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Foreword

This script originates from a correspondent lecture held during the summer term 2018 at the
University of Bremen. The lecture itself is split into an optimization and an application part.
The application part contains

• Production and Inventory

• Maintenance and Replacement

• Investment and Financial Planning

and the optimization part extends solutions using

• Penalty- and Multiplier-Methods

• SQP and Interior Point Methods

• Integer Optimization and Heuristics

At the end of the lecture, students should understand the concepts of different kinds of opti-
mization methods and be able to apply these methods to different applications.

Parts of the scripts are based on script of Prof. Gerdts [4] and the books [1, 6], which will
be used without further notice. Additional useful information may be found in [2].
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Chapter 1

Introduction

Optimization and optimal control problem arise in many areas such as econometrics, engineering
and natural sciences. In this lecture, we will discuss a varity of economic applications and
respective models, which will lead us to optimal control problems. Simple models may still be
solved analytically, yet as for more complex models such solutions are unknown, we also discuss
optimization based solution methods to resolve these issues. Within this chapter, we lay the
foundations for the formulation and solution of optimal control and optimization problems in
general.

1.1 Optimal Control Problems

In this section, we define a process to be driven by a model, which is a a discrete or continuous
time control system. Having defined this problem, our aim in the following sections will be to
actually solve these types of problem via discretization and optimization.

First, we need to introduce a basic definition of a our variables:

Definition 1.1 (Time set)
A time set T is a subgroup of (R,+).

By setting T = Z or T = R, we can formally switch between discrete and continuous time.
Having defined time, we now introduce the states and controls of a system:

Definition 1.2 (State and Control)
We call the set U the control set and the set X the state set. Moreover, the set of all maps
from a set I ⊂ T to a set U is denoted by UI = {u | u : I → U} and called the set of control
functions. The elements x ∈ X and u ∈ U are called state and control of a system.

Given time, states and control, we can now define their connection via a dynamic system:

Definition 1.3 (Discrete time Control System)
Consider a function f : X × U → X . A system of difference equations

xu(k + 1, x0) := f(xu(k, x0), u(k)), k ∈ N0 (1.1)

is called a discrete time control system. Moreover xu(k, x0) ∈ X is called state vector and
u(k) ∈ u control vector.

1



2 Chapter 1: Introduction

Existence and uniqueness of a solution of (1.1) is clear by induction. In particular, we
obtain a unique solution in positive time direction for a certain maximal existence interval.

In the continuous time setting, a control system is given as follows:

Definition 1.4 (Continuous time Control System)
Consider a function f : X × U → X . A system of first order ordinary differential equations

ẋu(t) = f(xu(t, x0), u(t)), t ∈ R (1.2)

is called a continuous time control system.

The control system itself only gives us the state change over time. To compute a possible
future trajectory, we require additional information on the starting point.

Definition 1.5 (Initial Value Condition)
Consider a point x0 ∈ X . Then the equation

x(0) = x0 ∈ X (1.3)

is called the initial value condition.

Note that existence and uniqueness of a trajectory is guaranteed if the system is Lipschitz
or if the requirements of Caratheodory’s Theorem are met, cf. [5] and [7] respectively. Utilizing
existence and uniqueness, we can introduce the notion of a trajectory or solution:

Definition 1.6 (Solution)
We call the unique function xu(t, x0) a solution for t ∈ T if it satisfies the initial value condition
(1.3) and the control system equation (1.1) or (1.2).

Similar to the static case, we assign costs to a trajectory of the control system. In principle,
this simple fact already removes the dynamics from our problem by simply considering the
entire time stream as an optimization variable. This brings us to the notion of a so called
optimal control problem. The costs are given via the functional

JN(x0, u) =
N−1∑
k=0

ℓ (xu(k, x0), u(k)) + L(xu(N, x0)) (1.4)

where ℓ : X × U → R and L : X → R are the so called stage and terminal costs. A typical
choice of these functions is the quadratic version

ℓ(x, u) = ∥x∥2 + λ∥u∥2, L(x) = ∥x∥2.

Note that computing a control

u⋆ = argmin
u∈UN

JN(x0, u) (1.5)

may not be tractable if N is very large or even N = ∞.
For control systems (1.1) or (1.2), constraints are motivated by boundaries of processes, e.g.

that there exists only a finite number of gears in a gearbox or that the capacity of a road is
bounded. The most general approach to incorporate constraints in the control system setting
is via sets:
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Definition 1.7 (Constraints)
For given state and control sets X and U , we call the subsets

X ⊂ X and U ⊂ U (1.6)

the constrained state and control sets.

Based on these constraints, we can now introduce the concept of feasibility sets. Since
we have to anticipate future events in the state space, feasibility sets require us to change the
perspective in time. Hence, a reverse time view is needed. This leads to the following definition:

Definition 1.8 (Feasible Set and Admissible Set)
Consider a control system (1.1) (1.6) and X0 ⊂ X. For any time frame I = [0, N ] ⊂ N0 the
feasible set is defined via

XN := {x0 | ∃u : xu(N, x0) ∈ X0, xu(k, x0) ∈ X, u(k) ∈ U ∀k ∈ {0, . . . , N − 1}}. (1.7)

Moreover, the admissible set is given by

UN
XN (x0) := {u | xu(N, x0) ∈ X0, xu(k, x0) ∈ X, u(k) ∈ U ∀k ∈ {0, . . . , N − 1}}. (1.8)

The difference between feasibility and admissibility is the following:

Admissibility deals with controls, feasibility is about states. In particular, a control
is called admissible for a specific state. And a state is called feasible if there exists
a control sequence such that future states satisfy the state constraints.

Last, we can combine the cost functional (1.4) with the control system dynamics (1.1), the
initial value condition (1.3) and the feasibility condition (1.7):

Definition 1.9 (Optimal Control Problem (OCP))
We call the problem

Minimize JN(x0, u) :=
N−1∑
k=0

ℓ(xu(k), u(k)) + L(xu(N, x0))

with respect to u(·) ∈ UN
XN (x0), subject to

xu(0, x0) = x0 ∈ X0, xu(k + 1, x0) = f(xu(k, x0), u(k))

(OCP)

an optimal control problem.

Remark 1.10
If the time period between two time instances is fixed to T , we can obtain the equivalent con-
tinuous time optimal control problem by replacing (1.1) by (1.2) and the cost (1.4) by

JN(x0, u) =

∫ NT

t=0

ℓ (xu(t, x0), u(t)) dt+ L(xu(NT, x0)).



4 Chapter 1: Introduction

Within the next section, we give the foundations of the so called “first discretize then
optimize” approach. In a transformation step, we discretize the optimal control problem (OCP)
into a nonlinear optimization problem in standard form (NLP).

Remark 1.11
Apart from the “first discretize then optimize” approach there also exists a so called “first op-
timize then discretized” method. Applying the latter requires in deep knowledge of Pontryagin’s
minimum principle. The basic idea is to introduce the adjoint differential equation as part of
an integrated solution. Yet, this approach is no universal remedy as computing the solution of
this approach requires numerical methods similar to optimization methods as well.

1.2 Optimization

Within the standard setting of this lecture, we suppose functions

F : Rnz −→ R,
G : Rnz −→ RnG ,

H : Rnz −→ RnH

to be given where R denotes the set of real numbers. We refer to the function F as the cost
function. The functions G and H are called the inequality and equality constraints. These
functions shall be sufficiently often continuously differentiable. Within this lecture, we will use
the notation for derivatives, which is common in nonlinear optimization. For a continuously
differentiable function g = (g1, . . . , gp) : Rnz → Rp we denote the Jacobian matrix by

∇zg(z) =


∂g1
∂z1

· · · ∂gp
∂z1

...
...

∂g1
∂zn

· · · ∂gp
∂zn


which we abbreviate to ∇g if there is no ambiguity. For a twice continuously differentiable
function g : Rnz → R we write the so called Hessian as

∇2
zzg(z) =


∂2g
∂z1z1

· · · ∂2g
∂z1znz

...
...

∂2g
∂znz z1

· · · ∂2g
∂znz znz


which we abbreviate to ∇2g if there is no danger of confusion.

The argument of the functions F , G, H is called the optimization variable and will be
denoted by z ∈ Rnz . Last, we will use the sets I = {1, . . . , nG} and E = {1, . . . , nH}, which we
refer to as the set of inequality and equality constraints.

Then, we define the standard nonlinear optimization problem (NLP) as follows:

Definition 1.12 (Nonlinear Optimization Problem)
We call the problem

minimize F (z)

with respect to z ∈ Rnz

subject to Gi(z) ≤ 0 for all i ∈ I and Hi(z) = 0 for all i ∈ E
(NLP)



1.2 Optimization 5

with maps F : Rnz → R, G : Rnz → RnG , and H : Rnz → RnH a nonlinear optimization problem
in standard form.

The constraints induce the following feasible set:

Definition 1.13 (Feasible Set)
For a problem (NLP) the set

F = {z | Gi(z) ≤ 0, i ∈ I; Hi(z) = 0, i ∈ E} (1.9)

is called the feasible set and the elements z ∈ F are called feasible points.

Note that the set F from Definition 1.13 can only be shown to be closed if the functions G
and H are continuous.

The cost function F now allows us to introduce so called local minimizers, i.e. points for
which the value of the cost function is lower than for surrounding points. These point — at best
with the lowest value possible — will be the target points for any of the algorithms we discuss
later. Since a minimizer for the problem (NLP) has to be an element of F by definition, this
property need to be included in the definition of a local minimizer in the context of constrained
optimization problems:

Definition 1.14 (Local Minimizer)
A point z⋆ ∈ Rnz is a local minimizer of the problem (NLP) if there exists a neighborhood N
of z⋆ such that F (z⋆) ≤ F (z) holds for all z ∈ N ∩ F .

The basis of the analysis of nonlinear optimization problems is given by Taylor’s Theorem:

Theorem 1.15 (Taylor’s Theorem)
Consider a function F : Rnz → R which is continuously differentiable and a direction vector
d ∈ Rnz . Then we have

F (z + d) = F (z) +∇F (z + td)⊤d (1.10)

for some t ∈ (0, 1). If F is twice continuously differentiable, then we also have

F (z + d) = F (z) +∇F (z)⊤d+
1

2
d⊤∇2F (z + td)d (1.11)

for some t ∈ (0, 1).

Proof. Using the fundamental theorem of calculus, we have

F (z + d) = F (z) +

1∫
0

d

dt
F (z + td)dt.

By the mean value theorem, there exist a t ∈ (0, 1) with

1∫
0

d

dt
F (z + td)dt =

d

dt
F (z + td) = ∇F (z + td)⊤d,
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where we used the chain rule for the second equality. This shows(1.10). By partial integration
we further obtain

1∫
0

d

dt
F (z + td)dt =

d

dt

∣∣∣∣
t=0

F (z + td) +

1∫
0

(1− t)
d2

dt2
F (z + td)dt

and again using the mean value theorem we get

1∫
0

(1− t)
d2

dt2
F (z + td)dt =

d2

dt2
F (z + t′d)

1∫
0

(1− t)dt =
1

2

d2

dt2
F (z + t′d)

for some t′ ∈ (0, t). Since by the chain rule we have

d

dt

∣∣∣∣
t=0

F (z + td) = ∇F (z)⊤d and
1

2

d2

dt2
F (z + t′d) =

1

2
d⊤∇2F (z + t′d)d

this shows (1.11).

The advantage of Taylor’s theorem is that it allows us to introduce knowledge on the gradient
∇F (z⋆) and the Hessian ∇2F (z⋆) into the search for a local minimizer z⋆. In particular, first
order necessary conditions are derived very easily.

Theorem 1.16 (First Order Necessary Conditions)
Consider a vector z⋆ ∈ Rnz and a function F : Rnz → R where F is continuously differentiable in
an open neighborhood of z⋆ and z⋆ ∈ Rnz is a local minimizer of F . Then we have ∇F (z⋆) = 0.

Proof. Suppose ∇F (z⋆) ̸= 0 and set d := −∇F (z⋆). Then we get d⊤∇F (z⋆) = −∥∇F (z⋆)∥2 <
0. Since ∇F is continuous in a neighborhood of z⋆, there exists a scalar T > 0 such that
d⊤∇F (z⋆ + td) < 0 holds for all t ∈ [0, T ]. By (1.10), for any t ∈ (0, T ] we have F (z⋆ + td) =
F (z⋆) + td⊤∇F (z⋆ + td) for some t ∈ (0, t). This implies F (z⋆ + td) < F (z⋆) for all t ∈ (0, T ]
which contradicts the local minimizer property of z⋆.

In a similar manner, information on the Hessian can be used to derive second order necessary
conditions from equation (1.11).

Theorem 1.17 (Second Order Necessary Conditions)
Consider a vector z⋆ ∈ Rnz and a function F : Rnz → R where F is twice continuously
differentiable in an open neighborhood of z⋆ and z⋆ ∈ Rnz is a local minimizer of F . Then we
have ∇F (z⋆) = 0 and the Hessian ∇2F (z⋆) is positive semidefinite.

Proof. From Theorem 1.16 we know that ∇F (z⋆) = 0. Now, suppose ∇2F (z⋆) is not positive
semidefinite and choose a vector d such that d⊤∇2F (z⋆)d < 0 holds. Using continuity of
∇2F (z⋆) in a neighborhood of z⋆, we know that there exists a scalar T > 0 such that d⊤∇2F (z⋆+
td)d < 0 holds for all t ∈ [0, T ]. Hence, using (1.11), for any t ∈ (0, T ] and some t ∈ (0, t) we
obtain

F (z⋆ + td) = F (z⋆) + t∇F (z⋆)⊤d+
1

2
td⊤∇2F (z⋆ + td)dt < F (z⋆).

Similar to the proof of Theorem 1.16, F is strictly decreasing along the direction d which
contradicts the local minimizer property of z⋆.
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The results from Theorems 1.16 and 1.17 reveal guidelines to what we are looking for, i.e.,
which properties a local minimizer must fulfill. However, these results cannot be used to identify
a local minimizer once we have found a candidate satisfying the previous conditions. In order
to perform such a check, the following theorem can be used.

Theorem 1.18 (Second Order Sufficient Conditions)
Consider a vector z⋆ ∈ Rnz and a function F : Rnz → R where F is twice continuously
differentiable in an open neighborhood of z⋆. If ∇F (z⋆) = 0 and ∇2F (z⋆) is positive definite,
then z⋆ is a local minimizer of F .

Proof. Due to F being twice continuously differentiable there exists a radius r > 0 such that
∇2F (z) is positive definite for all z ∈ {z | ∥z − z⋆∥ < r}. Now take any vector d ∈ Rnz with
∥d∥ < r, then we have z⋆ + d ∈ {z | ∥z − z⋆∥ < r} and

F (z⋆ + d) = F (z⋆) + d⊤∇F (z⋆) +
1

2
d⊤∇2F (z⋆ + td)d

= F (z⋆) +
1

2
d⊤∇2F (z⋆ + td)d

for some t ∈ (0, 1). Since (z⋆ + td) ∈ {z | ∥z − z⋆∥ < r}, we have d⊤∇2F (z⋆ + td)d > 0 and
therefore F (z⋆ + d) > F (z⋆) holds showing the assertion.

Now, the question arises, of how to get from from an (OCP), which we discussed in Sec-
tion 1.1 to such an (NLP), and later how to solve such a problem.

1.3 Discretization Methods

Even though (OCP) may already a discrete time problem, the process of converting (OCP)
into (NLP) is called discretization. Here, we will stick with this commonly used term while in
a strict sense we only convert one discrete problem into another.

As we will see, the (NLP) problem related to (OCP) can be formulated in different ways. The
first variant, called full discretization, incorporates the dynamics (1.1) as additional constraints
into (NLP). This approach is very straightforward but causes large computing times for solving
the problem (NLP) due to its dimensionality.

The second approach is designed to deal with this dimensionality problem. It recursively
computes xu(k, x0) from the dynamics (1.1) outside of the optimization problem (NLP), thus
reducing the number of constraints. However, this so called recursive discretization has some
drawbacks regarding parallelization, warm start and sensitivity.

1.3.1 Full Discretization

Within the full discretization technique, the trajectory xu(k, x0) in (OCP) is given by the dy-
namics (1.1) or (1.2). Now, each control value u(k), k ∈ {0, . . . , N − 1} is an optimization vari-
able in (OCP) and also an optimization variable in (NLP). The idea of the full discretization is
now to treat each point on the trajectory xu(k, x0) as an additional independent nx-dimensional
optimization variable and define the total optimization variable via

z := (xu(0, x0)
⊤, . . . , xu(N, x0)

⊤, u(0)⊤, . . . , u(N − 1)⊤)⊤. (1.12)
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To guarantee that the solution of (NLP) also corresponds to a trajectory of (1.1), we add
respective equality constraints to (NLP), which read

xu(k + 1, x0)− f(xu(k, x0), u(k)) = 0 for k ∈ {0, . . . , N − 1} (1.13)

xu(0, x0)− x0 = 0 (1.14)

Additionally, we have to reformulate the constraints u ∈ UN
XN (x0), which can be written as

xu(k, x0) ∈ X k ∈ {0, . . . , N}
u(k) ∈ U k ∈ {0, . . . , N − 1} (1.15)

Note that the setting is easily extended to the case of time varying constraints.

In the following, we assume X and U to be given by a set of functions

GS
i : Rn

x × Rn
u → R, i ∈ IS = {1, . . . , nG}

HS
i : Rn

x × Rn
u → R, i ∈ ES = {1, . . . , nH}

via equality and inequality constraints of the form

GS
i (xu(k, x0), u(k)) ≤ 0, i ∈ IS, k ∈ Ki ⊆ {0, . . . , N} (1.16)

HS
i (xu(k, x0), u(k)) = 0, i ∈ ES, k ∈ Ki ⊆ {0, . . . , N}. (1.17)

where the index sets Ki, i ∈ IS ∪ ES formalize the possibility that some of these constraints
are not required at time instant k ∈ {0, . . . , N}. This reveals the following:

Definition 1.19 (Full Discretization)
The nonlinear programming problem in standard form (NLP)

Minimize F (z) :=
N−1∑
k=0

ℓ(xu(k, x0), u(k)) + L(xu(N, x0))

with respect to

z := (xu(0, x0)
⊤, . . . , xu(N, x0)

⊤, u(0)⊤, . . . , u(N − 1)⊤)⊤ ∈ Rnz

subject to G(z) =
[
GS

i (xu(k, k), u(k))
]
i∈IS ,k∈Ki

≤ 0

and H(z) =


[
HS

i (xu(k, x0), u(k))
]
i∈ES ,k∈Ki

[xu(k + 1, x0)− f(xu(k, x0), u(k))]k∈{0,...,N−1}
xu(0, x0)− x0

 = 0

is called the full discretization of Problem (OCP).

The advantage of the full discretization is its simplicity. On the backside, the method
results in a high dimensional optimization variable z ∈ R(N+1)·nx+N ·nu and a large number of
both equality and inequality constraints. Since computing times of solvers for (NLP) depend
massively on the size of the problem, this is unwanted.
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1.3.2 Recursive Discretization

The methodology of the recursive discretization is inspired by the (hierarchical) divide and
conquer principle. Basically, the control system dynamics is decoupled and treated as a sub-
problem of the optimization problem. These two layers exchange information regarding the
control sequence u and the initial value x0 from the (NLP) to the simulation, and the state
sequences xu(·, x0) in the opposite direction.

The optimization variable z reduces to

z := (u(0)⊤, . . . , u(N − 1)⊤)⊤ (1.18)

and the constraint functions HS
i : Rn

x × Rn
u → R, i ∈ ES are given by (1.16). The inequality

constraints GS
i : Rn

x × Rn
u → R, i ∈ IS and the cost function F remain unchanged. Hence, the

recursively discretized problem takes the following form:

Definition 1.20 (Recursive Discretization)
The nonlinear programming problem in standard form (NLP)

minimize F (z) :=
N−1∑
k=0

ℓ(xu(k, x0), u(k)) + L(xu(N, x0))

with respect to z := (u(0)⊤, . . . , u(N − 1)⊤)⊤ ∈ Rnz

subject to H(z) =
[
HS

i (xu(k, x0), u(k))
]
i∈ES ,k∈Ki

= 0

and G(z) =
[
GS

i (xu(k, x0), u(k))
]
i∈IS ,k∈Ki

≥ 0

is called the recursive discretization of Problem (OCP).

Analyzing the dimension of the optimization variable and the number of equality constraints,
we see that using the recursive discretization the optimization variable consists of N ·nu scalar
components and the number of equality constraints is reduced to the number of conditions in
(1.16). We can conclude that this discretization is minimal in these regards.

Unfortunately, the method has some drawbacks regarding parallelization, warm start and
sensitivity. These shortcomings can to some extend be circumvented by incorporating multiple
shooting techniques, which are beyond the scope of this lecture. The basic idea is to find
a suitable compromise between the full and the recursive discretization by introducing few
breaking points into the recursive discretization.

1.4 Solution Approach

Our aim now is to construct numerical methods to compute such a local minimizer z⋆ of a
problem (NLP). In high school, the problem at hand was (at least) twice continuously differen-
tiable and without constraints. In that case, taking the first derivative and computing its zeros
reveals candidates for optimality. Inserting these candidates into the second derivative, local
minima, maxima and inflection points can be identified.

The mathematical background of the necessary and sufficient conditions given in respective
theorems is Taylor’s Theorem 1.15. Here, we need to include the constraint functions. To find
our target z⋆, we will require a so called search direction. This can be done by arbitrarily
picking new candidates and trying to identify areas within which the values of the cost function
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are particularly low. Or, if the functions F , G, H exhibit differentiability properties, then
linear approximations can be used. Before coming to the search direction of the optimization
method, we have to know which directions will give us a feasible solution. To this end, also the
constraints are linearized

G(z + d) ≈ G(z) +∇G(z)⊤d and H(z + d) ≈ H(z) +∇H(z)⊤d.

Note that such an approximation makes sense only if the geometry of the feasible set F is —
at least locally — reflected properly when G and H are replaced by approximations. To this
end so called constraint qualifications are considered in the literature.

The linearized functions allow to introduce the tangent cone TF(z) to the feasible set F .

Definition 1.21 (Tangent Cone)
A vector v ∈ Rnz is called tangent vector to F at a point z ∈ F if there exists a sequence
of feasible points (zk)k∈N with zk → z, zk ∈ F and a sequence of positive scalars (tk)k∈N with
tk → 0 such that

lim
k→∞

zk − z

tk
= v (1.19)

holds. The set of all tangent vectors to F at z is called the tangent cone and is denoted by
TF(z).

The tangent cone TF depends on the geometry of F only. At a given feasible point z ∈ F ,
the set TF(z) can be seen as a local approximation of all feasible directions, i.e. all vectors
d ∈ Rnz for which z+αd ∈ F holds for all sufficiently small α > 0. The definition of TF implies
that each feasible direction is contained in TF(z). Conversely, for each element v ∈ TF(z) and
each ϵ > 0 there exists a feasible direction d with ∥d− v∥ < ϵ.

We directly observe that all equality constraints Hi restrict the set of feasible directions.
Yet this is not necessarily the case for all inequality constraints: If Gi(z) > 0 holds, then we can
utilize continuity of Gi to get Gi(z+αd) > 0 for all d ∈ Rnz provided α > 0 is sufficiently small.
If, however, Gi(z) = 0 holds, then an arbitrarily small change of z in the “wrong” direction may
lead to Gi(z + αd) < 0. Hence, the latter inequality constraints also restrict the set of feasible
directions. This gives rise to the so called active set and the respective active constraints :

Definition 1.22 (Active Set)
The active set A(z) at any feasible point z consists of the equality constraint indices from E
together with the indices of the inequality constraints i ∈ I where Gi(z) = 0 holds, that is
A(z) := E ∪ {i ∈ I | Gi(z) = 0}.

Definition 1.23 (Active Constraints)
Consider the active set A(z) of a feasible point z ∈ F . Then we call

A(z) :=

(
(Gi)i∈A(z)∩I
(Hi)i∈E

)
(1.20)

the set or vector of active constraints and nA = ♯A(z) the number or dimension of active
constraints at z. Moreover, we denote the corresponding Lagrange multiplier vector by λA.
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1.4.1 Necessary Conditions for Optimality

The center of many numerical algorithms for computing the optimum of a nonlinear optimiza-
tion problem (NLP) are the so called Karush–Kuhn–Tucker (KKT) conditions. To state these
conditions, we introduce the Lagrangian L : Rnz × R1+nG+nH → R. For its definition, we re-
quire the Lagrange multipliers λ0 ∈ R, λ ∈ RnH and µ ∈ RnG and define the Lagrangian as a
modification of the cost function F by

L(z, λ0, λ, µ) := λ0F (z) + λ⊤G(z) + µ⊤H(z). (1.21)

Note that the additional terms λ⊤G(z) + µ⊤H(z) penalize violations of the constraints.
Before coming to the general case of a nonlinear optimization problem, let us consider the

more simple convex case, i.e.

minimize F (z)

with respect to z ∈ Rnz

subject to Gi(z) ≤ 0 for all i ∈ I and Hi(z) = Az − b = 0 for all i ∈ E

where we assume the feasible set F to be nonempty. From standard calculus we know that the
set F is convex. Moreover, since F is convex, then also the set of global minima is convex,
and local minima are also global ones. Additionally, we can formulate necessary and sufficient
conditions rather simple:

Theorem 1.24 (Fritz John Conditions – Necessary Conditions for the Convex Case)
Let z⋆ be optimal for a convex optimization problem. Then there exist non trivial Lagrange
multipliers (λ0, λ, µ) ∈ R1+nG+nH such that the following conditions hold:

• Sign condition:

λ0 ≥ 0, λi ≥ 0, i = 1, . . . , nG (1.22)

• Minimality of the Lagrangian:

L(z⋆, λ0, λ, µ) ≤ L(z, λ0, λ, µ) ∀z ∈ F (1.23)

• Complementarity condition:

λiGi = 0, i = 1, . . . , nG (1.24)

• Feasibility:

z⋆ ∈ F (1.25)

Theorem 1.25 (Sufficient Conditions for the Convex Case)
Suppose z⋆ ∈ F is given. If conditions (1.22) – (1.25) hold with λ0 = 1, then z⋆ is optimal.

Since we know how to deal with unconstrained optimization problems, we like to reduce
the constrained one to an unconstrained one and apply known methods to it. To this end, we
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make use of the active set A, which represent all constraints that are satisfied with equality.
We solve these restrictions for some components of z, and optimize over the components that
are left. We illustrate this via an example.

Example 1.26
In order to produce tins, two different materials are used for the lids and the shell, which costs
p1 and p2 units per square unit respectively. The aim is to produce the tins for a given volume
V > 0 at cheapest cost.
Formulation of the (NLP):

1. The lids are circular with radius r > 0 and area r2π. Hence the costs are 2p1r
2π.

2. The area of the shell measures 2rπh, where h > 0 is the height of the tin. The costs are
given by 2p2rπh.

3. The volume of the tin is given by r2πh.

Hence, we have

minimize F (z) = 2p1r
2π + 2p2rπh

with respect to z = (r, h) ∈ R2

subject to H(z) = r2πh− V = 0.

Solution of the equality restriction:
If r ̸= 0, then the constraint H(r, h) = r2πh− V = 0 can be reformulated as

h(r) =
V

r2π
. (1.26)

The case r = 0 can be ruled out since the condition V > 0 cannot be met. For h(r) we then
have

H(r, h(r)) = 0.

Inserting (1.26) into F , we obtain the equivalent optimization problem

minimize F (r, h(r)) = 2p1r
2π +

2V p2
r

with respect to z = r ∈ R.

Computing the optimum:
We apply the known first order necessary conditions (Theorem 1.16) to F (r, h(r)) to obtain a
candidate. Differentiating F (r, h(r)) gives us

dF

dr
(r, h(r)) =

∂F

∂r
(r, h(r)) +

∂F

∂h
(r, h(r)) · ∂h

∂r
(r). (1.27)

To evaluate this expression, we differentiate H(r, h(r)) = 0 with respect to r using the chain
rule which gives us

0 =
∂H

∂r
(r, h(r)) +

∂H

∂h
(r, h(r)) · ∂h

∂r
(r).
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Since ∂H
∂h

(r, h(r)) = r2π ̸= 0 for r ̸= 0, we can solve the latter for ∂h
∂r
(r) and obtain

∂h

∂r
(r) = −

(
∂H

∂h
(r, h(r))

)−1
∂H

∂r
(r, h(r)) = − 1

r2π
2rπh(r) = − 2V

r3π
. (1.28)

Inserting (1.28) into (1.27) and setting (1.27) equal to zero gives us

0 =
dF

dr
(r, h(r)) = 4rπp1 −

2V p2
r2

(1.29)

and reveals the positive solution

r = 3

√
V p2
2πp1

, h(r) =
V

r2π
.

Since the cost function F is convex, this solution represents the minimum.

Alternative solution:
We define the Lagrange multiplier

λ := −∂F

∂h
(r, h(r))

(
∂H

∂h
(r, h(r))

)−1

(1.30)

and insert (1.30) into (1.27) which gives us

0 =
∂F

∂r
(r, h(r)) + λ

∂H

∂r
(r, h(r)).

Moreover, (1.30) is equivalent to

0 =
∂F

∂h
(r, h(r)) + λ

∂H

∂h
(r, h(r))

Using the Lagrangian, these conditions can be written as

0 =
∂L

∂r
(r, h, λ)

0 =
∂L

∂h
(r, h, λ)

0 = H(r, h)

representing the so called Lagrangian multiplier rule. These conditions form a nonlinear equa-
tion system, and its solution corresponds to the one from the first approach.

To state the KKT conditions in the convex case, one typically introduces the Slater condition

∃z ∈ F : G(z) < 0. (1.31)

Note that if no Slater point exists, then only the Fritz–John conditions hold. Since the cost
function F is not present in these conditions due to λ0 = 0, the Fritz–John conditions can also
be seen as degenerate KKT conditions.
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The approach we followed in Example 1.26 utilized one of the fundamental theorems of
calculus, and is not limited to the convex case but applies for the general nonlinear case as well.

Theorem 1.27 (Implicit Function Theorem)
Suppose H : Rnz−nH×RnH to be continuously differentiable and (η⋆, θ⋆) ∈ R(nz−nH)+nH to satisfy
H(η⋆, θ⋆) = 0. If the p×p matrix ∂H

∂θ
(η⋆, θ⋆) is invertible, then there exist neighborhoods Bε(η

⋆)
and Bδ(θ

⋆) with radii ε, δ > 0 and a mapping θ : Bε(η
⋆) → RnH with θ(η⋆) = θ⋆ and

H(η, θ(η)) = 0 ∀(η, θ(η)) ∈ Bε(η
⋆)×Bδ(θ

⋆).

Moreover, θ(·) is continuously differentiable in Bε(η
⋆) and the Jacobian of θ(·) is given by

dθ

dη
(η) = −

(
∂H

∂θ
(η, θ)

)−1

· ∂H
∂η

(η, θ) ∀(η, θ) ∈ Bε(η
⋆)×Bδ(θ

⋆).

Tracking along the footsteps of Example 1.26, we can define the Lagrange multiplier λ via

λ⊤ := −∂F

∂θ
(η⋆, θ⋆) ·

(
∂H

∂θ
(η⋆, θ⋆)

)
and the Lagrangian via

L(z, λ) := F (z) + λ⊤H(z) with z = (η, θ)⊤,

which allows us to apply first order necessary conditions for an unconstrained problem, cf.
Theorem 1.16, revealing

Theorem 1.28 (Lagrange multiplier rule)
Consider F : Rnz → R and H : Rnz → RnH to be continuously differentiable. Suppose z⋆ to be
a minimizer of F with H(z⋆) = 0 and rang(dH(z⋆)/dz) = nH . Then there exists a Lagrange
multiplier λ ∈ RnH satisfying

0 = ∇zL(z
⋆, λ) = ∇F (z⋆) +

dH

dz
(z⋆)⊤λ.

Now, the nonlinear equation system

∇zL(z, λ) = 0, H(z) = 0

can be solved for z and λ using, e.g., Newton’s method, which leads to the so called Lagrange–
Newton Method.

For the more general nonlinear case, the Linear Independent Constraint Qualification LICQ
is used. To define this condition, we utilize the active set, which basically plays this case back
to the one with equality constraints only. We first introduce the set of “linearized” feasible
directions obtained from the linearizations of G.



1.2 Optimization 15

Definition 1.29 (Linearized Feasible Directions)
For a feasible point z ∈ F and the active set A(z) we call the set

F(z) =

{
v ∈ Rnz

∣∣∣∣ v⊤∇Gi(z) ≤ 0 for all i ∈ A(z) ∩ I and
v⊤∇Hi(z) = 0 for all i ∈ E

}
(1.32)

the set (or cone) of linearized feasible directions.

Since TF(z) ⊆ F(z) and we want to show necessary optimality conditons based on lin-
earizations, these sets should coincide. This is the intention of constraint qualifications, i.e.,
that the geometry of TF is captured by the linearizations of Gi and Hi. The linear independence
constraint qualification is probably the most popular one.

Definition 1.30 (LICQ)
Consider a feasible point z and the active set A(z). Suppose that F , H and G are continuously
differentiable. If the elements of the gradient set {∇Gi(z) | i ∈ A(z) ∩ I}∪{∇Hi(z) | i ∈ E} are
linearly independent then we say that the linear independence constraint qualification (LICQ)
holds.

Under this condition we obtain TF(z) = F(z), see [2, Lemma 9.2.1].
Similar to the Lagrange multiplier rule from Theorem 1.28, we can now state a first order

necessary optimality condition — usually called KKT (Karush–Kuhn—Tucker) condition —
for the constrained case, which will serve as a guideline to find local minimizers, see [2, Theorem
9.1.1].

Theorem 1.31 (KKT Conditions)
Consider the problem (NLP) with local minimizer z⋆ ∈ F . Moreover suppose the functions F ,
G and H to be continuously differentiable and the (LICQ) to hold at z⋆. Then there exists
Lagrange multiplier λ⋆ ∈ RnG, µ⋆ ∈ RnH such that the following conditions hold.

∇zL(z
⋆, λ⋆, µ⋆) = 0 (1.33)

Gi(z
⋆) ≤ 0 ∀i ∈ I (1.34)

Hi(z
⋆) = 0 ∀i ∈ E (1.35)

λ⋆
i ≥ 0 ∀i ∈ I (1.36)

λ⋆
iGi(z

⋆) = 0 ∀i ∈ I (1.37)

µ⋆
iHi(z

⋆) = 0 ∀i ∈ E (1.38)

The identity (1.37) is a so called strict complementarity condition which says that either
λ⋆
i = 0 or Gi(z

⋆) = 0 must hold. A special case which is important for nonlinear optimization
algorithms is the following.

Definition 1.32
Consider the problem (NLP) with local minimizer z⋆ ∈ F and Lagrange multipliers λ⋆ ∈ RnG ,
µ⋆ ∈ RnH satisfying (1.33) - (1.38). Then we say that the strict complementarity condition
holds if λ⋆

i > 0 for all i ∈ I ∩ A(z⋆).
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We see that the KKT conditions connect the gradient of the cost function to active con-
straints. In particular, Theorem 1.31 states that for a given minimizer z⋆ moving along an
arbitrary vector v ∈ F(z⋆) either increases the value of the first order approximation of the
cost function, i.e. v⊤∇F (z⋆) > 0, or keeps its value at the same level in the case v⊤∇F (z⋆) = 0.

In the second case, it is unknown if the cost function value is increasing or decreasing along
v. Here, second order conditions can be used to obtain more information about change of F ,
see [2, Theorem 9.3.1] for a corresponding proof.

Theorem 1.33 (Second Order Necessary Conditions)
Consider the problem (NLP) with local minimizer z⋆ ∈ F . Suppose the functions F , G and
H to be continuously differentiable and the (LICQ) to hold at z⋆. Let λ⋆ ∈ RnG, µ⋆ ∈ RnH be
Lagrange multipliers satisfying the KKT conditions (1.33)–(1.38). Then the inequality

v⊤∇2
zzL(z

⋆, λ⋆, µ⋆)v ≥ 0 (1.39)

holds for all

v ∈ C(z⋆, λ⋆) :=

{
v ∈ F(z⋆)

∣∣∣∣ v⊤∇Gi(z
⋆) = 0 for all

i ∈ A(z⋆) ∩ I with λ⋆
i > 0

}
. (1.40)

1.4.2 Sufficient Conditions for Optimality

The set C is also called the critical cone. It contains all directions which leave the active
inequality constraints with λi > 0 as well as all equality constraints active if one moves a
sufficiently small step along these directions. This, however, does not need to hold for those
active inequality constraints with λi = 0. In particular, we have the equivalence

v ∈ C(z⋆, λ⋆) ⇐⇒


∇Gi(z

⋆)⊤v = 0, for all i ∈ A(z⋆) ∩ I with λ⋆
i > 0,

∇Gi(z
⋆)⊤v ≤ 0, for all i ∈ A(z⋆) ∩ I with λ⋆

i = 0,
∇Hi(z

⋆)⊤v = 0, for all i ∈ E .

Now, we want to get a converse result, i.e. we want to check whether a given feasible point is
actually a local minimizer. As it turns out, the only differences between the previous necessary
conditions and the sufficient conditions presented next is that the constraint qualification is not
required whereas inequality (1.39) needs to be strengthened to a strict inequality, cf. [2, Theorem
9.3.2]:

Theorem 1.34 (Second Order Sufficient Conditions)
Consider a feasible point z⋆ ∈ F and suppose Lagrange multiplier λ⋆ ∈ RnG, µ⋆ ∈ RnH to exist
satisfying (1.33) – (1.38). If we have

v⊤∇2
zzL(z

⋆, λ⋆, µ⋆)v > 0 (1.41)

for all v ∈ C(z⋆, λ⋆) with v ̸= 0, then z⋆ is a strict local minimizer of problem (NLP).
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Chapter 2

Penalty– and Multiplier–Methods

Within this chapter, we discuss the popular Penalty– and Multiplier–Methods, which are based
on coupling the constraints to the cost function via weighted penalty terms. The penalty term
penalizes inadmissible points. The advantage of the method lies the removal of constraints,
which allows for a direct use of algorithms from unconstrained optimization. Here, we do not
display any proofs and instead refer to the book [3], which serves as the basis of this chapter.
Further details may also be obtained from the book [6].

The concept of Penalty–Methods for the general task

minimize F (z)

with respect to z ∈ F ⊂ Rnz .
(PP)

works as follows: First, we require a function r : Rnz → R+
0 such that

r(z)

{
= 0, if z ∈ F
> 0, if z ̸∈ F .

Then, for a suitably chosen sequence of weighting parameters (η[k])k∈N with η[k] > 0 we minimize
the unconstrained penalty function

P (z; ηk) := F (z) + η[k]r(z). (2.1)

For each η[k] > 0 we obtain a solution z[k] := z(η[k]) and we need to ask how the weighting
parameters η[k], k ∈ N have to be chosen for the sequence (z[k])k to converge to a minimum of
the original problem (PP).

The function r can be defined in many ways. Differentiable functions are ideal as they allow
for the usage of known methods for unconstrained optimization. In case r is continuous but
not continuously differentiable, the solution of the penalty problem is more involved.

2.1 Penalty–Methods

Let’s start this section with an example:

Example 2.1
Consider the optimization problem

Minimize F (z1, z2) := z1 + z2 subject to H(z1, z2) := z21 − z2 = 0.

19



20 Chapter 2: Penalty– and Multiplier–Methods

Now we want to eliminate the constraint. To achieve the latter, we could solve the constraint
function for z2 and insert it into the cost function as illustrated in the Lagrange approach in
the previous Chapter 1. Here, we want to couple a penalty term to the cost function, which
penalizes point satisfying z21 − z2 ̸= 0. One such function is given by

r(z1, z2) := (z21 − z2)
2 = H(z1, z2)

2.

This function realizes r(z1, z2) = 0 if and only if H(z1, z2) = 0. Note that r is differentiable.
We could also have used the absolute value |r(z1, z2)| instead of the square, but this function is
not differentiable.
Instead of F , we now consider the penalty function

P (z1, z2, η) := F (z1, z2) +
η

2
r(z1, z2) = z1 + z2 +

η

2

(
z21 − z2

)2
,

where η > 0 is the weighting parameter.
We can now apply methods for unconstrained optimization, but the question remains on how
the weighting parameter η influences the solution, and under which conditions the solutions
converge to the solution of the original problem. To this end, we first consider the necessary
conditions

0 = ∇zP (z1, z2, η) =

(
1 + 2ηz1 (z

2
1 − z2)

1− η (z21 − z2)

)
.

cf. Theorem 1.16. From these conditions, we obtain the stationary points(
z1(η)
z2(η)

)
=

(
−1

2
1
4
− 1

η

)
.

To see how these point correlate with the solutions of the original problem, we first compute the
stationary points of the Lagrangian

L(z1, z2, λ) = z1 + z2 + λ
(
z21 − z2

)
,

which are given by

0 = ∇zL(z1, z2, λ) =

(
1 + 2λz1
1− λ

)
⇐⇒

(
z1(λ)
z2(λ)

)
=

(
−1

2
1
4

)
with λ = 1.

For the latter, we observe that the solutions of the Penalty–Problem (PP) converge to the
solution of the constrained problem for η → ∞.

For more general results, we consider the equality constrained optimization problem

minimize F (z)

with respect to z ∈ F = {z ∈ Rnz | Hi(z) = 0, i = 1, . . . , nH}.
(PPE)

where all functions z : Rnz → R and Hi : Rnz → R, i = 1, . . . , nH are continuous. The idea of
the penalty method is to approximate the solution z⋆ of the original problem (PPE) iteratively
by a series of unconstrained auxiliary problems. The latter problems consist in minimizing the
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penalty function

P (z, η) = F (z) +
η

2

nH∑
i=1

(Hi(z))
2 (2.2)

for suitable values of η > 0. By attaching the constraints to the cost, leaving the feasible set
F is penalized. The constant η represents a weighting factor, which can be used to adapt the
intensity of the penalization. The Penalty method is given by the following algorithm.

Algorithm 2.2 (Penalty Method)
Suppose a pair of initial values (z[0], η[0]) to be given and set k := 0.
While H(z[k]) ̸≈ 0 do

1. Compute solution z[k] of

minimize P (z, η[k]) = F (z) +
η[k]

2

nH∑
i=1

(Hi(z))
2 over z ∈ Rnz

2. Determine η[k+1] > η[k] and set k := k + 1

Since (PPE) is not differentiable in general, we require methods from unconstrained non
differentiable optimization to solve the minimization of (2.2) in Step 1 of Algorithm 2.2. Here,
the question arises whether such a method actually converges to the solution of problem (PPE).
The answer to that is given in the following theorem:

Theorem 2.3 (Convergence of the Penalty Method)
Suppose F and Hi, i = 1, . . . , nH to be continuous functions and

(
η[k]
)
k
to be strictly monotone

increasing with η[k] → ∞. Moreover, consider the feasible set F to be nonempty and
(
z[k]
)
k
is

a sequence generated by Algorithm 2.2. Then the following holds:

1. The sequence of penalty function values
(
P (z[k], η[k])

)
k
is monotone increasing.

2. The sequence of violations of constraints
(
∥H(z[k])∥

)
k
is monotone decreasing.

3. The sequence of cost function values
(
F (z[k])

)
k
is monotone increasing.

4. We have limk→∞H(z[k]) = 0.

5. Each limit point of the sequence
(
z[k]
)
k
is a solution of (PPE).

Within problem (PPE) we considered equality constraints only. However, we only required
these function to be continuous, which also applies for the modification

max{0, Gi(z)} = 0, i = 1, . . . , nG

of the inequality constraints Gi, i = 1, . . . , nG and allow us to simply extend the penalty
function (2.2) to

P (z, η) = F (z) +
η

2

nH∑
i=1

(Hi(z))
2 +

η

2

nG∑
i=1

(max{0, Gi(z)})2 .
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The main disadvantage of the Penalty method is the fact that the weighting factor η must tend
to ∞ to obtain convergence of the method. This leads to ill-conditioned problems in Step 1 of
Algorithm 2.2.

Note that so far we didn’t state how the weighting factor η[k+1] shall be determined in
Step 2 of Algorithm 2.2. To derive the latter, we analyze how we can construct a sequence(
η[k]
)
k
along

(
z[k]
)
k
such that both sequences converge to a KKT point (z⋆, λ⋆) of the original

problem (PPE). To this end, we require continuous differentiability of the functions F and Hi,
i = 1, . . . , nH . A KKT point (z⋆, λ⋆) satisfies

0 = ∇F (z⋆) + λ⋆
i

nH∑
i=1

∇Hi(z
⋆).

Since z[k] is a minimum of P , we have that

0 = ∇zP (z[k], η[k]) = ∇F (z[k]) + η[k]
nH∑
i=1

Hi(z
[k])∇Hi(z

[k]).

Comparing these expressions, it seems promising to choose

λ
[k]
i = η[k]Hi(z

[k]) (2.3)

as an approximation of the Lagrange multipliers λ⋆
i . For this choice, the following result holds

true:

Theorem 2.4 (Convergence of Adjoints)
Consider F and Hi, i = 1, . . . , nH to be continuous functions and

(
z[k]
)
k
to be a sequence

generated by Algorithm 2.2 with z[k] → z⋆ for k → ∞. Moreover, the gradients ∇Hi(z
⋆),

i = 1, . . . , nH are linear independent and the sequence
(
λ[k]
)
k
is given by (2.3). Then, the

following holds:

1. The sequence
(
λ[k]
)
k
converges to a vector λ⋆.

2. (z⋆, λ⋆) is a KKT point of the original problem (PPE).

At the same time, (2.3) gives rise to the determination of the weighting factor via

η[k+1] = η[k]
nH∑
i=1

Hi(z
[k])

2.2 Multiplier–Penalty–Methods

Multiplier–Penalty methods are similar to Penalty methods, but utilize exact and differentiable
penalty functions — the so called Lagrange function. Again, we consider the equality con-
strained problem

minimize F (z)

with respect to z ∈ F = {z ∈ Rnz | Hi(z) = 0, i = 1, . . . , nH}.
(PPE)

where all functions z : Rnz → R and Hi : Rnz → R, i = 1, . . . , nH are twice continuously
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differentiable. Suppose z⋆ is a local minimum of (PPE). Then, for η > 0 we have that z⋆ is also
a local minimum for

minimize F (z) +
η

2
∥H(z)∥2 over z ∈ Rnz such that H(z) = 0.

The Lagrangian of this problem is given by

La(z, λ, η) := F (z) +
λ

2
∥H(z)∥2 + η⊤H(z)

and is called extended or augmented Lagrangian or Multiplier–Penalty–Function. It can be
shown, that the weighting factor η within La is not required to tend to infinity in order to
obtain a local minimum of the original problem (PPE).

Lemma 2.5
Suppose (z⋆, λ⋆) is a KKT point of (PPE). Moreover, the second order sufficient conditions from
Theorem 1.34 hold. Then there exists a finite η0 > 0 such that z⋆ is a strict local minimum of
La(·, λ⋆, η) for all η ≥ η0.

As a conclusion from Lemma 2.5, we can solve the original problem (PPE) indirectly via

minimize La(z, λ
⋆, η)

with respect to z ∈ Rnz .
(PPA)

The penalty parameter η is not required to tend to ∞ as it is the case for the Penalty method
from Algorithm 2.2. Additionally, La is differentiable, which allows us to apply known methods
from unconstrained optimization.

Unfortunately, the optimal Lagrange multiplier λ⋆ is unknown. To approximate the latter,
we suppose η to be sufficiently large and z[k] to be a stationary point of

minimize La(z, λ
[k], η) over z ∈ Rnz .

Necessary condition now read

0 = ∇zLa(z
[k+1], λ[k], η) = ∇F (z[k+1]) +

nH∑
i=1

(
λ
[k]
i + ηHi(z

[k+1])
)
∇Hi(z

[k+1]).

Moreover, for a KKT point (z⋆, λ⋆) of (PPE), condition

0 = ∇zL(z
⋆, λ⋆) = ∇F (z⋆) +

nH∑
i=1

λ⋆
i∇Hi(z

⋆)

must necessarily hold. Comparing the last two expressions, we obtain the updating technique

λ[k+1] := λ[k] + ηH(z[k+1]]) (2.4)

which gives rise to the following algorithm.

Algorithm 2.6 (Multiplier–Penalty Method)
Suppose a pair of initial values (z[0], η[0]), a weight η[0] > 0 and a σ ∈ (0, 1) to be given and set
k := 0.
While (z[k], η[k]) is not a KKT point of (PPE) do
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1. Compute solution z[k+1] of (PPA)

minimize La(z, λ
[k], η[k]) over z ∈ Rnz

2. Set λ[k+1] according to (2.4)

λ[k+1] := λ[k] + η[k]H(z[k+1])

3. If ∥H(z[k+1])∥ ≥ σ∥H(z[k])∥, then set η[k+1] = 10η[k], otherwise set η[k+1] = η[k]

4. Set k := k + 1

We can extend our setting (PPE) to include inequality constraints

minimize F (z) over z ∈ Rnz such that G(z) ≤ 0, H(z) = 0.

To this end, we introduce slack variables s = (s1, . . . , snG
) ∈ RnG and obtain

minimize F (z)

over (z, s) ∈ Rnz+nG

such that Gi(z) + s2i = 0, i = 1, . . . , nG

Hi(z) = 0, i = 1, . . . , nH

The augmented Lagrangian of this problem is given by

La(z, s, λ, µ, η) = F (z) +
η

2
∥H(z)∥2 + µ⊤H(z) +

nG∑
i=1

(
λ(Gi(z) + s2i ) +

η

2
(Gi(z) + s2i )

2
)
.

For a given z, we can explicitly solve this minimization with respect to s and obtain

si =

(
max

(
0,−

(
λi

η
+Gi(z)

)))1/2

, i = 1, . . . , nG.

Inserting the latter in the augmented Lagrangian we see

La(z, λ, µ, η) = F (z) + µ⊤H(z) +
η

2
∥H(z)∥2 + 1

2η

G∑
i=1

(
(max{0, λi + ηGi(z)})2 − λ2

i

)
)

= F (z) +

nH∑
i=1

(
µiHi(z) +

η

2
Hi(z)

2
)

+

nG∑
i=1

{
λiGi(z) +

η
2
Gi(z)

2, if λi + ηGi(z) ≥ 0

−λ3
i

2η
, else

Note that this function is only continuously differentiable once. For the multipliers, we obtain
the following updating formulas:

µ[k+1] := µ[k] + ηH(z[k+1]]),

λ[k+1] := max
(
0, λ[k] + ηG(z[k+1])

)
,



Chapter 3

Sequential Quadratic Programming
and Interior Point Methods

Within this chapter, we discuss two methods, which can be termed state–of–the–art in nonlinear
optimization at present. Since the research field for these methods — the so called Sequential
Quadratic Programming approach (SQP) and the Interior Point Method (IP) — are quite
active, we focus on the basics of these methods only. For deeper insights, we refer to the
books [3, 6], which also serve as sources for proofs of theorems stated in this chapter.

3.1 Sequential Quadratic Programming

To motivate the sequential quadratic programming approach (SQP), we discuss the so called
Lagrange–Newton method. This method is suitable to solve optimization problem, which are
subject to equality constraints

minimize F (z)

with respect to z ∈ F = {z ∈ Rnz | Hi(z) = 0, i = 1, . . . , nH}
(PPE)

where the functions F : Rnz → R and H : Rnz → RnH are twice continuously differentiable
and L(z, λ) = F (z)+λ⊤H(z) is the Lagrange function. The Lagrange–Newton method applies
Newton’s method to the KKT conditions

∇zL(z, λ) = 0 and H(z) = 0

and reads as follows:

Algorithm 3.1 (Lagrange–Newton Method)
Suppose z[0] ∈ Rnz , λ[0] ∈ RnH and ε > 0 to be given and set k = 0.
While max{∥∇zL(z

[k], λ[k])∥, ∥H(z[k])∥} > ε do

1. Solve the linear equation system(
∇2

zzL(z
[k], λ[k]) ∇zH(z[k])⊤

∇zH(z[k]) 0

)(
d
v

)
= −

(
∇zL(z

[k], λ[k])
H(z[k])

)
(3.1)

2. Set

z[k+1] := z[k] + d and λ[k+1] := λ[k] + v (3.2)

3. Set k := k + 1

25
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Alternatively, the Lagrange–Newton method can be introduced using a quadratic approx-
imation of the cost function, which is also referred to as the direct approach. Utilizing the
KKT conditions is known as the indirect approach. Note that both ideas result in the same
algorithm.

3.1.1 Quadratic Approximation

The alternative approach deals with the approximation

minimize 1
2
d⊤∇zzL(z

[k], λ[k])d+∇zF (z[k])⊤d

with respect to d ∈ Rnz

subject to H(z[k]) +∇zH(z[k])d = 0.

(QPE)

The Lagrangian for this quadratic problem is given by

L(QP )(d, µ) :=
1

2
d⊤∇zzL(z

[k], λ[k])d+∇zF (z[k])⊤d+ µ⊤ (H(z[k]) +∇zH(z[k])d
)
.

Now, applying the KKT conditions reveals the linear equation system

∇zzL(z
[k], λ[k])d+∇zF (z[k]) +∇zH(z[k])⊤µ = 0

H(z[k]) +∇zH(z[k])d = 0

or equivalently (
∇zzL(z

[k], λ[k]) ∇zH(z[k])⊤

∇zH(z[k]) 0

)(
d
µ

)
= −

(
−∇zF (z[k])
H(z[k])

)
. (3.3)

Subtracting ∇zH(z[k])⊤µ[k] from both sides of the first equation in (3.3) now reveals(
∇zzL(z

[k], λ[k]) ∇zH(z[k])⊤

∇zH(z[k]) 0

)(
d

µ− λ[k]

)
= −

(
−∇zL(z

[k], λ[k])
H(z[k])

)
, (3.4)

which is equivalent to (3.1) with v = µ− λ[k]. Hence, the new iterates can be evaluated via

z[k+1] := z[k] + d and λ[k+1] := µ. (3.5)

This gives rise to the following conclusion:

Conclusion 3.2
For equality constraint problems (PPE), the Lagrange–Newton method is equivalent to the
sequential quadratic optimization method displayed above if the multiplier µ in the quadratic
auxiliary problem is chosen as the new approximation of the multiplier λ of problem (PPE).

3.1.2 SQP Algorithm

Utilizing this conclusion, we can apply the approximation idea to our standard optimization
problem (NLP) from Definition 1.12, which gives us
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minimize 1
2
d⊤∇zzL(z

[k], λ[k])d+∇zF (z[k])⊤d

with respect to d ∈ Rnz

subject to G(z[k]) +∇zG(z[k])d ≤ 0,

H(z[k]) +∇zH(z[k])d = 0.

(QP)

To play this problem back to an equality constrained one (QPE), we introduce the constraint
function C : Rnz → RnH+nG , which combines the constraints Gi and Hi into one function

C : z 7→
[
(Gi(z))i∈I
(Hi(z))i∈E

]
.

Now, we can define the Lagrangian via

L(z, λ) := F (z) + λ⊤C(z). (3.6)

Then, we introduce a so called working set Wk of the current operating point zk. This working
set contains all indexes of constraints which are currently active, that is all equality constraints
i ∈ E and all inequality constraints i ∈ I satisfying equality. Note that this is similar to the
active constraints introduced in Definition 1.22. Yet, in order to update the working set, the
entire combination of constraints is more useful. For the working set Wk, the constraints are
linearized and the cost functional is approximated using a second order Taylor approximation
of the Lagrangian, which reveals

minimize 1
2
d[k]

⊤∇2
zzL(z

[k], λ
[k]

W [k])d
[k] +∇zF (z[k])⊤d[k]

with respect to d[k] ∈ Rnz

subject to Ci(z
[k]) +∇zCi(z

[k])⊤d[k] = 0 for all i ∈ W [k]

(SQP)

We can solve this problem by computing the solution of the linear equation(
∇2

zzL(z
[k], λ

[k]

W [k]) ∇zCW [k](z[k])⊤

∇zCW [k](z[k]) 0

)(
d[k]

λ
[k]

W [k]

)
= −

(
∇zF (z[k])
CW [k](z[k])

)
(3.7)

The next iterate is then given by

zk+1 := zk + dk and λ[k+1] := λ[k].

At each iterate, the working set is updated and a new search direction step is computed until
the first order optimality conditions are satisfied sufficiently well.

Hence, we obtain the following algorithm:

Algorithm 3.3 (Local SQP Method)

Suppose W [0], z[0] ∈ Rnz , λ
[0]

W [0] ∈ RnG+nH and ε > 0 to be given and set k := 0.

While max{∥∇zL(z
[k], λ

[k]

W [k])∥, ∥λ
[k]

W [k]CW [k](z[k])∥} > ε do

1. Solve the linear equation system(
∇2

zzL(z
[k], λ

[k]

W [k]) ∇zCW [k](z[k])⊤

∇zCW [k](z[k]) 0

)(
d[k]

λ
[k]

W [k]

)
= −

(
∇zF (z[k])
CW [k](z[k])

)
and obtain d[k], λ[k] and W [k+1]
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2. Set

z[k+1] := z[k] + d[k] and λ[k+1] := λ[k]

3. Set k := k + 1

Within Algorithm 3.3, a priori knowledge of the index set W = A(z⋆) is not required.
However, the iterates z[k] are typically not feasible. Regarding convergence, the following result
holds:

Theorem 3.4 (Convergence of the local SQP method)
Suppose the following holds:

• z⋆ is a local minimum of our standard problem (NLP) and λ⋆, µ⋆ denote the respective
Lagrange multipliers.

• The functions F , Gi, i ∈ I, Hi, i ∈ E are twice continuously differentiable and the second
order derivatives are Lipschitz.

• LICQ holds.

• The strict complementarity condition λ⋆
i −Gi(z

⋆) > 0 holds for all i ∈ A(z⋆).

• The second order sufficient condition

d⊤∇2
zzL(z

⋆, λ⋆, µ⋆)d > 0

holds for all d ̸= 0 satisfying

∇zGi(z
⋆)⊤d = 0, i ∈ A(z⋆) and ∇zHi(z

⋆)⊤d = 0, i ∈ E .

Then there exist neighborhoods U of (z⋆, λ⋆, µ⋆) and V of (0, λ⋆, µ⋆) such that for arbitrary initial
values

(z[0], λ[0], µ[0]) ∈ U

all problems (QP) possess a unique local solution

(d[k], λ[k+1], µ[k+1]) ∈ V .

Moreover, the solution converges quadratically to (z⋆, λ⋆, µ⋆).

As the result shows, the SQP method converges for all initial values in a neighborhood of the
local minimum. Yet, this neighborhood can be very small. Therefore it is necessary to globalize
the SQP method so that it converges for arbitrary initial values. As in the unconstrained case,
this can be done by introducing a step size α[k] > 0, and defining the new iterate via

z[k+1] := z[k] + α[k]d[k].

To obtain the step size α[k], a one–dimensional line search is executed. However, it is not clear
whether z[k+1] is

”
better“ than z[k]. The reason for this lies in the construction of the iterates:
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The iterates shall improve the costs and the constraint violations, which may be contradicting
goals.

3.1.3 Globalization of SQP

To avert this dilemma, a merit function is introduced, which at simplest is a combination of
the cost function and the constrained violation, cf. the idea of the penalty function in Chapter
2. Based on this merit function, an improvement can be measured. The general class of merit
functions is defined by

P (z, η) := F (z) + ηr(z) (3.8)

where η > 0 is a weighting parameter and r : Rnz → R+
0 is a continuous function satisfying

r(z)

{
= 0, if z ∈ F
> 0, if z ̸∈ F .

Of particular interest are the so called exact merit functions. For these functions, the local
minima of the restricted original problem (NLP) are also local minima of the unconstrained
merit function, and the weighting factor η can be chosen to be finite.

Definition 3.5 (Exact Merit Function)
The merit function P (z, η) from (3.8) is called exact in a local minimum z⋆ of (NLP), if there
exists a finite parameter η⋆ > 0 such that z⋆ is a local minimum of P (·, η) for all η ≥ η⋆.

It would be nice if a differentiable exact merit function was available. Unfortunately, one
can show that P (z, η) from (3.8) is not differentiable in z⋆ if P (z, η) is exact and ∇zF (z⋆) ̸= 0,
which is the usual case in constrained optimization. Still, one can show the following:

Theorem 3.6 (Exact Merit Function)
Suppose z⋆ ∈ F is an isolated local minimum of (NLP) satisfying the Linear Independent
Constraint Qualification LICQ from Definition 1.30. Then the merit function ℓq with

ℓq(z, η) := F (z) + η

(
nG∑
i=1

(max{0, G(z)})q +
nH∑
i=1

|Hi(z)|q
)1/q

, 1 ≤ q < ∞

ℓ∞(z, η) := F (z) + ηmax {0, G1(z), . . . , GnG
(z), |H1(z)|, . . . , |HnH

(z)|}

is exact for 1 ≤ q ≤ ∞.

Here, we restrict ourselves to ℓ1–merit functions. We can assume that for sufficiently large
η > 0 the constrained problem (NLP) can be replaced by the unconstrained problem

minimize ℓ1(z, η)

with respect to z ∈ Rnz .

This idea can be used in the SQP method to compute the step size α[k] via the one dimensional
line search regarding the function

φ(α[k]) := ℓ1(z
[k] + α[k]d[k], η).
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Although ℓ1 is not differentiable, it is still directionally differentiable, i.e. the limit value of

∇zℓ1(z
[k], η) := lim

α→0

ℓ1(z
[k] + α[k]d[k], η)− ℓ1(z

[k], η)

α[k]

exists for all z ∈ Rnz and all d ∈ Rnz . Moreover, one can show that a KKT point (d[k], λ[k], µ[k])
with d[k] ̸= 0 of (QP) satisfies the estimate

∇zℓ1(z
[k], η) ≤ −d[k]

⊤∇2
zzL(z

[k], λ
[k]

W [k])d
[k] < 0

if the Hessian is symmetric positive definite and if the weighting parameter is chosen such that

η ≥ max{λ[k+1]
1 , . . . , λ[k+1]

nG
, |µ[k+1]

1 |, . . . , |µ[k+1]
nH

|}.

Combined, we obtain the following algorithm:

Algorithm 3.7 (Global SQP Method)

Suppose W [0], z[0] ∈ Rnz , λ
[0]

W [0] ∈ RnG+nH and ε > 0, σ ∈ (0, 1) to be given and set k := 0.

While max{∥∇zL(z
[k], λ

[k]

W [k])∥, ∥λ
[k]

W [k]CW [k](z[k])∥} > ε do

1. Solve the linear equation system(
∇2

zzL(z
[k], λ

[k]

W [k]) ∇zCW [k](z[k])⊤

∇zCW [k](z[k]) 0

)(
d[k]

λ
[k]

W [k]

)
= −

(
∇zF (z[k])
CW [k](z[k])

)
and obtain d[k], λ[k] and W [k+1]

2. Choose η[k+1] ≥ max{η[k], λ[k+1]
1 , . . . , λ

[k+1]
nG , |µ[k+1]

1 |, . . . , |µ[k+1]
nH |}

3. Compute step size α[k] to satisfy

ℓ1(z
[k] + α[k]d[k], η[k]) ≤ ℓ1(z

[k], η[k]) + σα[k]∇zℓ1(z
[k], η[k])

4. Set

z[k+1] := z[k] + α[k]d[k] and λ[k+1] := λ[k]

5. Set k := k + 1

Note that the Hessian needs to be symmetric positive definite for Algorithm 3.7 in order to
work. The latter can be achieved by utilizing BFGS updates instead of computing the Hessian,
cf. [3, 6] for details.

3.2 Interior Point Method

In contrast to the (SQP) approach, the interior point method (IP) is based on constructing ap-
proximated solutions, which are strictly contained in the interior of the feasible set F . Hence,
each iterate of the interior point algorithm is feasible, quite in contrast to the (SQP) algo-
rithm. This behavior is achieved by attaching penalty terms, which penalize points lying on
the boundary of F . Note that this is different from penalty methods discussed in Chapter 2,
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which penalize unfeasible points only, i.e. points outside the boundary of F . The method is
rather popular by now as one can show that — in contrast to the Simplex method — interior
point methods can solve linear optimization problems polynomially regarding the dimension of
the problem.

3.2.1 Linear Optimization Problem

Here, we start with the linear case and recall the standard problem of linear optimization in
primal normal form

minimize c⊤z

subject to Az = b,

z ≥ 0.

(LP)

where A ∈ RnH×nz represents the linear constraint function, b ∈ RnH the right hand side of the
constraints, and c ∈ Rnz the cost vector. Utilizing the Lagrangian

L(z, λ, µ) = c⊤z + λ⊤(−z) + µ⊤(b− Az)

we obtain the KKT conditions

A⊤µ+ λ = c (3.9)

Az = b (3.10)

z ≥ 0 (3.11)

λ ≥ 0 (3.12)

λizi = 0 i = 1, . . . , nz. (3.13)

Now we eliminate the inequalities z ≥ 0 in the primal problem by including them as penalties
in the costs. For η > 0 we obtain the (logarithmic) barrier problem

minimize c⊤z − η
∑nz

i=1 log(zi)

subject to Az = b.
(BP)

Note that log(zi) → −∞ as zi ↘ 0. Hence, the term −η log(zi) generates a barrier with value
∞ at zi = 0 such that the minimum never lies on the barrier. Now, the aim is to iteratively
adapt the parameter η to generate a sequence of feasible solutions z > 0, which converges to
the minimum of (LP).

Due to the logarithmic terms, the barrier problem (BP) is a nonlinear convex optimization
problem. The KKT conditions read

ci −
η

zi
− (A⊤µ)i = 0, i = 1, . . . , nz

Az = b.

By defining λi := η/zi, i = 1, . . . , nz, we can reformulate the KKT conditions to

A⊤µ+ λ = c (3.14)

Az = b (3.15)

λizi = η, i = 1, . . . , nz. (3.16)
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Comparing (3.9)–(3.13) to (3.14)–(3.16), we see that the KKT conditions of the barrier problem
(BP) can be interpreted as disturbed KKT conditions of (LP) if additionally z > 0 and λ > 0
holds. The disturbance occurs explicitly by the presence of the weighting factor η > 0 in the
complementarity condition (3.13), which then reads (3.16).
If for each η > 0 the nonlinear equation system (3.14)–(3.16) possesses a solution

(z(η), λ(η), µ(η)),

then there is hope that this solution converges to the solution of (LP) for η ↘ 0. The set

{(z(η), λ(η), µ(η)) | η > 0}

is referred to as central path. Since the KKT conditions (3.14)–(3.16) are necessary and due to
convexity of problem (BP) also sufficient, the following result holds:

Theorem 3.8
Suppose η > 0. Then barrier problem (BP) has a solution z > 0 if and only if the central path
conditions (3.14)–(3.16) have a solution (z(η), λ(η), µ(η)) with z(η) > 0 and λ(η) > 0.

3.2.2 IP Algorithm

To solve (3.14)–(3.16) numerically, Newton’s method can be applied to the function

Fη(z, µ, λ) :=

A⊤µ+ λ− c
Az − b

ZΛe− ηe


where

Z = diag(z1, . . . , znz), Λ = diag(λ1, . . . , λnz) and e = (1, . . . , 1)⊤.

The Jacobian of Fη is given by

DFη(z, µ, λ) =

0 A⊤ Id
A 0 0
Λ 0 Z

 .

For this matrix, the following result holds, which will allow us to apply Newton’s method:

Theorem 3.9
Suppose (z, µ, λ) ∈ Rnz×nH×nz is a vector with z > 0 and λ > 0 and we have rank(A) = nH .
Then the Jacobian DFη(z, µ, λ) is invertible for each η > 0.

Suppose (z[k], µ[k], λ[k]) is a given iterate in the Newton method. The Newton correction is
given by the linear equation system

DFη[k](z
[k], µ[k], λ[k])

∆z[k]

∆µ[k]

∆λ[k]

 = −Fη[k](z
[k], µ[k], λ[k])
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which gives us  0 A⊤ Id
A 0 0
Λ[k] 0 Z [k]

∆z[k]

∆µ[k]

∆λ[k]

 = −

A⊤µ[k] + λ[k] − c
Az[k] − b

Z [k]Λ[k]e− η[k]e

 (3.17)

The damped Newton method reveals the new iteratez[k+1]

µ[k+1]

λ[k+1]

 :=

z[k]

µ[k]

λ[k]

+ α[k]

∆z[k]

∆µ[k]

∆λ[k]


with step length α[k] > 0.
For both the damped and the undamped Newton sequence, one can show that if a central
path starts feasible, it will always remain feasible, i.e. if conditions (3.14)–(3.15) hold for
(z[0], µ[0], λ[0]), then the hold for all (z[k], µ[k], λ[k]), k > 0. To guarantee this property, we
require

A⊤µ[k] + λ[k] − c = 0

Az[k] − b = 0.

With regards to the Newton iteration (3.17), it follows that

A⊤∆µ[k] +∆λ[k] = 0

A∆z[k] = 0.

For the next iterate, we obtain

A⊤µ[k+1] + λ[k+1] − c = A⊤(µ[k] + α[k]∆µ[k]) + λ[k] + α[k]∆λ[k] − c

= A⊤µ[k] + λ[k] − c

= 0,

Az[k+1] − b = A(z[k] + α[k]∆z[k])− b

= 0,

showing the assertion. Combined, we obtain the following algorithm:

Algorithm 3.10 (Interior Point Method)
Suppose ε > 0, z[0] ∈ Rnz , µ[0] ∈ RnH , λ[0] ∈ Rnz to be given and satisfy

Az[0] = b, A⊤µ[0] + λ[0] = c, z[0] > 0, λ[0] > 0,

and set k = 0.
While z[k]

⊤
λ[k]

nz
> ε do

1. Set σ[k] ∈ [0, 1] and solve the linear equation system 0 A⊤ Id
A 0 0
Λ[k] 0 Z [k]

∆z[k]

∆µ[k]

∆λ[k]

 = −

 0
0

Z [k]Λ[k]e− σ[k] z[k]
⊤
λ[k]

nz
e


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2. Set z[k+1]

µ[k+1]

λ[k+1]

 :=

z[k]

µ[k]

λ[k]

+ α[k]

∆z[k]

∆µ[k]

∆λ[k]


where α[k] > 0 is chose such that z[k+1] > 0 and λ[k+1] > 0 hold

3. Set k := k + 1

Remark 3.11 • The iterates z[k] are primal feasible since by construction we have

Az[k] = b, z[k] > 0.

• The algorithms can always be executed if we can guarantee rank(A) = nH , cf. Theorem
3.9.

• Among conditions (3.9)–(3.13) the complementarity condition λ
[k]
i z

[k]
i = 0, i = 1, . . . , nz

is not satisfied by the iterates. To meet this condition, we approach it by utilizing the

breaking criterion z[k]
⊤
λ[k]

nz
also in the iteration.

• The algorithm still contains two degrees of freedom, the step size α[k] > 0 and the centering

parameter σ[k] > 0. Note that the term σ[k] z[k]
⊤
λ[k]

nz
plays the role of the penalty parameter

η. Depending on the choice of these parameters, we obtain different methods.

For Algorithm 3.10, we can show that an ε optimal solution can be computed in polynomial
time:

Theorem 3.12 (Convergence Interior Point Method)
Suppose ε ∈ (0, 1) to be given and {(z[k], µ[k], λ[k])}k∈N0 be defined by Algorithm 3.10. Suppose

z[k+1]⊤λ[k+1]

nz

≤
(
1− δ

ns
z

)
z[k]

⊤
λ[k]

nz

(3.18)

to hold for parameters δ > 0 and s > 0. Moreover, the starting vector (z[0], µ[0], λ[0]) shall satisfy

z[0]
⊤
λ[0]

nz

≤ 1

εκ
, κ > 0.

Then there exists an index K ∈ N with K = O(ns
z| log(ε)|) and z[k]

⊤
λ[k]

nz
≤ ε for all k > K.

In implementations, the step size α[k] is typically chosen such that the iterates remain close
to the central path. These methods are called path following methods. There are feasible
and infeasible methods, which either keep the iterates within the feasible set throughout the
iteration, or allow violations of the feasible set. The feasible methods are based on smaller sets,
which allow for smaller steps only. They are also referred to as short step methods, in contrast
to infeasible methods which are known as long step methods. While converging slower, short
step methods still show better convergence properties.
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3.2.3 Nonlinear Optimization Problem

After considering the linear case, we now turn towards the nonlinear case and our standard
problem

minimize F (z)

with respect to z ∈ Rnz

subject to Gi(z) ≤ 0 for all i ∈ I and Hi(z) = 0 for all i ∈ E
(NLP)

from Definition 1.12. Similar to the linear case, we eliminate the inequality constraints by
introducing slack variables s > 0 and attaching the restriction to the cost function using
logarithmic terms with weighting factors. Note that we want to keep the solution within the
feasible set, hence the slack is strictly positive. This gives us the nonlinear barrier problem

minimize F (z)− η

nG∑
i=1

log(si)

with respect to (z, s) ∈ Rnz×nG

subject to Gi(z) + si = 0 for all i ∈ I and Hi(z) = 0 for all i ∈ E

(NBP)

The Lagrangian of the barrier problem reads

L(z, s, λ, µ) = F (z)− η

nG∑
i=1

log(si) +

nG∑
i=1

λi(Gi(z) + si) +

nH∑
i=1

µHi(z)

With S = diag(s1, . . . , snG
), the KKT conditions of the barrier problem (NBP) are given by

0 = ∇zL(z, s, λ, µ) = ∇zF (z) +

nG∑
i=1

λi∇zGi(z) +

nH∑
i=1

µ∇zHi(z) (3.19)

0 = ∇sL(z, s, λ, µ) = −ηS−1e+ λ (3.20)

0 = Gi(z) + si i = 1, . . . , nG (3.21)

0 = Hi(z) i = 1, . . . , nH (3.22)

We can reformulate (3.20) equivalently into

ηe = Sλ ⇐⇒ η = siλi, i = 1, . . . , nG.

Combined with si = −Gi(z) < 0, i = 1, . . . , nG from (3.21), we obtain the so called disturbed
complementarity condition

−η = λiGi(z), i = 1, . . . , nG. (3.23)

Similar to the linear case, we aim to guarantee si > 0 within the Interior Point Method for the
nonlinear case. Due to (3.21), the latter is equivalent to Gi(z) < 0. Since furthermore (3.23)
and −η < 0 hold, it follows that λi > 0 for i = 1, . . . , nG. The solution is again characterized
by the penalty parameter η and, given that (z(η), s(η), λ(η), µ(η)) exists, the parametrized
solutions again defines the central path.

Similar to the linear case, the nonlinear equation system (3.19)–(3.22) can be solved for
(z(η), s(η), λ(η), µ(η)) via Newton’s method. Here, we can follow the steps of the Lagrange–
Newton method from Algorithm 3.1. Note that within the nonlinear barrier problem (NBP) we
only have equality constraints. Hence, applying the Lagrange–Newton method from Algorithm
3.1 to (NBP) is identical to applying the local SQP method from Algorithm 3.3. Therefore,
the search directions can be computed by solving the quadratic approximation (QPE).
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Chapter 4

Production and Inventory

The so called production and inventory problems belong to the classical topics in Operations
Research. Starting from the 1950s, a number of models and methods arose. Here, we discuss
some of the deterministic continuous time models and leave aside stochastic processes. The
basis of this chapter is the book of Feichtinger and Hartl [1], which we will use without further
notice.

First, we describe a model for production and inventory, which is subject to a given demand
and nonnegativity conditions from the production rate and the inventory stock. In this regards,
we introduce the concept of the decision and prediction horizons. Thereafter, we discuss the
simultaneous choice of an optimal production and price policy. Without further notice, we
assume all functions used in this chapter to be continuously differentiable in their arguments.

4.1 Problem Formulation

Within this section, we suppose the demand d(t) for a product to be given on an interval [0, T ].
The demand is assumed to be positive and continuously differentiable. To satisfy the demand,
the products can either be produced or be taken from the inventory. Here, we denote the
production rate by u(t) and the inventory level by x(t). Hence, the inventory rate of change is
given by the difference between the production rate and the demand

ẋ(t) = u(t)− d(t), x(0) = x0, (4.1)

where x0 ∈ R+
0 denotes the inventory level at the beginning of the considered interval [0, T ].

Moreover, we denote the production and inventory costs by cprod(u, t) and cinv(x, t). Upon ter-
mination of the planning, the state of the inventory is assessed via the function cinv,T (x(T ), T ).
Therefore, the total costs arising for the production and inventory planning problem are given
by

JT (u, x) =

∫ T

0

(cprod(u(t), t) + cinv(x(t), t)) dt+ cinv,T (x(T ), T ). (4.2)

Additionally, the production rate and the inventory level shall be non negative, which reveals
the constraints

0 ≤ u(t) ≤ u, 0 ≤ x(t) ≤ x ∀t ∈ [0, T ]. (4.3)

Note that the system dynamics is given by (4.1), where x(·) is the state of the system, u(·) the
external control and d(t) an external known disturbance.

39
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4.2 HMMS Model

One approach to solve the production and inventory problem is the linear quadratic problem
introduced by Holt, Modigliani, Muth and Simon in the 1960s, which is referred to as the
HMMS model. Within this model, the dynamics are linear differential equations and the costs
are quadratic functionals. In particular, the inventory costs are assessed as quadratic deviations
from a wanted stock level x̃(t) and the production costs are penalized regarding their deviation
from the ideal production level ũ(t). Hence, we obtain

cinv(x(t), t) =
1

2
cinv · (x(t)− x̃(t))2 (4.4)

cprod(u(t), t) =
1

2
(u(t)− ũ(t))2 (4.5)

cinv,T (x(T ), T ) =
1

2
cinv,T · (x(T )− x̃(T ))2 (4.6)

Note that we can omit to add a weighting parameter to the second equation (4.5), instead
the weighting can be balanced using the parameters from (4.4), (4.6). For this model, the LQ
solution approach via the Riccati equations can be followed, which is beyond the scope of this
lecture. The optimal solution for problem (4.1), (4.2), (4.4), (4.5), (4.6)

minimize JT (u, x) =
1

2

∫ T

0

(
(u(t)− ũ(t))2 + cinv · (x(t)− x̃(t))2

)
dt

+
1

2
cinv,T · (x(T )− x̃(T ))2

with respect to u : [0, T ] → R+
0

subject to ẋ(t) = u(t)− d(t), x(0) = x0.

is given by

u(t) = ũ(t)− x(t)
√
cinv tanh (

√
cinvT + arctanh(cinv,T/

√
cinv)− t) + γ(t), (4.7)

where γ(t) is given by the differential equation

γ̇(t) =γ(t)
√
cinv tanh (

√
cinvT + arctanh(cinv,T/

√
cinv)−

√
cinvt)

+
√
cinv tanh (

√
cinvT + arctanh(cinv,T/

√
cinv)−

√
cinvt) (ũ(t− d(t)))− cinv · x̃(t)

with terminal condition γ(T ) = cinv,T · x̃(T ). The optimal production rate equals the ideal
production level corrected by two summands: The first correction term depends on the current
stock and reduces the production rate proportionally to the current stock level. The reduction
is increasing if either cinv is larger, if the terminal time T is further away or if cinv,T is larger. The
second correction term depends on the model parameters. For the plausible case ũ(t) ≤ d(t) for
all t ∈ [0, T ] and cinv,T ≥ 0, we have γ(t) > 0. An increase in demand then triggers an increase
of γ, and in turn of the production rate u.

Remark 4.1
In the special case ũ = d for all t ∈ [0, T ], x̃ = const and cinv,T = 0, we obtain γ, u and x in
the closed form

γ(t) =
√
cinvx̃ tanh (

√
cinv(T − t))

u(t) = d(t) + (x̃− x(t))
√
cinv tanh (

√
cinv(T − t))

x(t) = x̃+ (x0 − x̃) cosh (
√
cinv(T − t)) / cosh (

√
cinvT ) .
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Unfortunately, due to the lack of constraints (4.3), the linear quadratic inventory problem
is unrealistic. To include such constraints for the simplest case of linear costs, let us consider
that the production and inventory costs neither depend on time nor batch size:

minimize JT (u, x) =

∫ T

0

(cprodu(t) + cinvx(t)) dt

with respect to u : [0, T ] → R+
0

subject to ẋ(t) = u(t)− d(t), x(0) = x0,

0 ≤ u(t) ≤ u and x(t) ≥ 0 ∀t ∈ [0, T ].

Due to linearity of the control, the production is limited by the maximal rate u. Here, we
assume that d(t) ≤ u holds for all t ∈ [0, T ], i.e. the demand can always be satisfied. Since the
terminal inventory is not assessed, we not necessarily have u < u.

From an economic point of view, it is clear that the optimal strategy possesses the following
structure: There is no production until the initial inventory is empty. Thereafter, the produc-
tion rate and the demand rate coincide. Denoting the accumulated demand by D and defining
the time instant t1 via

D(t1) =

t1∫
0

d(t)dt = x0, (4.8)

the optimal solution is given by

u(t) =

{
0, 0 ≤ t < t1

d(t) t1 ≤ t ≤ T
, (4.9)

which gives us

x(t) =

{
x0 −D(t), 0 ≤ t < t1

0 t1 ≤ t ≤ T
. (4.10)

Note that the optimal strategy remains the same even if general inventory costs cinv(x(t), t) > 0
for x(t) > 0 are used. In contrast to the HMMS model, no production smoothing occurs. As
soon as the stock is consumed, the production rate suffers from the fluctuations of the demand.
This property of the optimal strategy is due to the linearity of the production costs. Applying
convex production costs as outlined in the following section, the optimal production is smoothed
out.

4.3 Arrow-Karlin-Model

The model from Arrow and Karlin (late 1950s) is the starting point for a series of Inventory
and Production models. Within this model, it is assumed that production costs are time
independent and marginally increasing. Additionally, for simplicity of exposition, we assume
the inventory costs to be linear, which gives us
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minimize JT (u, x) =

∫ T

0

(cprod(u(t)) + cinvx(t)) dt+ cinv,T (x(T ), T )

with respect to u : [0, T ] → R+
0

subject to ẋ(t) = u(t)− d(t), x(0) = x0,

0 ≤ u(t) ≤ u and 0 ≤ x(t) ≤ x ∀t ∈ [0, T ].

where we have ċprod(u(t)) > 0 for u(t) > 0 and c̈prod(u(t)) > 0. Similar to the linear case in
the previous Section 4.2, we suppose that d(t) ≤ u holds for all t ∈ [0, T ], i.e. the demand can
always be satisfied.

For this problem, we can directly derive the optimal solution for a very special case:

Lemma 4.2
Suppose the Arrow–Karlin model to be given. If we have x0 < D(T ), then the inventory satisfies
x(T ) = 0. Otherwise, u(t) = 0 for all t ∈ [0, T ] is optimal, i.e. nothing is produced.

We now extend this case to so called boundary solution intervals and inner solution intervals.
We define a boundary solution interval [τ1, τ2] by x(t) = 0 for all t ∈ [τ1, τ2] where τ1 = 0 or
x(τ1 − ε) > 0 and τ2 = T or x(τ2 + ε) > 0 for small ε > 0. We call [t1, t2] an inner solution
interval if x(t) > 0 for t ∈ (t1, t2), t1 = 0 or x(t1) = 0 and t2 = T or x(t2) = 0.

For these particular intervals, the following holds:

Lemma 4.3 (Optimal Strategy on Inner Solution Intervals)
On an inner solution interval the production rate satisfies u(t) > 0 and we have

u(t) = (ċprod(u(t)))
−1 (λ0 + cinvt) (4.11)

for a constant λ0, which is defined later and different for each inner solution interval.

Lemma 4.4 (Optimal Strategy on Boundary Solution Intervals)
On an boundary solution interval the production rate is equal to the demand

u(t) = d(t) > 0 (4.12)

and we have

cinv ≥ ḋ(t)c̈prod(d(t)). (4.13)

From Lemma 4.4, we can directly conclude a result similar to the linear constrained case
from Section 4.2:

Theorem 4.5 (Full Boundary Solution)
If (4.13) hold for all t ∈ [0, T ], then the production rate is identical to the demand, i.e.

u(t) = d(t) (4.14)

x(t) = 0 (4.15)

for all t ∈ [0, T ].
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Additionally, we can use Lemmas 4.3, 4.4 to concatenate inner and boundary solutions.

Lemma 4.6 (Combination of Inner and Boundary Solution Intervals)
If an inner solution interval (t1, t2) follows a boundary solution interval, then we can specify λ0

in (4.11) as λ0 = ċprod(d(t1))− cinvt1 and obtain

u(t) = (ċprod(d(t)))
−1 (ċprod(d(t1)) + cinv(t− t1)) . (4.16)

Moreover, the optimal production rate is continuous and positive for all t ∈ [0, T ]

Given continuity and concatenatabiliy of the solution, we can conclude that once we are
on a inner solution interval, we can either stay on it until the terminal time is reached, or
continuously switch to a boundary solution interval. In particular, the following theorem holds:

Theorem 4.7 (Concatenation of Solution Intervals)
Suppose there exists an interval (σ1, σ2), where (4.13) does not hold, i.e.

cinv(t) < ḋ(t)c̈prod(d(t)) ∀t ∈ (σ1, σ2) (4.17)

Then, there exists an interval (t1, t2), which is an inner solution interval and satisfies (σ1, σ2) ⊂
(t1, t2). The boundary points t1, t2 are given by∫ t2

t1

d(t)dt =

∫ t2

t1

(ċprod(d(t)))
−1 (λ0 + cinvt) dt (4.18)

λ0 = ċprod (d(t1))− cinvt1 if t1 > 0 (4.19)

λ0 = ċprod (d(t2))− cinvt2 if t2 < T. (4.20)

From (4.18), we obtain that the areas under the curves of d and u are identical, i.e. the
sum of demands equals the produced products. Equations (4.19), (4.20) state that if before or
after the inner solution interval there is a boundary solution interval, then the production rate
and the demand are identical at the beginning and at the end of the inner solution interval.
Hence, the exit from and the entrance of an empty stock is tangential.

Note that the optimal production strategy is a smoothed version of the demand: An optimal
production and inventory strategy has to weigh between the extremes of a smooth production
with large fluctuations in the inventory and a production synchronous to demand without
inventory. Hence, demand spikes are flattened and period of low demand are filled. The way
the costs influence the production is given by its derivative

u̇(t) = cinv
d

dt

(
ċ−1
produ(t)

)
=

cinv
c̈prod(u(t))

Remark 4.8
The flattening and filling is depending on the capacity of the inventory x, i.e. only the maximal
storage capacity can be used to smooth the optimal production rate.

Theorem 4.7 allows us to derive an optimal solution for any time interval. Additionally,
we see that if t⋆ ∈ [0, T ] is a time instant where x(t⋆) = 0, u(t⋆) = d(t⋆) (boundary solution



44 Chapter 4: Production and Inventory

interval), then the optimal solution in [0, t⋆] is independent from changes in the rest interval
[t⋆, T ] if the accumulated demand satisfies∫ t

t⋆
d(s)ds ≤

∫ t

t⋆
ċ−1
prod(ċprod(d(t

⋆)) + cinv(s− t⋆))ds, (4.21)

i.e. the inventory level is positive for all t ∈ (t⋆, T ].
For an inner solution interval, let t1 ∈ [0, T ] be an instant with x(t1) > 0 and let t2 ∈ (t1, T ]
be the first time instant where x(t2) = 0, i.e. the first instant after t1 that the inventory is
empty. If (4.21) holds, then we obtain the same independence, that is the solution on [0, t2] is
independent from the solution on (t2, T ].

This observation gives rise to the so called prediction and decision horizon. As we have seen,
for some dynamical optimal control problems it is not necessary to compute the optimal strategy
for the entire planning interval immediately. It is more important to find the optimal solution
for the next time steps with least possible information regarding the future development of the
demand, of the costs and of the prices. To this end, we can utilize the independence property,
which we have shown for the production and inventory problem. This property allows us to
derive an optimal solution for a shorter optimization horizon, which is independent from the
solution on the remaining part of the prediction horizon.

Here, we define these time instances as follows:

Definition 4.9 (Decision and Prediction Horizon)
Given an optimal control problem (OCP) from Definition 1.9 in the continuous version of
Remark 1.10, where the planning horizon T may be infinite. If there exist time instances t1, t2
with 0 < t1 ≤ t2 ≤ T such that the optimal solution on [0, t1] is independent from the solution
for t ≥ t2, then t1 is called decision horizon, and t2 is called prediction horizon.

Hence, to obtain the optimal solution on [0, t1] ⊂ [0, T ], it is sufficient to look at the time
interval [0, t2]. This property is particularly important for the inventory problem. Here, we
obtain:

Theorem 4.10
Suppose an optimal control problem (OCP) from Definition 1.9 in the continuous version of
Remark 1.10 with constraints

x ≤ x(t) ≤ x

to be given. If there exists two instances τ1, τ2 ∈ [0, T ] such that the optimal solution satisfies
x(τ1) = x and x(τ2) = x, then t1 = min(τ1, τ2) is the decision horizon and t2 = max(τ1, τ2) is
the prediction horizon.

Now the model functions, i.e. the demand, can change for any t ≥ t2 and even the terminal
time T can be changed to any value T ≥ t2, the optimal solution on [0, t1] will remain unchanged.

4.4 Pekelman Model

In the previous sections, we considered different variants of the Production and Inventory
problem, where we supposed the demand to be fixed. Hence, by a given price development
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p(t), the payoff p(t)d(t) was not controllable. As a consequence, only the total costs had to be
minimized.

Here, we assume the demand to be depending on the price d(p(t), t). Hence, the price now
is an additional degree of freedom u2(t) within our optimal control problem, where we now
denote the production rate by u1(t). Hence, the payoff u2(t)d(u2(t), t) can be controlled. To
integrate this freedom in our production and inventory problem, we modify the cost function
and utilize

JT (u2, u1, x) =

∫ T

0

(u2(t)d(u2(t), t)− cprod(u1(t), t)− cinv(x(t), t)) dt+ cinv,T (x(T ), T ). (4.22)

The underlying dynamics is given by

ẋ(t) = u1(t)− d(u2(t), t), x(0) = x0, (4.23)

and subject to the constraints

u2(t) ≥ 0, u1(t) ≥ 0, x(t) ≥ 0 ∀t ∈ [0, T ], (4.24)

which gives us the problem

maximize JT (u2, u1, x) =

∫ T

0

(u2(t)d(u2(t), t)− cprod(u1(t), t)− cinv(x(t), t)) dt

+ cinv,T (x(T ), T )

with respect to u2, u1 : [0, T ] → R+
0

subject to ẋ(t) = u1(t)− d(u2(t), t), x(0) = x0,

0 ≤ u1(t) ≤ u1, 0 ≤ x(t) ≤ x and u2(t) ≥ 0 ∀t ∈ [0, T ].

Different variants of this problem type only differ in the functional form of the demand d and
the costs cprod, cinv, and possibly existing or non existing bounds on the production rate and
the inventory stock.

Within the Pekelman Model, we assume that the demand is not independent from the price.
To obtain similar results as for the Arrow-Karlin model, we assume the following:

Assumption 4.11 (Linear Price Dependency)
The demand is linearly and nonautonomously depending on the price u2(t) via

d(u2(t), t) = α(t)− β(t)u2(t),

where α(t), β(t) > 0 are given functions in time describing fluctuations.

Similar to the Arrow-Karlin model, we assume the production costs cprod(u1(t), t) to be
convex and the inventory costs to be linear, i.e. cinv(x(t), t) = cinvx(t), yet we additionally
impose the following:

Assumption 4.12 (Marginal Costs)
The constraint

ċprod(0) <
α(t)

β(t)

holds for all t ∈ [0, T ].
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This condition ensures that the marginal costs of the first unit to be produced are larger
or equal to the price α/β, for which demand is equal to zero. Otherwise, production is always
zero. Hence, the aim of a monopolist is to solve the Pekelman model

maximize JT (u1, u2, x) =

∫ T

0

(u2(t)(α(t)− β(t)u2(t))− cprod(u1(t))− cinvx(t)) dt

+ cinv,Tx(T )

with respect to u1, u2 : [0, T ] → R+
0

subject to ẋ(t) = u1(t)− (α(t)− β(t)u2(t)), x(0) = x0,

0 ≤ u1(t) ≤ u1, 0 ≤ x(t) ≤ x and 0 ≤ u2(t) ≤ α(t)
β(t)

∀t ∈ [0, T ].

Now, we can proceed as for the Arrow–Karlin model. Recall that the appearance of an
inner solution interval can be seen from condition (4.17). The condition states that the de-
mand increases minimally at a rate, which is proportional to the inventory costs and indirect
proportional to c̈prod. In the present Pekelman model, the demand d depends on the price u2,
and we obtain that an exogenous function φ(t) takes the role of d(t).

Lemma 4.13 (Marginal Revenue)
The equation

ċ−1
prod(φ(t)) =

1

2
(α(t)− β(t)φ(t)) (4.25)

exhibits a unique solution φ(t) for each t ∈ [0, T ]. This solution is continuously differentiable
and satisfies

ċprod(0) < φ(t) <
α(t)

β(t)
. (4.26)

The function φ can be interpreted as marginal revenue of the static problem without in-
ventory maxu1(u2(t)u1(t) − cprod(u1(t))) with u1(t) = α − βu2(t). Eliminating u2, first order
necessary conditions reveal

ċprod(u1(t)) =
d

du1

(u2(u1(t)) · u1(t)) =
α(t)

β(t)
− 2u1(t)

β(t)
.

Hence, (4.25) holds true for φ(t) := α(t)
β(t)

− 2u1(t)
β(t)

.

Utilizing the function φ(t), we can continue similar to the Arrow–Karlin model and obtain:

Lemma 4.14 (Boundary Solution Interval)
On a boundary solution interval x(t) = 0 the conditions

λ(t) = φ(t) (4.27)

u1(t) = ċ−1
prod(φ(t)) > 0 (4.28)

0 < u2(t) =
1

2

(
α(t)

β(t)
+ φ(t)

)
<

α(t)

β(t)
(4.29)

hold and

cinv ≥ φ̇(t). (4.30)
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As a consequence, if the inventory costs cinv are sufficiently large, i.e. cinv ≥ max φ̇(t), then
we have φ = λ due to (4.27), i.e. φ(t) represents the value of the first element in the inventory
at all times. Moreover, we can conclude

Theorem 4.15 (Full Boundary Solution)
If x0 = 0, cinv,T < φ(T ) and (4.30) holds for all t ∈ [0, T ], then the boundary solution (4.28) is
optimal on [0, T ].

Similarly, if the initial inventory level is larger than the total demand, then we obtain a full
inner solution.

Theorem 4.16 (Full Inner Solution)
If cinv,T = 0 and

x0 >

∫ T

0

min{α(t), 1
2
(α(t)− cinvβ(t)(t− T ))}dt, (4.31)

then the initial inventory will not be consumed and no products will be produced. Particularly,
we have

x(t) > 0 (4.32)

u1(t) = 0 (4.33)

λ(t) = cinv(t− T ) (4.34)

u2(t) = max

{
0,

1

2

(
α(t)

β(t)
+ cinv(t− T )

)}
(4.35)

for all t ∈ [0, T ].

Similar to boundary solution intervals, we can also characterize inner solution intervals.

Lemma 4.17 (Inner Solution Interval)
If there exists an interval (σ1, σ2), where (4.30) does not hold, then there exists an interval
(t1, t2) ⊃ (σ1, σ2) with an inner solution satisfying

λ(t) = λ0 + cinvt (4.36)

ẋ(t)


> if λ(t) > φ(t)

= if λ(t) = φ(t)

< if λ(t) < φ(t)

. (4.37)

• For t1 > 0, t2 < T , the parameter λ0, t1, t2 are given by∫ t2

t1

u1(λ(t))− α(t) + β(t)u2(λ(t))dt = 0 (4.38)

λ(t1) = φ(t1) (4.39)

λ(t2) = φ(t2) (4.40)
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with

u1(λ(t)) =

{
0 if λ(t) ≤ 0

ċ−1
prod(λ(t)) if λ(t) < 0,

(4.41)

u2(λ(t)) =


0 if λ(t) ≤ α(t)/β(t)
1
2
(α(t)/β(t) + λ(t) if − α(t)/β(t) < λ(t) < α(t)/β(t)

α(t)/β(t) if λ(t) ≥ α(t)/β(t).

(4.42)

• If t1 = 0, then (4.38) is replaced by

x0 +

∫ t2

0

u1(λ(t))− α(t) + β(t)u2(λ(t))dt = 0 (4.43)

and (4.39) can be dropped.

• If t2 = T , then (4.40) can be dropped. If the resulting λ(T ) < cinv,T , then (4.38) is replaced
by

λ(T ) = cinv,T (4.44)

and we have x(T ) > 0. Else, (4.38) holds and we have x(T ) = 0.

If x0 > 0 or cinv,T > φ(T ) holds, then an inner solution interval has to be chosen at the beginning
or the end respectively, independent of (4.36).

Combined, we see that for both the Arrow–Karlin and the Pekelman model, the optimal
solution can be concatenated from boundary and inner pieces. The structure of these pieces
always follows the same principles, which implicitly arise from Pontryagin’s Maximum Principle,
cf. [1, Chapter 1], which is also called the indirect approach. This insight into solution properties
allows us to check whether a direct approach — first discretize the optimal control problem
(OCP), then solve the resulting optimization problem — reveals a good solution. Note that
even in the indirect case, we still need to numerically evaluate the solution.



Chapter 5

Maintenance and Replacement

In the previous chapter, we considered the problem of optimal usage of production capacities in
terms of profit and connected costs for production and inventory. To this end, machines used
to produce the respective goods, which are subject to wearout. Within the present chapter,
we focus on the optimal planning of wear reduction and regenerative activities, i.e. we want
to simultaneously compute the optimal restoration intensity of a machine and the respective
optimal point of replacement.

Production facilities are wearing out over time proportionally to their workload and/or may
suddenly fail. Hence, any machine is subject to (deterministic) wearout and thereby loss in
value, which is also affected by technological improvements, but also subject to (stochastic)
risk of a sudden breakdown. Here, we discuss some fundamental control theoretic maintenance
models. These models contain only one state variable, that is the reliability or the resale value
of a machine, and the two controls preventive maintenance investments and intensity of use of
the machine. For these models, prominent characteristics are the free terminal time denoting
the point of replacement, which is a third control value, and the time dependency of model
parameters.

Within this chapter, we first formalize the problem setting before we present two different
model types. Within the Kamien–Schwartz Model we aim to reduce the risk of a sudden
machine breakdown by taking preventive actions. In the second model, the Thompson model,
we incorporate a deterministic wearout of a machine, which we try to reduce to generate an
optimal solution.

5.1 Problem Formulation

The maintenance problem is a non autonomous control problem with state x denoting the
condition of the machine, and two control u and v representing the maintenance and usage
rate respectively. Without additional assumptions, we formulate the dynamics of the machine
wearout via

ẋ(t) = f(x(t), u(t), v(t), t).

As we are interested in an optimal decision on how to maintain the machine, we need to
characterize its productivity/maintenance and replacements costs. We denote these two terms
by c(x, u, v, t) and cu,T (x(T ), T ), respectively, where T represents the decision point at which
the old machine is sold and a new one is bought. As maintenance costs may arise throughout
the usage time of the machine, the respective costs need to be integrated over time. Last, as we
have to take a decision at present day, these future costs have to be discounted by the capital

49



50 Chapter 5: Maintenance and Replacement

market interest rate r to the present day value. The problem then reads

maximize JT (u, v) =

∫ T

0

exp−rt c(x, u, v, t)dt+ exp−rT cu,T (x(T ), T )

with respect to u, v : [0, T ] → R+
0

subject to ẋ(t) = f(x(t), u(t), v(t), t), x(0) = x0.

Here, we particularly assume the following to hold:

Assumption 5.1 (Concavity/Convexity of Cost and Dynamics)
For the maintenance and replacement problem, the following properties shall hold:

∂f

∂x
< 0,

∂c

∂x
> 0,

∂2f

∂x2
=

∂2c

∂x2
= 0,

∂cu,T
∂x

≥ 0

∂f

∂u
> 0,

∂c

∂u
< 0,

∂2f

∂x∂u
≥ 0

∂f

∂v
< 0,

∂c

∂v
> 0,

∂2f

∂x∂v
≤ 0

∂2f

∂x∂t
≤ 0,

∂2c

∂x∂t
≤ 0

We can interpret these assumptions as follows:

• Investments u induce costs, i.e. ∂c
∂u

< 0, but improve the state of the machine, i.e. ∂f
∂u

> 0.

• The usage rate v induces profits, i.e. ∂c
∂v

> 0, but has a negative effect on the machine,

i.e. ∂f
∂v

< 0.

The following results also hold for general control systems. Therefore, we utilize the notation
from Chapter 1, where (OCP) is given in Definition 1.9. For such problems, the notion of state
separability can be introduced.

Definition 5.2 (State Separability)
A control problem is called state separable if the Hamiltonian

H(x, u, λ, t) := c(x, u, t) + λf(x, u, t)

with state x, control u and adjoint λ satisfies

∂2H

∂x2
= 0,

∂2H

∂x∂u
= 0 for

∂H

∂x
= 0, and

∂2cu,T
∂x2

= 0.

If a control system is state separable, one can show that the adjoint is monotone, and that
all control variables inherit this property. To this end, we introduce the equilibrium of the
adjoint

λ̂(t) =
∂c
∂x
(x, u, t)(

r − ∂f
∂x
(x, u))

) . (5.1)
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As we would expect for the maintenance problem, the shadow price λ is decreasing over time
representing the sales price of the machine. Moreover, this decrease induces decreasing main-
tenance costs u and an increasing usage rate v.

Lemma 5.3 (Monotonicity of Solutions)
Suppose Assumption 5.1 hold for a state separable maintenance and replacement problem with
λ̂(t) > 0 and

λ̇(t)


> 0

= 0

< 0

⇐⇒ λ(t)


> λ̂(t)

= λ̂(t)

< λ̂(t)

. (5.2)

Moreover, if λ̇(t) ≥ 0 for some t ∈ [0, T ], then we have for all t ∈ [0, T ]

˙̂
λ(t) ≤ 0, λ̇(t) ≥ 0, u̇(t) ≥ 0, v̇(t) ≤ 0. (5.3)

Corollary 5.4 (Strict Monotonicity)
Given the assumptions of Lemma 5.3 hold and λ̇(T ) < 0, then we have λ̇(t) < 0, u̇(t) < 0 and
v̇(t) > 0 for all t ∈ [0, T ].

Additionally to monotonicity properties of the adjoint (or shadow price), we can also show
properties of the terminal time. Recall that in the maintenance and replacement problem, the
terminal time corresponds to the time of replacement.

Lemma 5.5 (Replacement)
Suppose T ⋆ > 0 is the optimal terminal time for the maintenance and replacement problem and
assumptions from Lemma 5.3 hold. If the elasticities satisfy

σf,x =
∂f
∂x
(x, u, v, T ) · x
f(x, u, v, T )

≥ 1 (5.4)

σc,x =
∂c
∂x
(x, u, v, T ) · x
c(x, u, v, T )

≥ 1 (5.5)

σcu,T ,x =

∂cu,T
∂x

(x, T ) · x
cu,T (x, T )

≤ 1 (5.6)

and

∂cu,T
∂T

(x, T ) ≤ 0 (5.7)

for each x, u, v and T = T ⋆, then we have

λ̇(T ⋆) ≤ 0. (5.8)

Hence, we can conclude
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Lemma 5.6 (Strict Monotonicity)
Suppose a state separable maintenance and replacement problem to be given and Assumption 5.1
to hold. Moreover, the elasticities satisfy (5.4), (5.5), (5.6) and inequality (5.7) holds. Then
we have

λ̇(t) < 0, u̇(t) < 0, and v̇(t) > 0 ∀t ∈ [0, T ]. (5.9)

Now, Lemmata 5.5 and 5.6 allow us to draw conclusions regarding monotonicity of the
optimal maintenance and replacement control.

5.2 Kamien–Schwartz Model

Within this model, a sudden machine breakdown may occur stochastically. Once such an event
has taken place, the machine cannot be repaired, yet preventive actions may be taken to extend
the lifespan of the machine denoted by Λ. The probability density function of the lifespan shall
be given by P (Λ ≤ t), which allows us to formulate the natural failure rate via

h(t) = lim
∆→0

1

∆
P (t < Λ ≤ t+∆ | Λ > t) =

Ṗ(Λ ≤ t)

1− P (Λ ≤ t)
(5.10)

To control the process, the maintenance rate u can be used. Here, 100u corresponds to the
percentage at which the failure rate is decreased. From (5.10), we directly obtain

Ṗ(Λ ≤ t) = (1− u(t))h(t) (1− P (Λ ≤ t)) , (5.11)

which coincides with (5.10) for u = 0 while for u = 1 the failure rate and density function Ṗ
vanishes.

Within the Kamien–Schwartz Model, the reliability x(t) = 1−P(Λ ≤ t) is used as the state
of the system. This reveals the dynamics

ẋ(t) = − (1− u(t))h(t)x(t), x(0) = 1. (5.12)

Moreover, we denote the costs for maintenance by cu(u), the profit by operating a machine per
time unit by cv, the value of an operational machine at time t by V (t) and the value of a broken
machine by W . For these variables, we consider the following assumption:

Assumption 5.7 (Failure Rate and Resale Value)
The natural failure rate is (weakly) monotone increasing, i.e.

h(t) ≥ 0, ḣ(t) ≥ 0, (5.13)

and the maintenance rate is bounded by

0 ≤ u(t) ≤ 1 ∀t ∈ [0, T ]. (5.14)

Moreover, the machine shall not fail instantly, i.e. P(Λ ≤ 0) = 0. The maintenance costs to
reduce the failure rate is over-proportionally increasing, that is

cu(0) = 0, ċu(u) > 0, c̈u(u) > 0 for u ∈ (0, 1). (5.15)
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For simplicity of exposition, we additionally assume that the costs for a small reduction of the
failure rate is almost zero and if failure is to be neglected, then the corresponding costs are
infinite, i.e.

ċu(0) = 0, ċu(1) = ∞. (5.16)

Last, cv and W are positive constants and the resale value V (t) is monotone decreasing with

V̇ (t) ≤ 0, 0 ≤ W ≤ V (t) ≤ cv/r. (5.17)

Note that these assumptions are economically meaningful: the resale value of an operational
machine is never increasing and always higher than the scrap value. It is, however, smaller than
the operating revenue of the machine.

Remark 5.8
While unimportant for the structure of the optimal control, condition (5.16) rules out the bound-
ary solutions u = 0 and u = 1.

Since the gain and the maintenance costs only arise for an intact machine, the expected
discounted net gains of operating and selling an intact machine is given by∫ T

0

exp−rt (cv − cu(u(t))h(t))x(t)dt+ exp−rT V (T )x(T ), (5.18)

and the expected net gain of scrapping a broken machine in the case Λ ≤ T reads∫ T

0

exp−rtW Ṗ(Λ ≤ t)dt = Wx0 − exp−rT Wx(T )− rW

∫ T

0

exp−rt x(t)dt. (5.19)

These two values can now be combined to form a cost functional. Since Wx0 is constant, we
can neglect it and obtain the optimal control problem

maximize JT (u, v) =

∫ T

0

exp−rt (cv − rW − cu(u(t))h(t))x(t)dt

+exp−rT (V (T )−W )x(T )

with respect to u, v : [0, T ] → R+
0

subject to ẋ(t) = − (1− u(t))h(t)x(t), x(0) = 1

0 ≤ u(t) ≤ 1 ∀t ∈ [0, T ].

Hence, we obtain the maintenance and replacement problem from Section 5.1 with

c(x, u, v, t) := cv − rW − cu(u(t))h(t)

cu,T (x(T ), T ) := (V (T )−W )x(T )

f(x(t), u(t), v(t), t) := − (1− u(t))h(t)x(t).

Since Assumption 5.7 induces Assumption 5.1, and since the term (cu −W )u is linear in u, the
model is state separable. Hence, by Lemma 5.3 it follows that
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Theorem 5.9 (Solution Properties)
Given the Kamien–Schwartz Model and Assumption 5.7 holds, then the conclusion

λ̇(t) ≥ 0 =⇒ λ̇(t) ≥ 0, u̇ ≥ 0

holds for all t ≥ t. Additionally, since by optimality λ̇(t) = c̈u(u(t))u̇(t) and by assumption
c̈u(u(t) > 0, we have

sgn(u̇(t)) = sgn(λ̇(t)).

To apply Lemma 5.5, we observe

σf,x = σcu,x = σcu,T ,x = 1

∂cu,T
∂T

(x, T ) = x(T )V̇ (T ).

Hence, the following result holds:

Theorem 5.10 (Solution Properties)
Given the Kamien–Schwartz Model and Assumption 5.7 holds, then for optimal replacement at
time T ⋆ the optimal maintenance strategy u(t) satisfies the monotonicity condition

u̇(t)

{
< 0 if V̇ (T ⋆) < 0

≤ 0 if V̇ (T ⋆) = 0
.

Therefore, if the time of replacement T ⋆ is chosen optimally, then the reduction of the
failure rate is decreasing. Since the natural failure rate h(t) is increasing, the true failure rate
(1− u(t))h(t) is increasing as well. Whether or not the costs of a preventive maintenance
cu(u(t))h(t) are de- or increasing, fully depends on the case itself.

5.3 Thompson Model

The Kamien–Schwartz model aims at reducing the risk of a sudden machine breakdown by
taking preventive actions. Within the Thompson model, this aim is changed to reduce de-
terministic wearout. Again, we define T as the time to replace the machine and denote the
age of a machine by t. The value of a new machine is represented by x(0) = x0 and u(t) are
the maintenance actions taken in period t. The effectiveness of a maintenance action is given
by g(t), which states by how much the reduction of the resale price is reduced if we invest in
maintenance. The loss in value of a machine consists of two components:

• The technical obsolescence γ(t) reflects the loss in value due to new inventions, availability
of more powerful machines and the decaying productivity and resale value due to age.

• The wear rate δ(t) describes the loss in value due to deterministic wearout.

Hence, we obtain the dynamic of the resale price of a machine based on obsolescence, wear rate
and maintenance via

ẋ(t) = −γ(t)− δ(t)x(t) + g(t)u(t). (5.20)
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For the Thompson model, we consider the following set of assumptions to hold:

Assumption 5.11 (Wearout and Maintenance)
The effectiveness of the maintenance g(t) is monotone decreasing with the age of the machine,
while obsolescence γ(t) and wear rate δ(t) are monotone increasing, i.e.

ġ(t) ≤ 0, γ̇(t) ≥ 0, δ̇(t) ≥ 0. (5.21)

Moreover, maintenance cannot outweigh the technical obsolescence even at the highest main-
tenace rate, that is

−γ(t) + g(t)u ≤ 0, ∀t ∈ [0, T ]. (5.22)

Similar to the Kamien–Schwartz model, the maintenance rate is bounded by

0 ≤ u(t) ≤ u ∀t ∈ [0, T ]. (5.23)

Moreover, the profit of a machine with value x(t) is given by cprod(t)x(t) and the costs for
maintenance are given by cuu(t).

Combining the profit of a machine with its maintenance costs and a discount factor and
selling the machine at the terminal time instant T , then the current value of the monetary flow
is given by

JT (u, T ) =

∫ T

0

exp−rt (cprod(t)x(t)− cuu(t)) dt+ exp−rT x(T ). (5.24)

The combined optimal control problem forms the Thompson model

maximize JT (u, T ) =
∫ T

0
exp−rt (cprod(t)x(t)− cuu(t)) dt

+ exp−rT x(T )

with respect to u : [0, T ] → R+
0

subject to ẋ(t) = −γ(t)− δ(t)x(t) + g(t)u(t), x(0) = x0

0 ≤ u(t) ≤ u ∀t ∈ [0, T ].

For the Thompson model, the Hamiltonian reveals the shadow price

λ̇(t) = (r + δ(t))λ(t)− cprod(t), λ(T ) = 1 (5.25)

and independent from x(t) and u(t) and therefore can be solved independently. Here, λ(t)
represents the cost/profit of an additional unit of the machine at time t. The shadow price is
split into the part measuring the increase of the resale value at time T , and the part measuring
the increase of the production profit from t to T if the resale value at time t is increased. To
obtain a meaningful case, we impose the following:

Assumption 5.12 (Machine Payoff)
For the Thompson model we suppose that

cprod(t) > r + δ(t) ∀t ∈ [0, T ]. (5.26)
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Following Assumption 5.12, at each time instant t we gain more profit from one unit of
machine value x than we loose by discounting and wearout, i.e. running the machine pays off.

Similar to the Kamien–Schwartz model, we can now conclude monotonicity of the shadow
prices using Lemma 5.3:

Theorem 5.13 (Monotonicity of Solutions)
Given the Thompson Model, suppose Assumptions 5.11 and 5.12 to hold. Then we have

λ̇(T ) < 0. (5.27)

Additionally, the function λ̂(t) = cprod(t)/ (r + δ(t)) is monotone decreasing and

λ̇(t) = (r + δ(t)) ·
(
λ(t)− λ̂(t)

)
< 0 (5.28)

holds for all t ∈ [0, T ].

Here, due to linearity of the control u(t) and the separability of the shadow price λ(t) from
the value of the machine x(t), one can show the following:

Theorem 5.14 (Solution Properties)
If Assumptions 5.11 and 5.12 hold for the Thompson model, then

u(t) =


0 if λ(t)g(t) < 1

not defined if λ(t)g(t) = 1

u if λ(t)g(t) > 1

(5.29)

is the optimal maintenance strategy.

Unfortunately, Theorem 5.14 reveals only the optimal boundary controls and does not state
what should be done if the marginal revenue λ(t)g(t) of a maintenance unit u(t) equals a
maintenance unit, i.e. λ(t)g(t) = 1. Basically, (5.29) states that if the payoff of one maintenance
unit is larger than the price of the maintenance unit, then the machine is maintained, otherwise
it is not maintained.

Since g(t) is monotone decreasing and λ(t) is strictly monotone decreasing according to
(5.28), then also λ(t)g(t) exhibits this property. Hence, no inner solution can occur and we can
show:

Corollary 5.15 (Solution)
For a Thompson model satisfying Assumptions 5.11 and 5.12, the optimal maintenance strategy
is given by

u(t) =

{
0 for 0 ≤ t ≤ τ

u for τ ≤ t ≤ T
(5.30)

for some τ ∈ [0, T ] satisfying λ(τ)g(τ) = 1. If the latter equation reveals τ < 0 we set τ = 0,
and if it reveals τ > T we set τ = T .
Additionally, the optimal replacement time T is given as the unique solution of

x(T ) =
γ(T )

cprod(T )− r − δ(T )
. (5.31)



Chapter 6

Investment and Financial Planning

In the previous two chapters we focused on Production and Inventory (Chapter 4) as well
as Maintenance and Replacement (Chapter 5), which are goods based and located on the
operational level of a company. Yet, we only considered a fixed setting, i.e. the company acted
statically on its operational basis.

In practice, however, companies are almost never static, but grow or shrink dynamically.
Both developments are connected to investments taken by stakeholders, which in turn require
financial resources. The aim of stakeholders with respect to their companies is to maximize
the profit gained by the company, while the aim with respect to their investors is to amortize
debts.

Within this chapter, we leave the static aspect from Chapters 4 and 5 behind and consider
growth of companies on a microeconomic scale and will in particular focus on the dynamics
of this growth. Within the first Section 6.2, a purely goods economic model without finance
will be discussed. This model will then be extended to cover funding of the capital stock via
equities and debts in Section 6.3. This also includes the factor labor and touches aspects of
substitution of labor by capital.

6.1 Problem Formulation

We consider a company, which produces a certain good and sells this good on the product
market for a constant price p per unit under complete competition. In order to produce the
good, the two production factors capital stock x1 and labor u2 are required. The produced and
sold quantity is given by the production function f(x1, u2). The capital stock is devalued over
time with a constant amortization rate δ. Now, we consider the brutto investment rate u1 as a
control and formulate the dynamics of the netto investment rate via

ẋ1(t) = u1(t)− δx1(t). (6.1)

While the capital stock is controlled via the brutto investment rate u1, the company is capable
to define the second production factor labor u2 directly.

Remark 6.1
Note that to render the model more realistic, we could integrate labor also in the dynamics.
Here, however, we will focus on the more simpler case of model (6.1).
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6.2 Jorgenson Model

In contrast to the general formulation above, the Jorgenson model imposes the following:

Assumption 6.2
Both the labor wages w and investment costs c(u1) are constant, and the company discounts
its future profits with discount rate r.

Considering constant labor wages and investment costs, we can conclude that the profit rate
is given by pf(x1(t), u2(t))−c(u1(t))−wu2(t). Then, the aim of such a company is to maximize
the present value of the overall profit

max
u1,u2

∫ ∞

0

e−rt (pf(x1(t), u2(t))− c(u1(t))− wu2(t)) dt (6.2)

by choosing a suitable investment strategy and labor level. Hence, we obtain the so called
Jorgenson model

maximize J∞(u1, u2) =

∫ ∞

0

e−rt (pf(x1(t), u2(t))− c(u1(t))− wu2(t)) dt

with respect to u1 : [0,∞) → R and u2 : [0,∞) → R+
0

subject to ẋ1(t) = u1(t)− δx1(t), x1(0) = x10

u1 ≤ u1(t) ≤ u1 ∀t ∈ [0,∞).

with two controls (investment rate u1 and labor level u2), but only one state variable (netto
capital stock x1).

In order to get a solution to the above problem, we assume the following:

Assumption 6.3 (Concavity of the Production Function)
The production function f(·, ·) is concave in both components, i.e.

∇x1f(x1, u2) > 0

∇u2f(x1, u2) > 0

∇2
x1,x1

f(x1, u2) < 0

∇2
u2,u2

f(x1, u2) < 0

∇2
x1,x1

f(x1, u2)∇2
u2,u2

f(x1, u2)−∇2
x1,u2

f(x1, u2)
2 > 0.

As the control variable labor u2 is not directly contained in the dynamics (6.1), we can
maximize the profit (6.2) statically with respect to u2. Utilizing first order necessary conditions,
cf. Theorem 1.16, we directly obtain:

Theorem 6.4 (Solution Properties)
Consider the Jorgenson model and a respective maximal profit

π(x1) := max
u2

pf(x1, u2)− c(u1). (6.3)

Then, we have that

π̇(x1) = p∇x1f(x1, u2). (6.4)
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Note that the optimal profit π depends on both capital x1 and labor u2.

Corollary 6.5 (Concavity)
Given the Jorgenson model together with Assumption 6.3. Then the profit function π(x1) is
concave, i.e.

π̈(x1) < 0.

Note that Corollary 6.5 allows us to conclude that a maximum utilization of labor exists.
Now, we can inspect (6.3) more closely: As the optimal profit is given by π(x1), then also the

labor connected part of the right hand side is a function of the capital stock, i.e. u2 = u2(x1).
To move along towards obtaining an optimal solution, we assume that production actually is
profitable:

Assumption 6.6 (Profitability)
Suppose that p∇u2f(x1, 0) > w holds, i.e. labor utilization outweighs labor costs.

From Assumption 6.6 we obtain

Corollary 6.7 (Concavity of Solution)
Given the Jorgenson model together with Assumptions 6.3 and 6.6, then inequality

p∇u2f(x1, u
⋆
2) = w

holds, i.e. the wages are identical to the incremental contribution to profit.

Now we can combine the latter with (6.2) and (6.3) and obtain an solution for the integral

J∞(u1(t), u
⋆
2(t)) =

∫ ∞

0

e−rt

π(x1(t))− cδx1(t)︸ ︷︷ ︸
M(x1)

− c︸︷︷︸
N(x1)

ẋ1(t) −wu⋆
2︸ ︷︷ ︸

constant

 dt.

using integration by parts:

Theorem 6.8 (Solution)
Consider the Jorgenson model. Then the solution of the integral reads

J∞(u1(t), u
⋆
2(t)) = rN(x1(t)) + Ṁ(x1(t)) = π̇(x1(t))− c(r + δ)

and is strictly decreasing as the optimal profit π(x1) is concave.

Utilizing the latter, we can conclude the following:

Corollary 6.9 (Marginal Investment Costs)
Consider the Jorgenson model together with Assumptions 6.3 and 6.6. Then J∞(u1, u

⋆
2) = 0

reveals

pf(x⋆
1, u

⋆
2) = c(r + δ).
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In economic terms, the latter result tells us that the marginal investment costs of an addi-
tional unit of capital stock is identical to the additional value induced by this capital stock unit
corrected by the discount rate. Hence, we can conclude that the quickest possible trajectory
towards the equilibrium x⋆

1 is optimal, i.e.:

Theorem 6.10 (Optimal Strategy)
Given the Jorgenson model suppose that Assumptions 6.3 and 6.6 hold. Then the optimal
investment strategy reads

u1(t) =


u1 if x1(t) < x⋆

1

u⋆
1 = δx⋆

1 if x1(t) = x⋆
1

u1 if x1(t) > x⋆
1

. (6.5)

Given this investment strategy, we have two cases: First that capital stock and labor are
directly proportional, and secondly that both are indirectly proportional.

Theorem 6.11 (Proportionality of Capital Stock and Labor)
Suppose Assumptions 6.3 and 6.6 hold for the Jorgenson model. If additionally ∇2

x1u2
f(x1, u2) >

0 holds, then due to u̇2(x1) = −∇2
x1u2

f(x1, u2)/∇2
x1x1

f(x1, u2) we have that labor is increasing
whenever the capital stock is increasing, that is

u2(t)


< u⋆

2 if x1(t) < x⋆
1

= u⋆
2 if x1(t) = x⋆

1

> u⋆
2 if x1(t) > x⋆

1

.

If ∇2
x1u2

f(x1, u2) < 0, then this relationship is inverted.

Similarly, we can characterize a property, which allows us to conclude that deinvesting is
optimal:

Theorem 6.12 (Deinvesting)
Consider the Jorgenson model together with Assumptions 6.3 and 6.6. If π̇(0) < c(r+ δ) holds,
then we have x⋆

1 = 0, i.e. deinvesting is optimal. The optimal (de)investment policy then reads

u1(t) =

{
u1 if x1(t) > 0

0 if x1(t) = 0
.

6.3 Lesourne and Leban Model

Within the Jorgenson model, we did not consider whether the company can actually refinance
its capital stock x1 at the financial market. Now, instead of stock, we now consider equities
x2 and debts x3 revealing x1 = x2 + x3 and our key performance index will be the discounted
dividend payment u3, yet still we have that the dynamics

ẋ1(t) = u1(t)− δx1(t). (6.1)
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To describe the development of equities over time, we introduce the corporate tax rate τ and
the interest rate on debts ϱ. Similar to the Jorgenson model, we consider Assumption 6.3
regarding concavity of the production function f(·, ·). We denote the returns of the production
Q by R(Q) = p(Q) ·Q. Here, we additionally assume the following:

Assumption 6.13 (Concavity of Production Returns)
Suppose that the returns of the production R(Q) is concave, i.e.

Ṙ(Q) > 0 and R̈(Q) < 0. (6.6)

Then, considering the return function E(x1, u2) = R(f(x1, u2)), we directly observe:

Lemma 6.14 (Concavity of Return Function)
Suppose Assumptions 6.3 and 6.13 hold, then the return function E(x1, u2) is concave and we
have

∇x1E(x1, u2) > 0

∇u2E(x1, u2) > 0

∇2
x1,x1

E(x1, u2) < 0

∇2
u2,u2

E(x1, u2) < 0

∇2
x1,x1

E(x1, u2)∇2
u2,u2

E(x1, u2)−∇2
x1,u2

E(x1, u2)
2 > 0.

The profit after tax may be used to increase the equities, or to payout dividends u3(t) ≥ 0,
which reveals

Taxation︷ ︸︸ ︷
(1− τ)

 E(x1(t), u2(t))︸ ︷︷ ︸
Return on investment

−
Labor costs︷ ︸︸ ︷
wu2(t) − δx1(t)︸ ︷︷ ︸

Amortization

−
Interests for debts︷ ︸︸ ︷

ϱx3(t)

 = ẋ2(t)︸︷︷︸
Change in equities

+

Dividends︷︸︸︷
u3(t) .

Moreover, debts should not exceed a certain fraction σ of the equities, that is 0 ≤ x3(t) ≤ σx2(t).
Combined, we can state the optimal control problem of a company, which is also called

the Lesourne and Leban model. To reduce the degrees of freedom, we eliminate x3(t) via
x3(t) = x1(t)− x2(t) and obtain

maximize J∞(u1, u2) =

∫ ∞

0

e−rtu3(t)dt

with respect to u3 : [0,∞) → R+
0 , u1 : [0,∞) → R and u2 : [0,∞) → R+

0

subject to ẋ1(t) = u1(t)− δx1(t), x1(0) = x10

ẋ2(t) = (1−τ) (E(x1(t), u2(t))− wu2(t)− δx1(t)− ϱ (x1(t)− x2(t)))−u3(t)

x2(0) = x20

0 ≤ u3(t) ≤ u3 ∀t ∈ [0,∞)

x2(t) ≤ x1(t) ≤ σx2(t) ∀t ∈ [0,∞).

Note that the latter problem can be enriched by including the constraint u1 ≤ u1(t) ≤ u1
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for all t ∈ [0,∞) and still an optimal solution can be constructed via connection of optimal
paths similar to the concatenation of solution intervals for production in Theorem 4.7. As the
respective solution is quite involved, we only consider the more simple case mentioned above.

As the control u1 only enters in equation

ẋ1(t) = u1(t)− δx1(t)

and as x1 may be discontinuous due to unboundedness of u1, we reconsider u1 not to be a
control but a state and in turn set x1 as new control variable. Doing so allows us to split the
optimal control problem in a two–level problem:

Theorem 6.15 (Two–Level Problem)
The Lesourne and Leban model can equivalently be rewritten as two–level problem reading

1. For each fixed x2 ≥ 0 solve

π(x2) = max
x1,u2

{E(x1(t), u2(t))− wu2(t)− (ϱ+ δ)x1(t)} (6.7)

subject to x2 ≤ x1(t) ≤ σx2.

2. Utilize π(x2) to solve

max
u3

∫ ∞

0

e−rtu3(t) dt (6.8)

subject to ẋ2(t) = (1− τ) (π(x2(t)) + ϱx2(t))− u3(t), x2(0) = x20

0 ≤ u3(t) ≤ u3

x2 ≥ 0.

We start by solving the first level and apply the KKT conditions, cf. Theorem 1.31. Note
that this is legitimate as the LICQ condition (Definition 1.30) holds for the constraints x2 ≤
x1(t) ≤ σx2. We first define the Lagrangian

L(x1, u2;λ1, λ2) = E(x1, u2)− wu2 − (ϱ+ δ)x1 + λ1(x1 − x2) + λ2(σx2 − x1). (6.9)

Now, the Karush–Kuhn–Tucker conditions, cf. Theorem 1.31, reveal

∇x1L(x1, u2;λ1, λ2) = ∇x1E(x1, u2)− (ϱ+ δ) + λ1 − λ2 = 0 (6.10)

∇u2L(x1, u2;λ1, λ2) = ∇u2E(x1, u2)− w = 0 (6.11)

λ1(x1 − x2) = λ2(σx2 − x1) = 0 with λ1 ≥ 0, λ2 ≥ 0 (6.12)

Due to Lemma 6.14 we have that x2(·, ·) and E(·, ·) are concave in both arguments. As the
constraint x2 ≤ x1(t) ≤ σx2 in the first level problem is linear in x1, the KKT conditions (6.10),
(6.11), (6.12) are also sufficient, cf. Theorem 1.33.

To obtain the optimal solution of the first level problem, we consider three cases: interior,
lower bound and upper bound:

1. For an interior solution we have x2 ≤ x1(t) ≤ σx2 is not active, i.e.

x2 < x1(t) < σx2.
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Hence, from the KKT condition (6.12) we obtain λ1 = λ2 = 0 and the optimal solution
(x⋆

1, u
⋆
2) is given by the equation system

∇x1E(x1, u2) = ϱ+ δ

∇u2E(x1, u2) = w.

Moreover, we obtain that the optimal production factor labor as function of capital is
given by

u̇2(x1) = −
∇2

x1u2
E(x1, u2)

∇2
u2u2

E(x1, u2)
.

Due to concavity of the return function E(·, ·), cf. Lemma 6.14, and

d

dx1

∇x1E(x1, u2(x1)) = ∇2
x1x1

E(x1, u2(x1)) +∇2
x1u2

E(x1, u2(x1)) · u̇2(x1)

=
∇2

x1x1
E(x1, u2(x1))∇2

u2u2
E(x1, u2(x1))−∇2

x1u2
E(x1, u2(x1))

∇2
u2u2

E(x1, u2(x1))
< 0,

we have that ∇x1E(x1, u2(x1)) is strictly monotone descreasing.

2. For the lower bound x1 = x2 we have λ2 = 0 and therefore due to (6.10)

∇x1E(x1, u2) = ϱ+ δ − λ1 ≤ ϱ+ δ.

Hence, x1 ≥ x⋆
1 for an optimal interior solution x⋆

1. The latter can only occur if x⋆
1 is less

then the equity x2, x
⋆
1 ≤ x2.

3. Regarding the upper bound we have x1 = σx2 and hence λ1 = 0. Similar to the lower
bound case, we obtain

∇x1E(x1, u2) = ϱ+ δ + λ2 ≥ ϱ+ δ.

from (6.10), which similarly induces x1 ≤ x⋆
1 and x⋆

1 ≤ σx2.

Combined, we obtain the following:

Theorem 6.16 (Solution of the First Level Problem)
Consider the first level problem of the Lesourne and Leban model from Theorem 6.15. Then
the optimal solution is given by

x1 =


σx2, if x2 ≤ x⋆

1/σ

x⋆
1, if x⋆

1/σ < x2 < x⋆
1

x2, if x2 ≥ x⋆
1

(6.13)

and the cost function reveals

π(x2) =


E(σx2, u2(σx2))− wu2(σx2)− (ϱ+ δ)σx2, if x2 ≤ x⋆

1/σ

E(x⋆
1, u

⋆
2)− wu⋆

2 − (ϱ+ δ)x⋆
1, if x⋆

1/σ < x2 < x⋆
1

E(x2, u2(x2))− wu2(x2)− (ϱ+ δ)x2, if x2 ≥ x⋆
1

. (6.14)
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Now, we can focus on the second level of Theorem 6.15. As we have only equity as one state
x2 and dividends as one control u3, which is additionally linear, we can utilize integration by
parts to obtain the equilibrium x̂2 satisfying

π̇(x̂2) =
r

1− τ
− ϱ.

Hence, if the expected interest rate of the owners r exceeds the interest rate on debts ϱ corrected
by the corporate tax rate τ , then the equilibrium x̂2 is comparably small. If on the other hand
owners value future dividends, then the equity stock x̂2 will be higher.

In all cases, an optimal solution will tend towards the equilibrium, which reveals the follow-
ing result:

Theorem 6.17 (Solution of the Second Level Problem)
Consider the second level problem of the Lesourne and Leban model from Theorem 6.15 and x̂2

to be the respective equilibrium equity level. Then the optimal solution is given by

u3 =


0, if x2 < x̂2

û3 = (1− τ) [π(x̂2) + ϱx̂2] , if x2 = x̂2

u3, if x2 > x̂2

. (6.15)

Hence, if the dividend payments are below the equilibrium equity stock x̂2, then it is optimal
to pay no dividends. Once the equilibrium is reached, then the netto profit will be payed out.
For a growing company, for example, we always have x2 < x̂2, hence no dividends should be
payed. For a shrinking company, we have that x̂2 = 0, hence the company should be dissolved
immediately.
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