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Abstract 

Recent trends in the automotive domain show a fast development towards automated driving 

functions with growing complexity that comes along with increasing computing power of 

automotive platforms. Due to the long lifetime of automobiles compared to the innovation 

cycles of functionalities, in future, new functionality must be added by software updates. 

However, performing such updates on a safety-critical system requires a methodologically 

safe approach. In this paper, we outline how this is tackled by the research unit “Controlling 

Concurrent Change” that formalizes the integration part of a V-model like development 

process. As a result, this equips the platform with a self-protection mechanism against 

harmful updates and self-awareness capabilities w.r.t. environmental changes. 

 

 

1. Introduction 

The automotive domain is currently driven by the development of automated driving 

functions. The deployment of new and more sophisticated functions therefore becomes a 

competitive factor. As these often only require a software change, it is obviously desirable to 

deploy these in form of (automated) in-field function updates. Moreover, as we can observe a 

trend towards central high-performance platforms, such as NVIDIA DRIVE PX [8] or Audi 

zFAS [1], in future, new functionality can easily be added by a software update rather than 

requiring another ECU. 

However, the increasing complexity of the upcoming automotive software systems also 

raises the likelihood that such an update influences the safe operation of the vehicle. 

Automatically managing software updates in safety-critical systems therefore requires a 

methodologically safe approach which is subject of the research unit Controlling Concurrent 

Change (CCC). 

Automotive E/E systems are typically designed following the V-model process in which all 

requirements are specified on system level and subsequently refined to sub-systems, 



modules, and individual functions. After implementation of software and hardware (at the 

bottom tip of the V), this process is followed by corresponding integration and tests 

throughout the design levels in reverse order (right branch of the V). 

The goal of the CCC project is the automation of this integration process while leaving the 

design of individual functions in the lab. The automation ultimately allows changes and 

updates to be performed in field without the need of extensive (lab-based) testing. For this 

purpose, contracting mechanisms are researched in order to apply formal methods that can 

provide guarantees about critical system properties. 

In the remainder of this paper, we first elaborate on our architectural approach and 

mechanisms which enable the automated management of function updates. After that, we 

describe how we implemented and applied this in our automotive use cases before we 

discuss how our approach leads to self-protection and self-awareness capabilities of 

embedded systems. 

2. Architectural Approach 

 

Figure  1: CCC architecture comprising a model domain (red), an execution domain (green) 
as well as changing application/platform components (gray). 

In order to equip a platform with safe change capabilities, we take an architectural approach 

(as shown in Figure 1) that comprises two segregated domains: the model domain and the 

execution domain. Both domains implement mechanisms that contribute to our overall goal. 

The execution domain is deployed on several (networked) platform components and 

provides the run-time environment (RTE) including the operating system (OS) which are both 



required for hosting several applications/functions. This domain not only executes the actual 

applications, but also includes monitoring capabilities that a) act as protection layers against 

harmful behavior and b) extract metrics that enable planning of future changes and 

optimization. By this, the execution domain provides a solid foundation for the application of 

formal methods within our model domain, which implements the contract-based deployment 

and integration of software updates. It is therefore important to close the gap between the 

model domain, which must make assumptions about the actual behavior, and the execution 

domain, which should enforce these assumptions or at least detect harmful deviations. 

In the following we detail both domains and sketch the resulting development flow. 

2.1 Model Domain 

The model domain is an essential part of the CCC architecture as it plans and controls the 

integration process by ensuring that any prospective change passes all necessary 

acceptance and conformance tests. This domain is implemented by the Multi-Change 

Controller (MCC). 

This approach requires sufficient analysis methods to test and evaluate certain properties as 

well as sufficient input data to perform such an analysis. We collect the input data and 

properties to be evaluated in so-called component contracts which specify these in form of 

assumptions a component makes towards the platform and run-time environment (RTE) as 

well as guarantees it can provide given that the assumptions are fulfilled (see Development 

Flow & Contracting Language). More specifically, we take a multi-viewpoint approach to 

contracting as presented in [5], which allows specifying and verifying different concerns in 

separation. 

Contracts allow combining several components with compatible contracts such that a desired 

functionality is achieved. Together with sufficient formal analysis methods, it is guaranteed 

that the composed system satisfies all contracted requirements if all tests are passed. In 

particular, this process is suitable for uncovering unwanted side effects when multiple 

applications share a platform, which is especially crucial for applications with heterogeneous 

safety requirements. For a certain application a guarantee in the form of a best-effort 

fulfillment of requirements can be satisfactory (while not necessarily being safe), while other 

applications demand hard bounds and freedom from interference as required by safety 

standards [6]. 

Any update is modeled in form of a change request, e.g. contract modification or new 

functionality accompanied by a contract, on which the MCC is invoked. It then generates 

possible configuration candidates that undergo several admission tests to check whether all 



functional and non-functional requirements are satisfied. This can be e.g. a latency constraint 

that can be verified by compositional performance analysis of the composed system [11]. 

Once a configuration candidate was admitted, it is applied by the MCC to the execution 

domain. This may also require a reconfiguration of monitoring mechanisms to guarantee the 

adherence of the components’ implementation to their contracts where necessary, which is 

explained in the following section. 

2.2 Execution Domain 

As mentioned above, the execution domain plays an important role in our contract-based 

approach. This is mainly due to the fact that (hard) guarantees and assumption formulated in 

the model domain must hold (at any time) during the actual execution of the system. I.e. the 

model domain relies on the properties that can be given or be enforced by the execution 

domain. 

In order to apply the contract-based design we therefore resort to microkernel-based 

systems which already provide a solid foundation for a safe, reliable, and secure platform 

sharing. More specifically, our execution domain is based on the Genode OS Framework that 

provides a component-based run-time environment in which components are executed in 

isolated address spaces and using explicit (service-oriented) communication interfaces. This 

framework can further be deployed on top of several microkernels with different properties. 

Its strong isolation of application components reduces mutual interference (e.g. by fault 

propagation) and allows for fine-grained access control while still providing a high degree of 

flexibility required for in-field changes. The resulting RTE is a trade-off between very flexible 

monolithic kernels and restrictive statically-configured systems. Between two updates, the 

execution domain therefore operates without any participation of the model domain and 

resembles a statically-configured system. Only when a change request was admitted by the 

model domain, a (partial) reconfiguration of the execution domain is performed in order to 

apply the change. 

Nevertheless, not every property is guaranteed by design of the RTE. In order to still provide 

those guarantees, certain parameters of the system can be run-time monitored by application 

and platform monitors. Those monitors may supervise the execution time of a component or 

police the access to network resources [4] for instance. By augmenting the system with run-

time monitoring, it can be asserted that the execution domain behaves as expected by the 

model domain. In addition to the enforcement of parameters (e.g. for critical functions), 

monitoring can also be used for providing feedback to the model domain so that the MCC 

can refine the models to the actual execution behavior (e.g. for non-critical functions). 



2.3 Development Flow & Contracting Language 

With our architectural approach, we aim at the following development flow. Applications are 

developed using model-based design tools (e.g. MATLAB/Simulink as explained in “Use-

cases”). These tools already describe particular aspects of the contracts (e.g. interfaces, 

data dependencies) but need to be augmented with properties from other viewpoints 

(e.g. timing requirements) depending on the application domain and function. This can either 

happen by manual annotation (within the design tool) or by automated post-processing. For 

instance worst-case execution times can be added to the contracts by using state-of-the-art 

analysis tools. Up to this point, this process resembles the left branch of the V-model 

enriched with contracting information. 

The component contracts are specified in our contracting language [5]. Along with the pre-

compiled component binaries, they are loaded onto the platform prior to the change request. 

The contracts are stored by the MCC within a contract repository. After that, the automated 

integration process (i.e. the right branch of the V-model) can be triggered by a change 

request. When processing this request, the MCC queries the available components and their 

contracts from the contract repository by using a parser for the contracting language. The 

MCC then invokes the so-called analysis engines that implement the above mentioned 

admission and conformance tests. The different analysis engines may use this parser as well 

in order to acquire additional information from the contracts. 

3 Use Cases 

In the CCC project, the Institute of Control Engineering contributes two experimental vehicles 

which act as demonstrators for the developed runtime environment: A 1:5 model vehicle 

(Modular X-by-Wire, MAX) and a full-scale x-by-wire vehicle (MOBILE). Both vehicles 

currently act as platforms for research in E/E-systems and vehicle dynamics. MOBILE 

features four close-to-wheel electric drives (4 × 100kW, as well as individually steerable 

wheels, and electro-mechanic brakes [3]. A similar actuator topology has been implemented 

for MAX. Both vehicles feature a FlexRay communication backbone for inter-ECU-

communication and additional CAN bus interfaces, which are for instance used for 

communication with sensors and actuators in the full scale vehicle. 

The ECUs responsible for vehicle control are programmed in a customized 

MATLAB/Simulink tool chain. Combined with detailed vehicle-dynamics models, the tool 

chain serves as a means to establish a rapid-prototyping process for vehicle control 

algorithms. The goal here is to develop algorithms from an idea over simulation and small-

scale verification in MAX to full-scale validation in MOBILE (cf. Figure 2). 



 

Figure  2: Customized MATLAB/Simulink tool chain with MAX and MOBILE. 

For the CCC project, this tool chain has been extended to support the export of Simulink 

subsystems as software components runnable in the CCC framework (see “Control Layer”). 

Apart from the mere export, possibilities have been created to apply object-oriented metrics 

to Simulink models in order to support the developer in the creation of reusable components 

and well-defined interfaces. 

In the scope of the CCC project, the applications implemented on the research vehicles can 

be divided into control applications (referred to as “Control Layer” in the next sections) and 

applications which implement automated driving functions based on environment perception 

algorithms (referred to as “Rich Application Layer” in the next sections). For the operation of 

the vehicle, specific ECUs running the CCC middleware are connected to a central gateway 

controller of the vehicle and can be switched off, if this controller detects unexpected 

deviations from the behavior of the proven-in-use legacy controllers. 

3.1 Control Layer 

As the development of vehicle-dynamics control algorithms is a major purpose of the 

research vehicle MOBILE, a set of control applications has been chosen to demonstrate the 

applicability of the CCC approach in the automotive domain. For this purpose, a cruise-

control, as well as a force-feedback and a stability-control application for the x-by-wire 

vehicle have been selected. These control applications are designed to be updatable using 

the MCC. 

The cruise control serves as a very basic example with soft real-time requirements, because 

of the rather inert lateral dynamics of the research vehicle. It is implemented in three different 

variants. Besides a basic variant, two extensions feature a speed-limit detection and a 

vehicle-to-vehicle component, both imposing external limits on the controlled velocity of the 



vehicle. If active, the vehicle’s velocity is controlled to the minimum of the received limit and 

the desired velocity of the driver. 

The force-feedback application is responsible for providing haptic feedback at the steering 

wheel about the road surface to the driver. It serves as an example for a more time-critical 

application, because of the higher dynamics of the feedback actuator at the steering wheel. 

Updates of the application are limited to parameter updates so that the desired strength of 

the feedback can be made configurable. 

The stability-control application keeps the vehicle controllable for the driver, performing yaw-

rate and slip control. As it needs to be able to control the vehicle at the limits of handling, the 

controller is sensitive to varying cycle times. The application is intended to provide updatable 

control strategies, ranging from yaw-rate control by differential braking to force-allocation 

strategies utilizing all available actuators in the vehicle. 

One challenge in the project scope is to derive suitable contracts in order to support the 

automated integration of components in control applications. Typically, in the control-

engineering domain, requirements are formulated as functional requirements in terms of 

control- quality metrics (e.g. in terms of the control response). These functional requirements 

must then be transformed to non-functional timing requirements for the integration in 

embedded systems. Recent research [7,12] has shown, that often there is little common 

ground between the domains of control and real-time engineering. On the one hand, this can 

result in over-engineered systems, because of overly-strict formulated timing requirements in 

the control-engineering domain, as detailed information about the robustness of the system 

against varying sample times is not always available. On the other hand, this missing 

common ground can lead to expensive reiterations of the design process if the integrated 

system cannot meet the required control-quality constraints. 

In order to facilitate communication between both domains additional extensions to our 

MATLAB/Simulink tool chain have been created. Similar to an approach presented in [7], 

Simulink subsystems can be activated asynchronously in order to evaluate the influence of 

timing behavior on control performance during simulation. In this way, a design-space 

exploration or sensitivity analysis for a control system can be performed in order to identify 

components which are particularly sensitive e.g. to input data delay. The obtained timing 

requirements at the component’s interfaces can then be annotated in the Simulink 

subsystems. The addition of annotations for control-quality metrics to a component interface 

also enables monitoring of the system performance during runtime (see “Self-awareness for 

applications”). 



3.2 Rich Application Layer 

With regard to automated driving functions, a use case in the form of automated obstacle 

avoidance will be implemented in the experimental vehicle MOBILE. This is basically a 

further extension of the stability-control use case (cf. “Control Layer”). In general, stability-

control systems only steer the vehicle into the direction given by driver input at the steering 

wheel. However, as the driver does not always perform safe steering maneuvers, particularly 

in critical driving situations such as fast obstacle avoidance, this extended stability control will 

follow a safe pre-planned trajectory instead of following a potentially unsafe path steered by 

the driver. 

For this trajectory-following stability control, data is acquired from multiple environment 

sensors in the form of three lidar scanners, a radar sensor and a camera. This data is then 

used to create a map of the static environment, which provides the basis for a model-based 

trajectory planning utilizing all actuators (particularly all-wheel steering) for maximal 

maneuverability. 

Compared to the control applications which consist of only a few different components, 

system complexity increases when many software components for environment perception 

are added to the system. Also monitoring of software components in a sensor-data 

processing chain is far more challenging than monitoring the performance of control 

algorithms, as the metrics needed for monitoring are not that easy to formulate. Thus one 

challenge in the project scope is to gather suitable performance metrics for tasks which are 

executed by the automated vehicle. 

4 Discussion 

With the overall architectural approach and use cases in mind, we can now elaborate on the 

benefits of opportunities established by this. In particularly, we focus on the monitoring which 

is an important corner stone by enabling enforcement and providing feedback. 

4.1 Monitoring as Self-Protection Mechanism 

The architectural approach in CCC, with monitoring as a joining link between execution and 

model domain, allows the MCC to gather performance data of the currently executing 

configuration. This enables the MCC to perform self-reassessment of the current 

configuration based on the available models and contracting information as well as the data 

gathered by the monitoring mechanisms. The CCC platform is therefore capable of self-

organization, i.e. finding a system configuration based on the current state plus incorporating 

an update or reorganizing components in a more optimal configuration. Moreover, as the 



main goal, it is capable of protecting itself against change requests that would jeopardize the 

correct execution of functions on its platform. 

This is achieved twofold; first of all the model-based admission checks need to be passed in 

order to release a new configuration in the execution domain. Passing all relevant admission 

checks is only possible if a contract supplies sufficient contracting information, such that the 

model analysis guarantees a safe platform sharing. Safe in this sense refers to the fact that 

no assumptions of other (possibly higher critical) components is violated. Furthermore, the 

model-based analysis of an update is capable of delivering the parameters that need to be 

enforced on an update’s components to guarantee noninterference for other components. 

This augments the execution domain’s monitoring capabilities since these can be configured 

with this data and set to enforce these parameters. 

Nevertheless, self-protection is a challenging task as it requires that the enforcement 

mechanisms configured by the MCC need to respect the viewpoints’ analysis engines and all 

other functional and non-functional requirements of components that are currently 

instantiated. The key aspect of the self-organization and protection mechanisms is that the 

MCC provides guidance and control for this process such that any design decision made 

during the automated integration process still undergoes the formal admission tests. 

4.2 Monitoring for Self-Aware Applications 

Not only the platform or RTE need to be aware of the current state of operation, but also the 

functions implemented in software components need to register if they are not performing 

according to their specification. 

For the control-engineering domain, in practice, the design-space exploration or sensitivity 

analysis mentioned in “Control Layer” is probably only feasible for safety-critical systems, as 

each corner case must be covered. However, also a rough estimate of typical operating 

conditions enables the control engineer to formulate timing requirements for the tested 

operating conditions. For those systems where a detailed sensitivity analysis is not 

performed we propose a monitoring concept. By integrating a monitoring component based 

on an ideal system model, control performance under ideal timing conditions can be 

predicted. If the actual control performance of the system lies outside of predefined bounds, 

a misbehaving subsystem can be detected and countermeasures, e.g. by activating cold 

stand-by components and gradually passing over control to those redundant components, 

can be performed. 

With regard to automated driving functions, particularly when targeting VDA levels 4 and 5 

[2], monitoring for the applications needs to be extended. As the driver resides out of the loop 



for these levels of automation, automated vehicles need to be equipped with fallback 

strategies which either provide a completely fail-operational system or at least provide the 

possibility to maneuver the vehicle in case of failures with reduced and thus safe driving 

functionality [9]. 

For monitoring as well as for the determination of fallback strategies, we propose the concept 

of ability and skill graphs [10]. Skills for the system are implemented by engineers in the 

development phase and can consist of one or multiple software components. Abilities are 

runtime instantiations of skills, which can be assigned with an actual performance level in the 

running systems. Abilities and skills can be composed of lower-level abilities and skills, 

(cf. Figure 3) . The actual performance level of an ability can be attributed to an edge in this 

tree. By finding appropriate models for the propagation of performance changes from lower-

level to higher-level abilities, a detailed and abstracted performance monitoring for the whole 

system can be performed. In the scope of the project, we aim at a formal description for 

ability and skill graphs, as well as means of contracting for abilities. 

 

Figure 3: Exemplary simplified ability graph for an adaptive cruise control (blue: abilities, 
green: function, yellow: sensors, orange: actuators) 

In our view, a self-aware middleware as well as self-aware applications contribute to the safe 

realization of automated level 4 and level 5 vehicle automation systems. 
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