considered, especially from the
product liability point of view. This is where safety
standards as IEC 61508 [6] and ISO/DIS 26262 [3]
are getting involved.

B. Flexibility

The Stadtpilot-Project is a long-term research
project, involving several partners who develop soft-
ware for the vehicles. Thus, there is a high demand
for adding or modifying software. Another impor-
tant feature is changing between different software bi-
nary versions for benchmarking different approaches
which applies to development of driver assistance sys-
tems for the mass market as well and demands a safe
mechanism to install updates and bug-fixes. For in-
stance, OSGi [7] is used in several comfort-oriented
applications in the market, while current usage in
real-time applications is still limited [8].

C. Openness

In upcoming scenarios, Leonie will also be used
for cooperative applications. This involves using C2C
and C2I communication. Using C2C technology, es-
pecially cooperative driving [9] with other research
vehicles is a planned application. With respect to the
use of C2I, the research projects KOLINE and AIM
will feature interaction of Leonie with roadside unit
based communication, involving information about
the state of traffic lights. This is primarily used to

demonstrate the capabilities to improve the efficiency
of automotive transportation in urban traffic.

For further research and development, opening ar-
chitectures becomes a major issue by applying C2C
and C2I communication. Many new business models
and applications [10], [11] become feasible, includ-
ing different business partners beyond the automo-
tive manufacturer. To cope with bigger develpoment
teams, more software modules and more complex in-
terfaces the following development process will help
to improve quality of code and speed of development.

IV. SOFTWARE DEVELOPMENT PROCESS

The process framework in this iterative approach
is derived from ISO/DIS 26262, shown in Fig. 4.
Small-scale development is then based on the Scrum
methodology [12]. In every iteration, a new or
improved driving function (e.g. autonomous lane
change) is introduced to the vehicle. Beginning with
the capturing of requirements, an impact analysis on
the existing architecture is carried out and software
units are designed. After their implementation, unit
and system tests are run, and the new function is
tested on a closed test track with other vehicles and
obstacles according to a well-defined procedure. With
fulfillment of all steps in the process, the new function
is deployed into operation in the urban environment.

N
A. Specification of F. \Verification of
software software
requirements requirements
N\ N\
. Software E. Software
architectural integration
design and testing
N pl
C. Software unit D. Software unit

design and

implementation testing

Fig. 4. Software Development Process, adapted from
ISO 26262, part 6.

The strong focus on the safety of road users is the
main aspect of autonomous driving in a real urban
environment. For safety-critical components the de-
velopment process includes intense unit and system
tests, and it meets both ISO/DIS 26262 recommenda-
tions and homologation requirements of the TUV.

A. Specification of Software Requirements

In order to build an autonomous driving system the
requirements for this system are defined by the sit-
uations encountered by the vehicle in order to drive
safely in its environment. In the Stadtpilot-Project

an urban environment provides many complex sce-
narios. To solve these scenarios, the abilities of the
vehicle are extended iteratively in short development
cycles. For every new situation the vehicle is able to
handle, the requirements are defined and the conse-
quences to the overall system are derived. Therefore
a milestone in the Trac® and Agilo’ system is defined,
e.g., "Reaction on transmitted state information from
traffic lights”. Each involved developer creates one
ore more User stories which describe functions nec-
essary for the milestone from the developers domain.
Every user story is described more detailed in tickets
which contain a short work product and a showcase
the developer has to present to the team after finish-
ing a ticket. A user story is finished if all tickets are
implemented and tested succesfully. With the usage
of Trac and Agilo many errors can be prevented in
this early stage and the whole process is well docu-
mented. Additionally, test scenarios for a closed test
track are derived from the defined driving situations
and committed to all developers.

B. Software architectural design

Within each iteration in the development process
the architecture is adapted and extended to fulfill the
new requirements defined in the preceeding step. Un-
til now, no major changes to the architecture were
necessary, but in every step an extension to the ar-
chitecture was done. With the use of UML Tools this
step is documented and design decisions can be traced
easily, e.g., new modules and interfaces between new
and existing modules are defined and commited to the
Subversion® system.

C. Software unit design and implementation

All components are designed and implemented in
an agile development process. In the first step inter-
faces and internal functions are designed and speci-
fied in short developer meetings.

After the design process, the components are im-
plemented as so-called filters within the develop-
ment platform ADTF (Automotive Data and Time-
triggered Framework) from Electrobit’. To shorten
the development cycle in comparison to serial devel-
opment and to allow early testing and benchmarking
for different algorithms and functions, these filters are

Shttp://trac.edgewall.org/
Thttp://www.agile42.com/cms/pages/agilo/
Shttp://subversion.tigris.org/

9 ADTF Blog: http://www.eb-assist-blog.com/eb-assist-adtf/

implemented as prototypes and tested as soon as pos-
sible. To improve the quality of the resulting code
standard methods like coding guidelines and code an-
alyzing tools are applied. With Doxygen'® the code
gets documented simultaneously.

The target hardware in the vehicle are standard in-
dustry PCs and run the Debian'! operating system
with the Linux preemptive real-time patch!2.

D. Software unit testing

Unit testing is done using manual test cases as well
as generated ones, in detail described in [13]. With
the use of state-of-the-art methods for C++ unit test-
ing and the testing capabilities integrated in ADTF
and the use of continuous integration tools like build-
bot!3, the test cases and the unit testing process is
highly integrated in the development process. Every
committed change to the source code triggers an auto-
mated build and test procedure for the whole system
to check for bugs and broken dependencies.

E. Software integration and testing

Overall testing of software functionality and archi-
tecture is done primarily on a simulation system in
ADTF and then on an isolated test track for each soft-
ware release. In the simulation the system behavior
is visualized and tested in desired traffic situations.
Currently a more powerful simulation environment is
under development.

If the simulation succeeds the software is applied to
the vehicle PCs and basic functionality like activating
and deactivating the system, following a course and
safety driver interaction are tested on an empty test
track.

After fulfilling all basic test cases the creation of
software packages for each involved PC is used to
save software versions that can be used to test the
functional behavior in real urban traffic. Through the
use of packaging software versions, it is easily possi-
ble to switch between different software releases for
the same hardware configuration. Those releases can
have different driving abilities and can fit into differ-
ent environments.

The packaging process (Fig. 5) is based on the De-
bian packaging system, which has extensive and rich
dependency information used in a variety of applica-
tions [14]. At first calibration data from ADTF and

Ohttp://www.stack.nl/ dimitri/doxygen/
Yhttp://www.debian.org/
2http://rt. wiki kernel.org/
Bhttp://trac.buildbot.net/

the configured software in an Executable and Link-
able Format (ELF) is verified and then integrated into
installable Debian packages for each vehicle PC. Af-
ter installation this application-specific software is
verified again and then ready to use.

Configured Calibration
Software: ELF Data: ADTF

] ~—7T1 =

Verification of
Configured

Software
[T

Calibration
Data Verification

Calibratvion Data
Integration:
Debian Packages
}
Verification of
Application-specific
Software

Application-specific
Software

Fig. 5. Software configuration and packaging process, adopted
from ISO 26262, part 6, appendix C.

This allows a very fast and flexible exchange for
different software releases, maintaining the consis-
tency on the system based on dependency models.
Also a mechanism similar to the OSGi [7] process
used for vehicle telematics applications is possible.

F. Verification of software requirements

After successful simulation and basic testing on
the test track, more complex driving scenarios on an
urban traffic like test track are performed, involving
additional vehicles, other obstacles and traffic lights.
The execution of these driving maneuvers guarantees
the system behavior and informs the safety driver of
how the vehicle acts and reacts in different situations.
To prevent a too extensive test process, the desired
scenarios are selected according to software and com-
ponent changes before testing starts. To automate the
scenario selection process, advanced analysis meth-
ods [15] can be utilized in the future for impact anal-
ysis and for deriving test cases from functional sce-
narios.

G. Iteration and Deployment

The last step in the development process are rides
in real urban traffic on the inner ring road of Braun-
schweig with installed and packaged software ver-
sions. Therefore a track is created on which Leonie
has to drive autonomously. This track can either be a

part or the entire ring road. At the moment the course
is calculated off-line, in further development a strate-
gic planning unit calculates the best course from the
actual position to a desired position on the ring road
similar to a navigation system.

After successful driving on the city ring, another
iteration cycle begins, restarting the process. The
software packages derived during software integra-
tion and testing are archived and thus can be rede-
ployed later. This can be used for comparison of a
new software state with an older state with respect to
controller performance.

H. Summary

The process is iterative and for each new scenario
that is added to the abilities of the vehicle the whole
process starts again to ensure a complete definition,
realization and testing procedure of software units
and the overall system. It focuses on providing suf-
ficient levels of flexibility and safety for developing
and testing autonomous systems in urban traffic sce-
narios. Furthermore, the Stadtpilot-Project aims at
long-term developments and evaluations. Another
major challenge is handling open systems, as future
autonomous systems are likely to be massive cooper-
ative systems [9], making use of C2C and C2I com-
munication. Besides computing power, this is one of
the major reasons for using PCs instead of ECU hard-
ware.

V. RELATED WORK

Model-based development (MBD) [16] is a major
approach that many car manufacturers and even the
NASA [17] follow. Developers can build their sys-
tems with easy-to-learn modeling tools for require-
ments, architecture, software components and test
cases. The resulting models abstract the complex
functionality of ECUs for control and autonomous
systems and allow a full view on the system architec-
ture. With usage of code-generators, the models, e.g.,
from Matlab/Simulink'# can be transferred to C++-
Code.

Although MBD is a state-of-the-art approach, de-
velopment without intensive model generation is pos-
sible by applying classical Software Engineering
methods like separation of concerns and structur-
ing. Currently, those methods are used in the Stadt-
pilot-Project and the software components are imple-
mented manually as ADTF-Filters.

14 MathWorks@©Homepage: http://www.mathworks.com/

VI. LESSONS LEARNED / CONCLUSIONS

The described process refines the exceptional TUV
homologation and admits the Stadtpilot-Project to
legally drive autonomously in real world traffic in
Braunschweig with reasonable testing effort. The
open architecture of the systems allows a high level of
flexibility to developers and guarantees compatibility
to further developments in C2C and C2I technology.

While creating the described development process
many aspects from ISO/DIS 26262 and IEC 61508
were very helpful. Thus, at some development stages
more effort is taken than formally required by the
homologation. This involves integration of tools for
code reviews, code analysis, and coding guidelines in
the developed process. In contrast, not the whole set
of requirements for serial development from the stan-
dards is currently addressed, e.g., no full risk, hazard
and fault-tree analysis.

The described process allows benchmarking differ-
ent software components in real world situations, and
improving them. It also permits finding vulnerabili-
ties and key issues in the field of autonomous driving
in urban traffic.

With the use of standard software and hardware
a clean configuration management was established.
The best results could be achieved with the Debian
operating system with additional real-time support
and the usage of the native package management for
managing software releases.

Cooperative driving is a way to reduce the prob-
ability of accidents and to increase the efficiency of
traffic. This is enabled by the use of C2C and C2I
communication and introduces new challenges re-
garding safety and especially security.

In future development more complex traffic sce-
narios will require an even better reliabilty of driving
decisions in higher levels of the architecture. There-
fore the development process hast to be evolved and
maybe more tools will be integrated in the toolchain
for the development process to improve software
quality and reduce development cycle times.

REFERENCES

[1] C. Basarke, C. Berger, K. Berger, K. Cornelsen, M. Do-
ering, J. Effertz, T. Form, T. Giilke, F. Graefe, P. Hecker,
K. Homeier, F. Klose, C. Lipski, M. Magnor, J. Morgen-
roth, T. Nothdurft, S. Ohl, F. Rauskolb, B. Rumpe, W. Schu-
macher, J. M. Wille, and L. Wolf, “Caroline: An au-
tonomoulsy driving vehicle for urban environments.,” Jour-
nal of Field Robotics, vol. 25, no. 9, pp. 674-724, 2008.

[2] J. M. Wille, E. Saust, and M. Maurer, “Stadtpilot: Driving
autonomously on braunschweig’s inner ring road,” in Intel-
ligent Vehicles Symposium (1V), 2010 IEEE, jun. 2010, pp.
506 -511.

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

International Organization for Standardization (ISO),
ISO/DIS 26262: Road vehicles — Functional safety , 2009.
C. Basarke, C. Berger, and B. Rumpe, “Software & sys-
tems engineering process and tools for the development of
autonomous driving intelligence.,” Journal of Aerospace
Computing, Information, and Communication (JACIC), vol.
4, no. 12, pp. 1158-1174, October 2008.

F. Saust, J. M. Wille, O. Bley, R. Kutzner, B. Friedrich, and
M. Maurer, “Exploitability of vehicle related sensor data
in cooperative systems,” in IEEE Proceedings of the Inter-
national Conference on Intelligent Transportation Systems,
2010.

International Electrotechnical ~Commission (IEC),
IEC 61508: Functional safety of electri-
cal/electronic/programmable electronic safety-related

systems, 2005.

Yuantao Li, F. Wang, Feng He, and Z. Li, “Osgi-based ser-
vice gateway architecture for intelligent automobiles,” in
Intelligent Vehicles Symposium, 2005. Proceedings. IEEE,
June 2005, pp. 861 — 865.

T. Richardson, A. J. Wellings, J. A. Dianes, and M. Diaz,
“Providing temporal isolation in the osgi framework,” in
JTRES "09: Proceedings of the 7th International Workshop
on Java Technologies for Real-Time and Embedded Sys-
tems, New York, NY, USA, 2009, pp. 1-10, ACM.

M. Rockl, K. Frank, T. Strang, M. Kranz, J. Ga¢nik, and
J. Schomerus, “Hybrid Fusion Approach combining Au-
tonomous and Cooperative Detection and Ranging meth-
ods for Situation-aware Driver Assistance Systems,” in
2008 IEEE 19th International Symposium on Personal,
Indoor and Mobile Radio Communications (CFPOSPIM-
CDR). 2008, IEEE.

CAR 2 CAR Communication Consortium, Manifesto, Au-
gust 2007.

European Telecommunications Standards Institute (ETSI),
ETSI TR 102 638 — Intelligent Transport Systems (ITS); Ve-
hicular Communications; Basic Set of Applications; Defi-
nitions, v1.1.1 edition, June 2009.

K. Schwaber and M. Beedle, Agile Software Development
with Scrum, Prentice Hall PTR, Upper Saddle River, NJ,
USA, 2001.

F. Saust, T. Miiller, J. M. Wille, and M. Maurer, “ En-
twicklungsbegleitendes Simulations- und Testkonzept fiir
autonome Fahrzeuge in stidtischen Umgebungen ,” in
AAET, 2009.

S. Spaeth, M. Stuermer, S. Haefliger, and G. von Krogh,
“Sampling in open source software development: The case
for using the debian gnu/linux distribution,” in 2007. HICSS
2007. 40th Annual Hawaii International Conference on
System Sciences, jan. 2007, pp. 166a —166a.

J. Gacnik, “Providing Guidance In An Interdisciplinary
Model-Based Design Process,” in 2010 13th IEEE Interna-
tional Symposium on Object/Component/Service-Oriented
Real-Time Distributed Computing Workshops. 2010, pp.
130 — 137, IEEE Computer Society.

M. Broy, “Challenges in automotive software engineering,”
in Proceedings of the 28th international conference on Soft-
ware engineering, New York, NY, USA, 2006, ICSE ’06,
pp. 33-42, ACM.

J. Schumann and W. Visser, “Autonomy software: V&V
challenges and characteristics,” in Aerospace Conference,
2006 IEEE, 2006, pp. 1 -6.

