Offshore Wind Energy Grid Integration

Application of HVDC and Hydrogen for the connection of Offshore Wind Farms

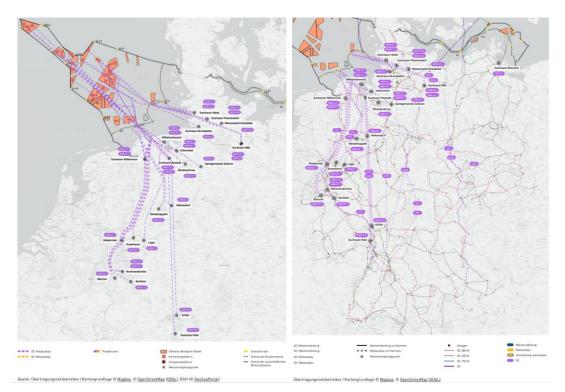
Petr Kadurek, Melanie Hoffmann

21.09.2023

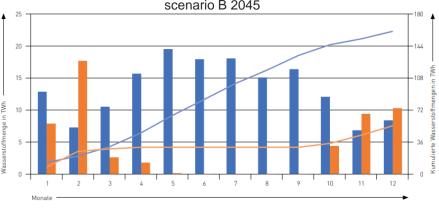
Agenda

- 1. Introduction Offshore Wind Developments
- 2. Grid Connection Possibilities
- 3. Utilisation of Hydrogen for Offshore Wind Connections
- 4. Summary

Introduction Offshore Wind Developments


- Large demand of energy in the form of electricity and gas/hydrogen for heating and energy heavy industrial applications, e.g. steel production, transportation.
- Stabilisation and flexibility of energy grid essential for security of supply.
- Offshore wind farms can provide high amount of energy:
 - Electricity: Electrical connections using Alternating Current (AC) or High-Voltage Direct Current (HVDC)
 - Hydrogen: Production offshore / onshore with decentralised or centralised $\rm H_2$ production
- High capacity increase according to grid development plan (NEP):
 - Planned capacity offshore wind in 2045: 70 GW
 - Planned electrolyser capacity in 2045: 50 80 GW, depending on scenario
- Offshore wind as a main enabler for the energy transition

Grid Connection Possibilities - HVDC


- Many possibilities to connect offshore wind farms.
- In Germany mainly HVDC connections due to long distances to onshore grid connection point.
- Number of HVDC Connections is increasing on- and offshore.
- Offshore DC grid will be more interconnected in the future.
- New standard: 2GW concept with direct connection of offshore wind farm cables to the converter platform.

Hydrogen Demand in Germany **Production – Transportation – Storage**

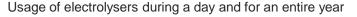
- High demand for hydrogen foreseen in German Grid ٠ Development Plan (NEP) depending on scenario and electrolyser efficiency.
- Demand for electrolyser for the electricity demand . when using gas turbines only with hydrogen:
 - Hydrogen production in 2037: 71 116 TWh .
 - Hydrogen production in 2045: 154 250 TWh .
- Assumption: Meet hydrogen demand for gas power ٠ plants with hydrogen produced in Germany.
- **Transportation** of hydrogen important due to . expected high demand for additional sectors other than electricity, which makes hydrogen imports necessary.
- Hydrogen storage essential to meet demand over . whole year, considering the fluctuating production capacities during the year.

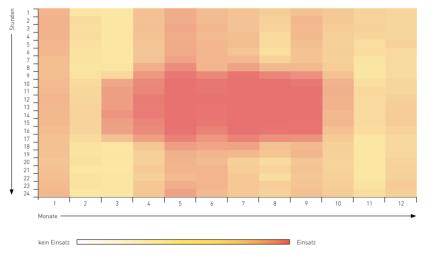
— Produktion (kumuliert)

Bedarf zur Stromerzeugung

Monthly hydrogen production and hydrogen demand for electricity in scenario B 2045

Source: NEP V2023, 2nd draft, part 1

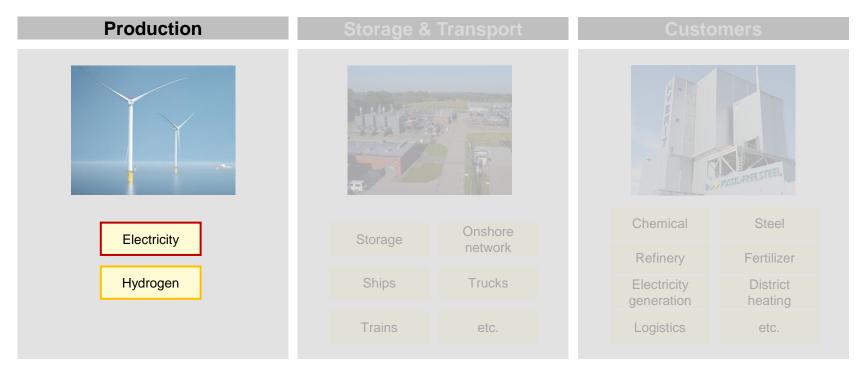

Bedarf zur Stromerzeugung (kummuliert)



ź

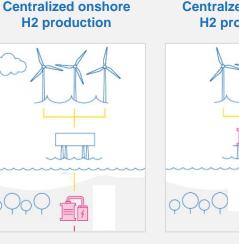
Hydrogen Demand in Germany Production – Transportation – Storage

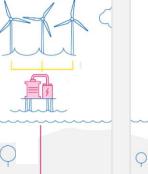
- Use of electrolysers especially during summer months and around mid day due to high electricity production and low prices.
- Hydrogen infrastructure already foreseen for 2037
- Integration of 80 GW electrolyser capacity in infrastructure are planned.
- Development of electrical grid and hydrogen infrastructure are interdependent.
- Electrolyser **locations** are selected to minimize congestions in the transmission grid and to minimize the shut down of renewable energy generation during high generation phases.
- This involves high **uncertainties** and a multi-criteria assessment to identify the right locations for electrolysers.



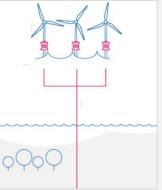
Source: NEP V2023, 2nd draft, part 1

Production	Storage &	Transport	Customers			
				POSSIL-FREE,STEEL		
Electricity	Storage	Onshore	Chemical	Steel		
Licothony	Otorage	network	Refinery	Fertilizer		
Hydrogen	Ships	Trucks	Electricity generation	District heating		
	Trains	etc.	Logistics	etc.		

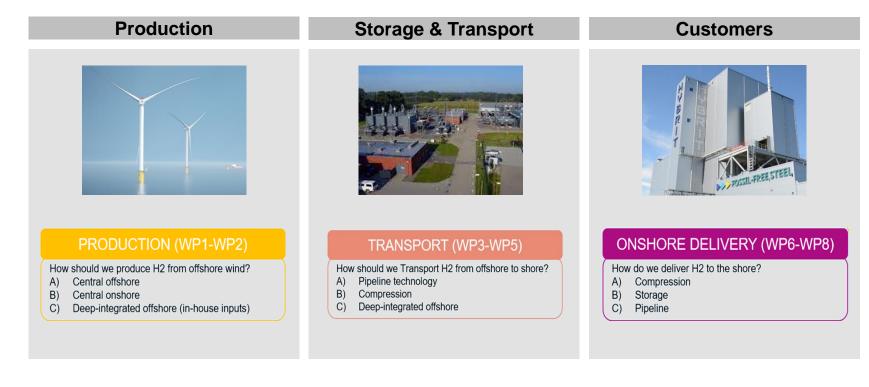


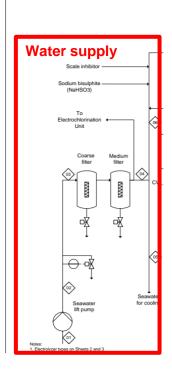

Offshore wind is particularly well suited to the production of green hydrogen

Offshore Hydrogen Concepts:

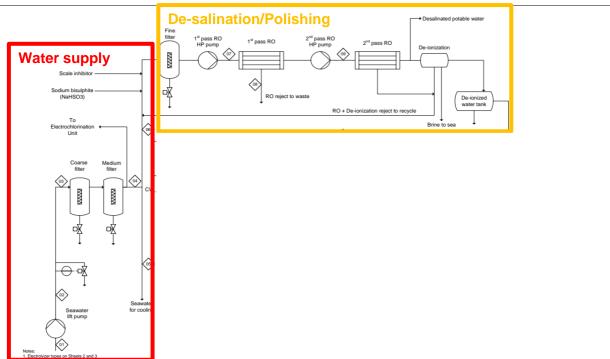

- Major savings on expensive offshore power infrastructure (e.g. substations / cables)
- No electricity grid expansion compared to onshore electrolysis
- Transport and storage of H₂ cheaper and more efficient than of electrons
- Significant savings and lower overall energy losses compared to onshore electrolysis¹
- · High number of full load hours of offshore wind
- Access to water for electrolysis and site
- Can be placed in locations with the highest capacity factor without need for grid availability

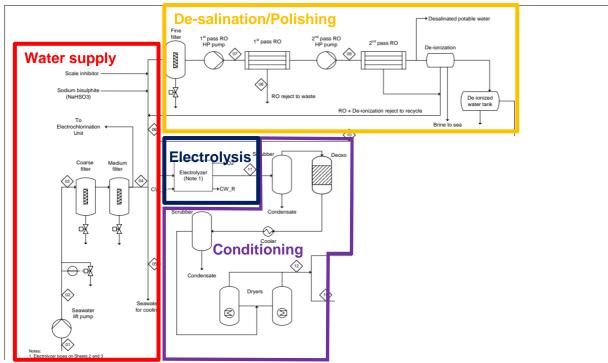
Centralzed offshore H2 production

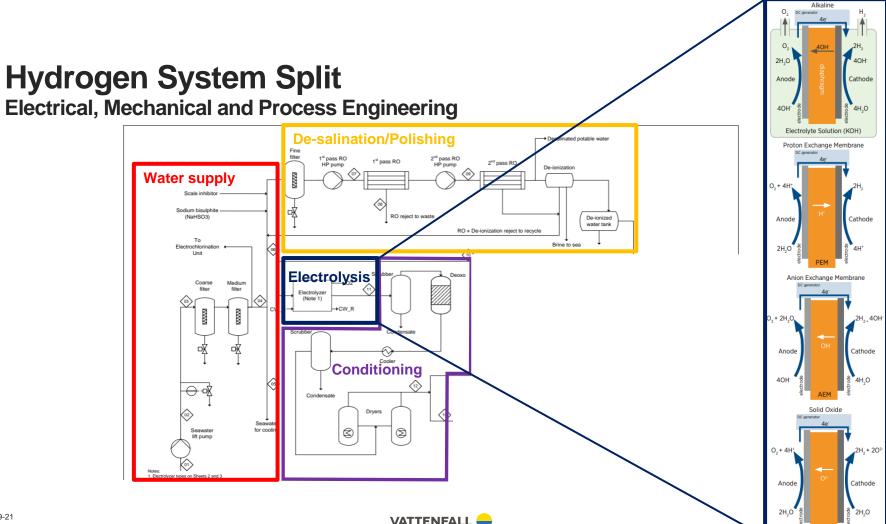

Decentralized offshore H2 production

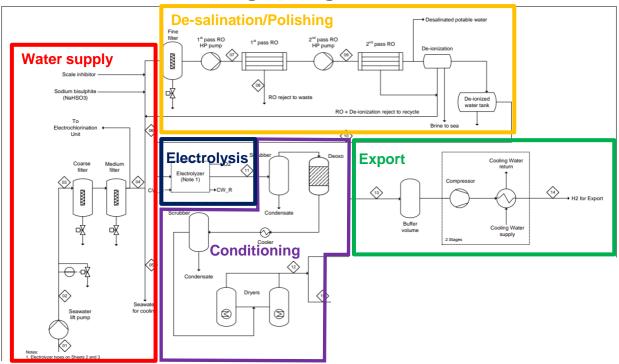

1 System integration of offshore wind 2030 – 2040 (GasUnie TenneT, Guidehouse report, 2021)

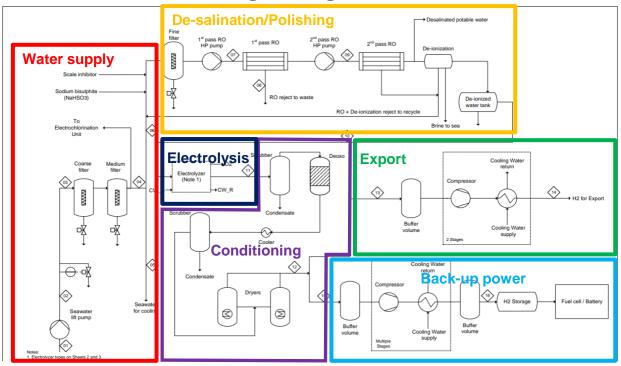
Electricity Hydrogen	Production				Storage & Trans	sport	Customers		
		~						C C C C C C C C C C C C C C C C C C C	
Capacity in GW Efficiency ~ ki ons H2/year		Production Capacity in GW	Efficiency	~ kTons H2/year		Character		Other	
Offshore Decentral 1 0.99 80 Storage Steel	Offshore Decentral	1	0.99	80				Steel	
Chemical Chemical								Chemical	
Offshore Central 1 0.99 80 Electricity generation	Offshore Central	1	0.99	80		Ships			
Onshore Central 1 0.95 75 Trucks District heating	Onshore Central	1	0.95	75		Trucks			











At Vattenfall, we are pursuing a three-step maturation approach towards GW-scale production of offshore hydrogen

Vattenfall Offshore Hydrogen Roadmap

We will qualify the technical solution for large-scale deployment with a first dedicated cluster as the market progresses towards the required levels of economic attractiveness

