

Entwicklung einer supraleitenden 200.000 Ampere Industriestromschiene (DEMO200)

Super Conductors

Braunschweiger Supraleiterseminar 23.-24 Juni 2021

Mathias Noe, KIT, Wolfgang Reiser, VESC für das gesamte DEMO200 Projektteam

VISION® ELECTRIC

- Motivation und Anwendungen
- Stand der Entwicklung von HTS DC Hochstromschienen
- Projektübersicht DEMO200
- Auslegungsbeispiele und Projektstatus
- Zusammenfassung

Motivation und Anwendungen

Übersicht über Anwendungen von DC Hochstromschienen

Industrieanlage	Typischer Strombedarf	Längen		
Chlorelektrolyse	Ca. 20 kA	30 – 300 m		
Rechenzentren, Telekommunikation	10 - 40 kA	40 – 500 m		
Kupferelektrolysen	40 – 80 kA	200 – 400 m		
Zinkelektrolysen	(120) – 200 kA	100 – 300 m		
Aluminiumhütten	200 – 350 (500) kA	100 – 1200 m		
Alla Flaktushusan -D. Na. Mar F / Cabusal-#fau / Cuauhitiaianuna				


Alle Elektrolysen, zB. Na, Mg, F / Schmelzöfen / Graphitisierung

Zinkelektrolyse 200 kA

Aluminiumwerk 200 kA

Chlorelektrolyse 20 kA

Motivation und Anwendungen

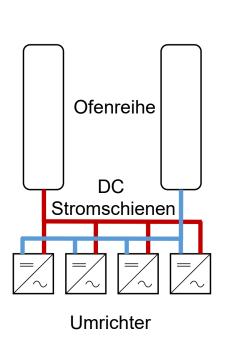
Übersicht über Anwendungen von DC Hochstromschienen

Industrie

Rechenzentren

Bahn

Stromnetze


H2 Elektrolyse

Motivation und Anwendungen

Anwendungsbeispiel – Zuführung zu Aluminiumöfen

	Aluminium	HTS		
Nennstrom	400 kA			
Länge	415 m			
Stromdichte A/	0,06 kA/cm ²	50 kA/cm ²		
Systemmasse	2500 kg/m	60 kg/m		
Verlustleistung	3.557 kW	120 kW + 820 kW Kühlung		
CAPEX	6.200 k€	17.000 k€		
Verlustenergie	30.700 MWh/a	8.100 MWh/a		
OPEX	1.535 k€/a*	405 k€/a*		
ROI	Basis	9,6 a		

^{*50 €/}MWh, 8640h/a

Quelle:https://www.vesc-superbar.de/wp-content/uploads/2021/03/Superconductor-Busbars-High-Benefits-for-Aluminium-Plants.pdf

- Motivation und Anwendungen
- Stand der Entwicklung von HTS DC Hochstromschienen
- Projektübersicht DEMO200
- Auslegungsbeispiele und Projektstatus
- Zusammenfassung

Stand der Entwicklung von DC Hochstromschienen

 Übersicht über bisherige Entwicklungen von DC Hochstromleitungen mit Einsatz in Anwendungsumgebung (kein Labortest)

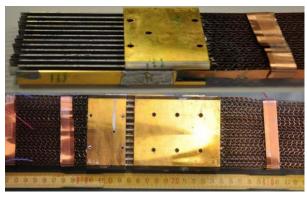
Jahr	Ort	Land	Anwendung	Länge / m	Strom / A	Spannung	Supraleiter
2017	Ludwigshafen	D	Chlorelektrolyse	25	20000	1 kV	YBCO
2019	St. Petersburg	Russland	Verbindung Substations	2500	2500	20 kV	Bi 2223
2016	Ishikari	Japan	Testanordnung	1000	2500	20 kV	Bi 2223
2015	Ishikari	Japan	PV Datencenter Verbindung	500	5000	20 kV	Bi 2223
2015	Jeju Island	Korea	Verbindung Substations	500	3250	80 kV	YBCO
2014	CERN	Schweiz	Testanordnung	20	20000	-	MgB2
2013	Kunitachi	Japan	Verbindung von Bahnumrichtern	30	6000	1,5 kV	Bi 2223
2012	Gongyi	China	Aluminimwerk	360	10000	1,3 kV	Bi 2223
2010	Chubu	Japan	Testanordnung	200	2000	10 kV	Bi 2223

Stand der Entwicklung von DC Hochstromschienen

Projekt 3S – 20 kA Industriestromschiene in einer Chlorelektrolyse

Projektziel

 Entwicklung einer modularen, supraleitenden 20 kA Industriestromschiene und Testbetrieb in Industrieumgebung

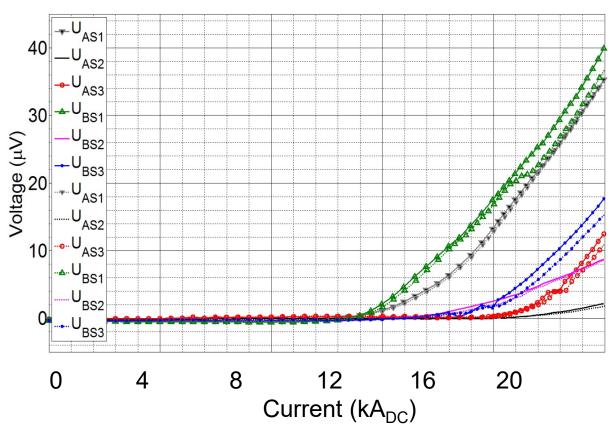

Projektpartner

Vision Electric SuperConductors, KIT, ILK Dresden

Flexibles HTS Element

Niederohmige Kontaktierung mit Stromausgleich

Quelle: S. Elschner, et.al., 3S – Superconducting DC-Busbar for High Current Applications. IEEE Transaction of Applied Superconductivity, Volume: 28, Issue: 4, June 2018, DOI: 10.1109/TASC.2018.2797521


Stand der Entwicklung von DC Hochstromschienen

Projekt 3S – 20 kA Industriestromschiene in einer Chlorelektrolyse

Messung an 2 m Stromschienenelement

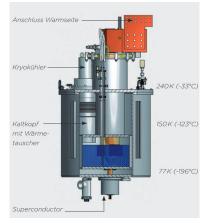
= 400 mW/m

Stand der Entwicklung von DC Hochstromschienen

Projekt 3S – 20 kA Industriestromschiene in einer Chlorelektrolyse

Projektziel

 Entwicklung einer modularen, supraleitenden 20 kA Industriestromschiene und Testbetrieb in Industrieumgebung


Projektpartner

Vision Electric SuperConductors, KIT, ILK Dresden

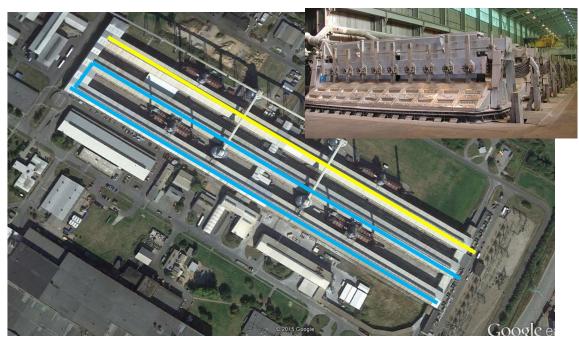
Montage Verbindungselement

Kombinierte Stromzuführung inklusive Kühlung

Weltweit erste Installation einer modularen, supraleitenden Hochstromschiene in der Industrie

10

- Motivation und Anwendungen
- Stand der Entwicklung von HTS DC Hochstromschienen
- Projektübersicht DEMO200
- Auslegungsbeispiele und Projektstatus
- Zusammenfassung



DEMO200 Motivation

Luftbild Aluminiumwerk Trimet in Hamburg

Ersatz des Rückleiters durch Supraleiter, dadurch Reduktion der elektrischen Schienenverluste um ca. 94 %

- 90 Öfen, 180 kA, perspektivisch 200 kA
- Rückführung gelbe Linie über Aluminimschienen
 - 2x90 kA
 - 600 m Länge
 - 12 V Spannungsfall
 - 2,15 MW Verluste (180 kA)
 - 20.000 MWh/a
 - Ca. 1 Mio.€/a (50€/MWh)
 - 10.000 t/a CO2-Äquivalent

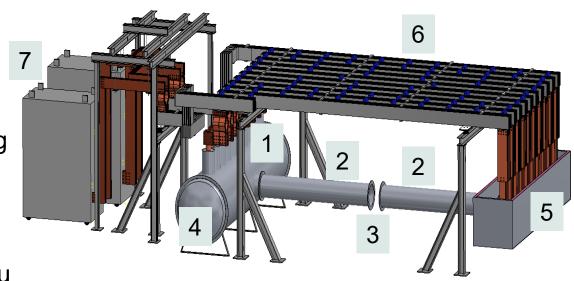
DEMO200 - Projektübersicht

Projektziel

- Entwicklung und Demonstration der Technologie für eine 200 kA DC supraleitende Stromschiene für die Aluminiumindustrie. Hierbei sind die folgenden Komponenten zu entwickeln und in einem Versuchsaufbau die Funktionstüchtigkeit nachzuweisen:
 - modular aufgebaute Stromzuführung mit 200 kA
 - Stromschienensystem, bestehend aus Stromschienenelemente mit einer modularen Leiterstruktur
 - Kupplungen zwischen Stromzuführung und dem Schienensystem

Projektpartner

Assoziierte Partner

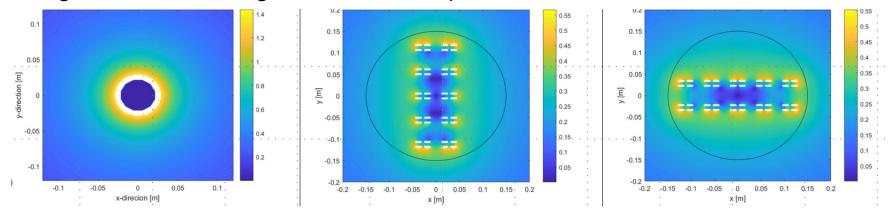


Versuchsaufbau in Voerde bei Trimet

- Übersicht über den Technologiedemonstrator
- 1: Stromzuführung 200 kA
- 2: Stromschienenelemente
- 3: Kupplung
- 4: Coldbox Verbindung zwischen Stromzuführung und Element, Ein- und Auskopplung LN2
- 5: Übergang zur NL
- 6. Rückführschienen aus Alu
- 7: Stromquelle 25 kA DC

Der Technologiedemonstrator besteht aus 10 gegeneinander isolierten Strompfaden je 20 kA. Wesentliche Vorteile: Modularer Aufbau und Test mit 20 kA Netzgerät

- Motivation und Anwendungen
- Stand der Entwicklung von HTS DC Hochstromschienen
- Projektübersicht DEMO200
- Auslegungsbeispiele und Projektstatus
- Zusammenfassung

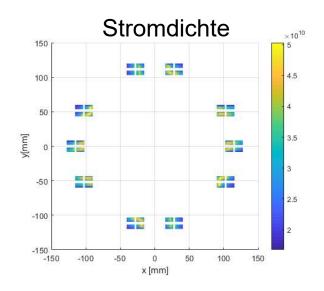

Grundlegende Annahmen

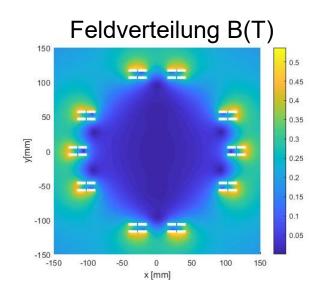
Ziel: I = 200 kA

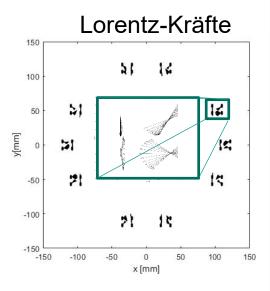
Annahme: R = 0.10 m => Eigenfeld

Ic(B = 400 mT = 65 K) => (200 A -) 400 A /Band => 500 (-1000) Bänder parallel

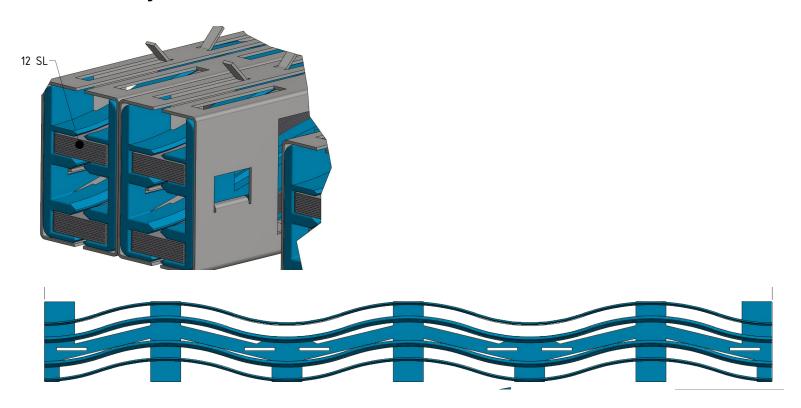
Magnetfeldberechnung von 440 Leitern parallel




Wesentliche Herausforderung: Minimierung der Supraleitermenge und des Aussendurchmessers unter Berücksichtigung der gegenseitigen Beeinflussung durch Kräfte und Magnetfeld.


Ströme, Magnetfelder und Lorentzkräfte

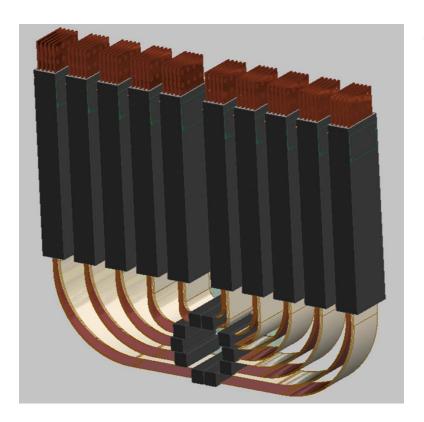
Kraft auf	Max(F _{L,x}) (N/m)	Max(F _{L,y}) (N/m)	Max(F _L) (N/m)
Band	122.1	143.3	152.6
Stapel	1625.9	1475.5	1700.2
Teilleiter	3114.5	2913.5	3365.9


Maximales Magnetfeld am Leiter: B_{max} =0.547 T

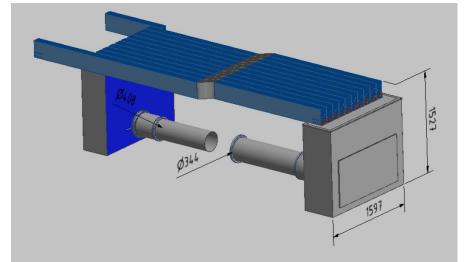
Maximale Lorentzkraft auf Teilleiter: $\frac{F_L}{l} = 3365.9 \text{ N/m} \rightarrow \sim 3,37 \text{ kg/cm}$

Konstruktion Stromschienenelement

10 Module je 20 kA



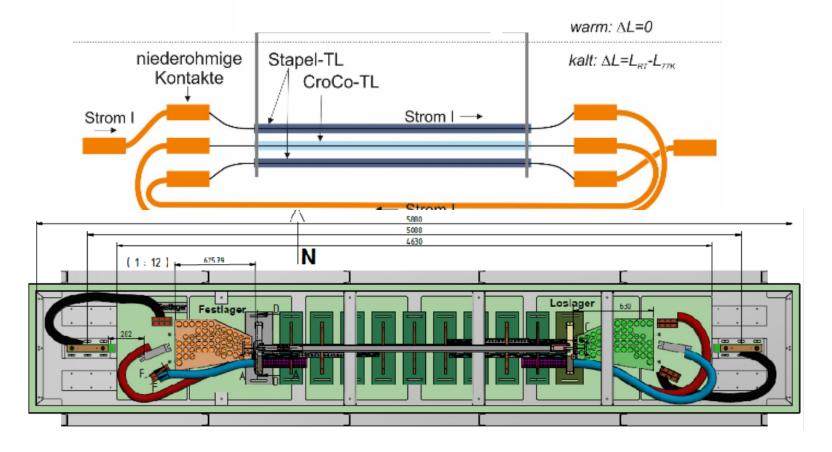
Modularer Aufbau ermöglicht einfache Montage und Kompensation der Längenausdehnung.


Konstruktion Stromschienenelement

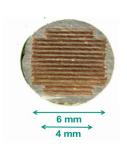
Verlustoptimierte modulare Stromzuführung 200 kA

Anforderungen

- Verlustoptimierter Kalt-Warm Übergang
- Mechanisch flexibel und gleichzeitig stabil

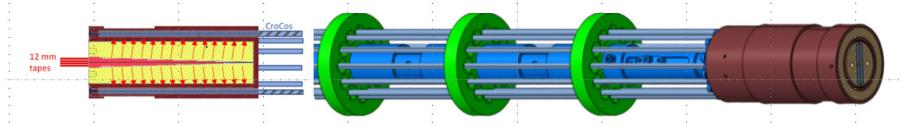


Subscale Test 3x20 kA am KIT


Bestehend aus 2 HTS Stacks je 20 kA und 1 Kreuzleiter 20 kA bei 77 K

Subscale Test 3x20 kA am KIT

20 kA Kreuzleiter (Cross-Conductor)



Vorteile

- Hohe Ausnutzung des Kreisquerschnittes
- Einfaches Herstellverfahren für lange Längen

12 Cross-Conductor für 20 kA Stromschienenelement

- Motivation und Anwendungen
- Stand der Entwicklung von HTS DC Hochstromschienen
- Projektübersicht DEMO200
- Auslegungsbeispiele und Projektstatus
- Zusammenfassung

Zusammenfassung

- Mit 200 kA wird weltweit erstmals eine HTS Anwendung bei Hochstrom von größer als 100 kA demonstriert.
- Die Konstruktion für die Hauptkomponenten Stromzuführung, Stromschienenelement und Verbindungselement ist abgeschlossen.
- Der Subscale Test mit 3x20 kA Modulen befindet sich im Aufbau.

Danksagung

Die Autoren danken allen Projektpartnerinnen und Projektpartnern, insbesondere

- Stefan Huwer, Claus Hanebeck, Carsten Räch (VESC)
- Friedhelm Herzog (Messer)
- Andrej Kudymow, Sonja Schlachter, Michael Wolf, Johann Willms, Harald Itschner (KIT)
- Steffen Elschner (Hochschule Mannheim) und Jörg Brand (Ingenieurbüro Brand)