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Foreword

This script originates from a correspondent lecture held during the summer term 2018 at the
University of Bremen. The central aims of the lecture are the introduction of modeling and
system identification techniques for (dynamical) systems. In particular, we model differential
equation systems to design

e Deterministic Processes as well as
e Stochastic Processes.

To deal with these kind of systems properly, we give a short introduction/repetition to differ-
ential equations. Based on these basic models, we then identify ,the real” system, i.e. we fit
data to model. To this end, we introduce basic stochastic definitions and discuss

e Least Square Estimaton and
e Kalman Filtering.

At the end of the lecture, students should understand the concepts, know basic formulas, be
able to comprehend and interpret input and output of the methods and to make a suitable
choice between the presented methods.

Parts of the scripts are based on script the of Prof. Griine [4] and the books [2, 5, 10]
regarding the modeling part, and the script of Prof. Schoukens [8] as well as the books [6, 9]
served as a basis for the identification part.
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Chapter 1

Introduction

Within this chapter, we give a brief introduction to modeling and identification. To this end,
we use a simple example to model and to illustrate pitfalls associated with a model built from
noisy measurements. Additionally, we give a recap of terms from differential equations and
probability theory, which we will require throughout the lecture.

1.1 What is a “Model”?

Intuitively, we all know what a model is. We have identified it by learning to control our actions
using predictions of the effect of these actions. These predictions are based on a model, and
form a model of reality in our mind. There are simple connection, e.g. “I push a ball, then
it rolls”. Yet, we may also accumulate very complicated systems such as cars, supply chains
or weather forecast. Hence, the model is something deterministic, without uncertainty and
predictable for all times.

Unfortunately, as we all experienced, models do not represent reality one-to—one. So if we
use a model, there may be deviations between model prediction and reality, especially if long
time horizons are considered. The reason for that is due to the following: For a model, we
always focus on those aspects we are interested in, and do not try to describe all of reality.
Hence, the problem is split into two parts,

e the model, which describes what we are interested in, and
e the environment, which contains everything else.

Since we cannot tell anything about the environment (as it is not modeled), interactions between
model and environment can only be interpreted as disturbances.
During the modeling process, six principles need to be met:

1. Principle of Correctness: A model needs to present the facts correctly regarding structure
and dynamics (semantics). Specific notation rules have to be considered (syntax).

2. Principle of Relevance: All relevant items have to be modeled. Non-relevant items have
to be left out, i.e. the value of the model doesn’t decline if these items are removed.

3. Principle of Cost vs. Benefit: The amount of effort to gather the data and produce the
model must be balanced against the expected benefit.

4. Principle of Clarity: The model must be understandable and usable. The required knowl-
edge for understanding the model should be as low as possible.
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5. Principle of Comparability: A common approach to modeling ensures future comparabil-
ity of different models that have been created independently from each other.

6. Principle of Systematic Structure: Models produced in different views should be capable
of integration. Interfaces need to be designed to ensure interoperability.

Here, an interesting point arises: Since typically modeler and model user are different entities,
which exhibit different perspectives on the process, a good model for the modeler may be very
different from a good model for the model user. For example, a detailed model may reflect
reality very well, but it may be too complex to evaluate in a real-time setting and hence not
usable for feedback control. Hence, modeling must be in line with the usage, and the quality
of a model is determined by the degree it meets the requirements of the model user (“fitness
for use”).

Within this lecture, we focus on the quantitative description of a model, i.e. qualitative
results such as “a ball will roll downhill” are not the kind of model properties we are looking
for. Instead, we utilize laws, which may, e.g., be given by physics or econometrics, and describe
at least some part of our impression of reality.

In particular, we consider models satisfying the so called nonlinear continuous time control
systems form

w(t) = f(x(t), u(t)), (1.1)

where x represents the internal state of the system, u the external force on the system, f the law

or dynamics of the system, and ¢ the continuous time respectively. We want to develop models

for a number of applications, to analyze respective techniques and to discuss assumptions made

regarding the model. Additionally we will recall some aspects of the qualitative analysis of

differential equations, which are required to investigate properties of the models. Since this will

be a simple recall, no details on proofs will be given, but instead we refer to [2,5,10] for details.
We will particularly focus on applications from

e Biological Processes,
e Mechanical Processes, as well as
e Financial Processes.

Each of these topics is that large, that we cannot cover them entirely. Therefore, we restrict
ourselves to certain aspects from these topics. Regarding biological processes, we consider the
growth model, which can be used to describe the growth of a market for a product or of the
population of a species, or for several competing ones. Regarding mechanical processes, we
will use the laws of motion from classical mechanics to develop modular models of mechanical
processes. And last, in financial applications we focus on the assessment of options using the
Black—Scholes equation.

The various sub-areas provide the opportunity to learn about different techniques and pos-
sibilities, but also about limitations of modeling. In biology, we will see that — although the
individual elements of the models can be quite mathematically rigorously justified — the sig-
nificance of the overall models is greatly influenced by many external influences, which cannot
be taken into account if the mathematical model shall remain tractable. As a consequence, one
has to introduce model assumptions, for example, that a product- or eco-system is closed and
not influenced from the outside, or that the effects of changing seasons are neglected. In me-
chanics, we also have to integrate model assumptions, yet the neglected effects can be estimated
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much better. An example of this is the static friction, which is often neglected. If, however,
a mechanical system is sufficiently fast, then this effect does not even appear. In contrast to
the laws that can be used in mechanics, financial processes are based on differential equations,
which model the stock development in a mainly phenomenological manner. Indeed, equations
are applied which restate real stock developments, yet without underlying principles.

1.2 What is “Identification”?

Let us now assume that we have a model or a process at hand. Then our next task is to
match the behavior of the model to the one of the real process, which is also called fitting.
To this end, we not only need the model itself, we also require data from the process and
a possibility to simulate the model. Matching simulated to real data is then qualified by an
optimization criterion, which is defined, as described before, by the degree of the model meeting
the requirements of the model user. This criterion allows us to actually fit the model. Last,
the model should always be validated, i.e. tested for failure or unfruitful results. Hence, each
identification process consists of a series of basic steps:

1. Collect information on the system

2. Select a model to represent the system

3. Choose an optimization criterion

4. Fit the model parameters to the measurements accordingly
5. Validate the computed model

Note that some of the steps may be hidden from the user or selected without being aware of a
choice, which may result in suboptimal or even poor performance. Unfortunately, fitting laws
or models to observations creates new problems:

e For one, we consider noisy measurements. In this context, noisy means that if we take a
measurement, e.g. length, weight, time etc., then errors occur since the instruments we
use are not perfect.

e And secondly, our laws and models are imperfect as reality is far more complex than
the rules we apply. They also show a stochastic behavior, which makes it impossible to
predict exactly their output.

To still identify the system, we split the model into a deterministic and a stochastic part.
The deterministic aspects are captured by the mathematical system model. These are comple-
mented by the stochastic behavior, which are modeled as a noise distortion. Hence, the aim of
identification theory is the following:

Identification theory provides a systematic approach to fit the mathematical model
to the deterministic part as well as possible, and to eliminate the noise distortions
as much as possible.

Within this lecture, we particularly focus on the techniques of the
e Least Square Estimator,

e Maximum Likelihood and Bayes Estimator, and of the
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e Kalman Filter.

Note that the terms estimator and filter are similar, yet an estimator refers to a static problem
and a filter to a dynamic one. Still, estimators can be applied to dynamical problem, but are
not ideally suited.

Before defining the required terms, we motivate and illustrate many of the aspects and
problems in identification theory by a simple example.

1.3 A simple example

Using two electric circuits as shown in Figure 1.1, we pass a constant but unknown current
through the resistor. The voltage u across the resistor and the current ¢ through it are measured
using a voltmeter and an ampere meter, where the input impedance of the voltmeter is chosen
large compared with the unknown resistor to ensure that all the measured current passes
through the resistor.

Figure 1.1: Measurement of a resistor.

The resistor model is given by Ohm’s law
R=U/I, (1.2)

and our aim is not to identify the resistance given some measurements, i.e. to fit the model.

Here, we suppose that two sets of measurements u(k), i(k) with k = 1,2,..., N are taken
and called group A and B, cf. Figure 1.2, and the resistances r(k), k = 1,2,..., N are computed
via (k) = u(k)/i(k), see Figure 1.3 for respective results.

Measurement number Measurement number leasurement number Measurement number

(a) Group A of measurements (b) Group B of measurements

Figure 1.2: Measurement values for two groups

Since the measurements are very noisy, we apply different estimators to analyze the resistor:

Rsa(N) = % ?((:)) (1.3)
k=1
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Measured value (R)
Measured value (R)

051

. . . . . . . . . i . . . . . . . . . i
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
Measurement number Measurement number

(a) Computed resistance from group A (b) Computed resistance from group b

Figure 1.3: Computed resistances from measurement groups

Rgy(N) = ——— (1.4)
~ > i(k)
k=1
Rig(N) = arI%minZ(R Ci(k) — u(k))? (1.5)
R k=1

Within these estimators, N indicates the number of used measurements. Note that the three
estimators result in the same estimate on noiseless data. The first estimator, the Simple
Approach, averages the quotients of voltage and current measurements. The second estimator,
the Error-in-Variable approach, averages the voltages and currents first and then computes the
quotient. And the last estimator, the Least Square approach, computes the minimal distance

linear function between voltage and current pairs in the 2-norm.
N
To compute the latter, we set f(R) := >_ (R -i(k) — u(k))?® and minimize it, i.e., we are

looking for a value R such that

Of(R) _
“orn
From the definition of f(R), we obtain

f(R) _ 5

R = 2 2-(R-i(k) —u(k)) -i(k)
N N

=2-R-) i(k)>—2-> u(k)-i(k)

k=1 k=1

Hence, we have

A k=1
Ris(N) = —F——. (1.6)
> i(k)?
k=1
Utilizing these estimation formulas, we can compute the estimated resistances as displayed in
Figure 1.3. From this figure, we can make several observations:
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Estimated resistance

(a) Estimated resistance from group A
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(b) Estimated resistance from group B

Figure 1.4: Estimated resistances from measurement groups with Rsa in blue, Rpy in red and
Rypg in green.

1.

All estimators have large variations for small values of N, and — except for Rsa from group
A — seem to converge to an asymptotic value for large values of N. This corresponds to
the intuitively expected behavior: if a large number of data points are processed, then
we should be able to eliminate the noise influence due to the averaging effect.

The asymptotic values of the estimators depend on the kind of averaging technique that
is used. This shows that there is a serious problem: at least two out of the three methods
converge to a wrong value. It is not even certain that any one of the estimators is
doing well. This is quite catastrophic: even an infinite amount of measurements does not
guarantee that the exact value is found.

The Rgy from group A behaves very strangely. Instead of converging to a fixed value, it
jumps irregularly up and down.

These observations clearly indicate that a good theory is needed to explain and understand the

behavior of candidate estimators.

This will allow us to make a sound selection out of many

possibilities and to indicate in advance if a method is prone to serious shortcomings before
running expensive experiments.

To gain more insight, we can plot approximations of the probability density functions based
on the data, cf. Figure 1.5. From this figure, we observe the following:

(a) Observed probability density functions for
group A

E

(b) Observed probability density functions for
group B

Figure 1.5: Observed probability density functions for groups. From left to right N = 1000,

N =

10000 and N = 100000 with Rs A in blue, REV in red and RLS in green.
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1. For small values of N, the estimates are widely scattered. As the number of processed
measurements increases, the probability density function becomes more concentrated.

2. The estimates Z%LS are less scattered than EEV and I%SA, and odd behavior for RSA in
group A appears again. The distribution of this estimate does not contract to a single
value for growing values of N for group A, while it does for group B.

3. It is clearly visible that the distributions are concentrated around different values.

The choice of the estimator is not yet clear. And additionally, there seems to be a major
problem with the measurements of group A, which was observed via Rsa. In order to quantify
the scattering of the estimates, in particular of Rs A, the standard deviation can be calculated,
cf. Figure 1.6. Here, we observe that the standard deviation decreases monotonically with N —

Standard deviation
Standard deviation

; ; ; ;
10° 10' 10° 10° 10° 10°

10° 10°
Number of measurements Number of measurements

(a) Observed standard deviation for group A (b) Observed standard deviation for group B

Figure 1.6: Observed standard deviation for groups. From left to right N = 1000, N = 10000
and N = 100000 with RSA in blue, REV in red and RLS in green.

except for Rga of group A. Moreover, the decrease is proportional to 1/ VN, which is the rule of
thumb for the uncertainty on an averaged quantity obtained from independent measurements.
Additionally, the uncertainty depends on the estimator.

Regarding the strange behavior of Rgsa of group A, we reconsider the measurement data
displayed in Figure 1.2 and compute respective histograms, cf. Figure 1.7. Due to possibly

4000

1000

# Realization
# Realization
2
8

0 1 1.05
Current Current

(a) Histogram for i(-) for group A (b) Histogram for i(-) for group B

Figure 1.7: Comparison of histograms for the current i(-)

occuring zero values for the current in group A, we obtain a drastic increase in the estimation
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using the simple approach. This is due to a division by (almost) zero. In group B, such a case
does not exist.

This example shows that there is a clear need for methods, which can generate and select
between different estimators. We also like to note that although the noise on the measurements
in group A is completely different distributed, the resulting estimation, e.g. by Rgv and }A%LS,
seem to be the same as in group B.

Before coming to a structured approach of identifying a process in Chapter 5, we first need
to introduce some notation and make us familiar with basic definitions.

1.4 Basic Terms

Similar to the denomination of the lecture itself, also the terms which we are going to use
are from different fields. Regarding the modeling part, we will restrict ourselves to differential
equations, and for the largest portion of the lectures, we will narrow it down to ordinary
differential equations. This will give us the deterministic part. Regarding the stochastic part,
we require tools from stochastic analysis, mainly regarding probability theory but also regarding
certain concepts of convergence. The identification part of the lecture will make use of both
the deterministic model, and the stochastic part of the process.

1.4.1 Recall from Differential Equations

An ordinary differential equation relates the derivative of a function x : R — R"™ with its
onedimensional argument and the function itself. More formally:

Definition 1.1 (Ordinary Differential Equation)
An ordinary differential equation in R", n, € N, is given by

d
52 = f(t,2(t)) (1.7)

where f : D — R"™ is a continuous function and D is an open subset of R x R".

The solution of (1.7) is a continuously differentiable function x : R — R"*, which satisfies
(1.7). In general, we will use the following denomination throughout the script:

e The independent variable ¢ is referred to as time, although other interpretations are
possible.

e Instead of Lx(t) we will often use the abbreviation @(t).
e The function z(t) is called solution or trajectory.

e If the function f is independent of ¢, i.e. &(t) = f(x(t)), then the differential equation is
called autonomous.

An ordinary differential equation typically possesses infinitely many solutions. Examplarily,
we consider the differential equation

(t) = x(t)
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with x(t) € R. Moreover, suppose z(t) = Cexp’ with C' € R arbitrary but fixed. Hence, we
have

i(t) = Cexp' = z(t),

which holds for each C' € R, i.e. the differential equation has infinitely many solutions.

To obtain a unique solution, we have to introduce a constraint, the so called initial value
constraint. Combined with the differential equation (1.7), this reveals the so called initial value
problem:

Definition 1.2 (Initial Value Problem)
Consider values ty and o € R™ to be given. Then the initial value problem is to find the
solution satisfying the differential equation

o(t) = f(t, z(t)) (1.7)
and the initial value condition

z(to) = zo. (1.8)

Here, the time ¢35 € R is called initial time and the value xq € R"™ is called initial value.
Both the pair (¢, o) and equation (1.8) are called initial condition.

Remark 1.3
A continuously differentiable function x : D — R™ solves the initial value problem (1.7), (1.8)
for some ty € D and xy € R™ if and only if for each t € D the integral equation

z(t) = xo + /t ' f(r,x(1))dr (1.9)

holds. This follows directly by integration of (1.7) with respect to t or via differentiation of
(1.9) with respect to t using the central theorem of differentiation and integration. Note that
each continuous function x(t) satisfying (1.9) is automatically continuously differentiable since
continuity of x(t) on the right hand side of (1.9) implies continuous differentiability of the right
hand side, and hence of x(t) itself.

Under certain conditions, existence and uniqueness of a solution to the problem from Defi-
nition 1.2 can be shown. This is the so called Lipschitz condition

Definition 1.4 (Lipschitz Condition)
Consider a function f : D — R™ with D C R x R™. Then f is called Lipschitz in its second
argument, if for each compact set K C D there exists a constant L > 0 and

1f(E,2) = f(t )l < Lz =yl (1.10)

holds for all £ € R and all z,y € R™ with (¢,z), (t,y) € K.

Using this property, we can show the following:
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Theorem 1.5 (Existence and Uniqueness)

Consider a differential equation (1.7) with f : D — R™ and D C R x R"™. Moreover, f is
considered to be continuous and Lipschitz continuous in the second argument. Then for each
initial condition (ty, xo) € D, there exists a unique solution x(t;to, xo) of the initial value problem
(1.7), (1.8). This solution is defined for all t from an open mazimal interval of existence Iy, 4,
with ty € ]tOJO'

Proof. We show the results in three steps:

1. We show that for each initial condition (o, z9) € D there exists a closed interval .J around
to such that the solution exists and is unique.

2. Next we show uniqueness of the solution on an arbitrary large interval I.
3. Last we show existence of a maximal interval of existence.

Part 1: We choose a bounded closed interval I around ty, and € > 0, such that the compact
neighborhood U = I X B.(x) of (ty, zo) lies in D. Since D is an open set, this is always possible.
Since f is continuous and U is compact, there exists a constant M such that || f(¢, z)|| < M for
all (t,z) € U. Now we choose J = [ty — 0,1y + 0] with 6 > 0 such that J € I and Lj < 1 and
M§ < e. Now we apply Banach’s Fixpoint Theorem on the Banach space C(.J,R"*) with norm
| %]/ = sup,ey ||z(t)]]. On C(J,R™) we define the map

t
T:C(J,R"™) = C(J,R"™), T(x)(t) =z +/ f(r,x(r))dr
to
Note that for each ¢t € J and each = € B := C(J, B-(x¢)) the inequality

1T () (t) — ol = t f(r, () dr |f (r, (7))l dr

<M <e

holds, and hence T" maps the set B on itself. To apply Banach’s Fixpoint Theorem to this set,
we have to show that T': B — B is a contraction, i.e.

IT(2) = TW)lleo < Fllz = Ylloo

holds for all x,y € B and a constant £ < 1. For k = L < 1, this follows from

/fo dT—/ny

/t \f(r 2(r))dr — f(r.y(r)|| dr

< sup [t —to| Ll — ylloo = SL[lz = Yoo
teJ

IT(x) = T(y)llsc = sup

teJ

< sup
teJ

Hence, the assumption of Banach’s Fixpoint Theorem are satisfied and 7" exhibits a fixed point.
Since the iteration satisfies the integral equation (1.9) by construction, the resulting solution
x(t) is a continuously differentiable function.

It remains to show that z(t) is also unique. From Banach’s Fixpoint Theorem we know that
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in B = C(J, B=(zo)) there exist no other fixed point of 7. Hence, we only have to show that
there exists no fixed point outside B. Suppose there exists such a fixed point y € B of T, i.e.
we have ||y(t) — zo|| > € for some t € J, where we assume ¢ > t, without loss of generality. By
continuity, there exists a t* € J such that ||y(t*) — zo|| = € and y(s) € B.(x¢) for s € [to, t*].
Hence, we have

e = [ly(t") — xol| =

< / 1 £ (r, 9(7))ldr

to

/t £(r, y(r))dr
< (" = to)M < SM.

By dM < g, this results in a contradiction. Hence, uniqueness of z(t) follows.

Part 2: Suppose x,y are two solutions of the initial value problem, which are defined on the
interval I. Now suppose that there exists a t € I such that z(¢) # y(t). Without loss of
generality, we assume that t > to. Since both solutions coincide and are continuous (Part 1),
there exist t5 > t; > ty such that

x(t1) =y(t1) and xz(t) # y(t) for all t € (t1,1s).

Both solutions solve the initial value problem with initial condition (¢1,x(¢1)) € D. From Part
1 we can conclude that there exists a unique solution of the initial value problem on an interval
J around ty, i.e. x(t) = y(t) for all t € J. Since J as an interval around t, contains at least
one point ¢ with £; < t < t5, this is a contradiction and x and y must coincide on the entire
interval 1.

Part 3: For J from Part 1 we define

tT :=sup{s > t; | there exists a solution on J U [to, s)}

t~ :=inf{s <ty | there exists a solution on J U (s, o]}

and set I, ,, = (t7,t7). Since the set for generating supremum and infimum are nonempty
due to containing s € J, both ¢t~ and t* exist. By definition of = and ¢* no larger interval
I D I}, 4, exists showing the assertion. ]

Note that at the boundary of the interval of existence Iy, ,, the solution ceases to exist. If
the interval is bounded, then there are two possible reasons for that: For one, the solution may
diverge, or secondly the solution converges to a boundary point of D. In the remainder of this
script, we will always assume that the assumptions of Theorem 1.5 are met without explicitly
stating it.

Remark 1.6
1. A simple consequence of Theorem 1.5 is the so called cocycle property. This property states
that for (to, xo) € D and two time instances t1,t € R, we have

x(t; to, o) = x(t; t1, 1) (1.11)

with x1 = x(t1;tg, o) given that all terms are defined according to Theorem 1.5.

2. Another consequence is that two solutions cannot intersect, as they would have to coincide
for all times.

3. Some ordinary differential equations can be solved analytically via various methods. In gen-
eral, this is not true and numerical methods must be used for this purpose. Yet, one typically not
only applies numerical methods, but tries to show certain properties of the solution analytically.
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1.4.2 Recall from Stochastics

In order to analyze estimators, we first need to classify them. As we have seen in the previous
sections, estimators are obtained as functions of a finite number of noisy measurements. Hence,
they are stochastic variables, just as the noisy measurements are. To characterize a stochastic
variable completely, we require the respective probability density function. In practice, however,
it is very hard to derive that function. Yet, the behavior of the estimates can be described by
a few numbers, i.e. the mean value and the covariance, which may be seen as the location and
dispersion of the estimate.
To formally introduce these numbers, we first require the notion of a probability space:

Definition 1.7 (Probability space)
Consider a set 2, a set of subsets F C 2 and a function P : F — [0,1]. Then, we call the
triple (€2, F, P) a probability space if

e the sample space () is a non—empty set,
e the o-algebra F of events satisfies

— F contains the empty set, i.e.

0eF,

— F is closed under complements, i.e.

AeF = Q\AeF,
— F is closed under countable unions, i.e.

Aje FYie{l,2,.. khk<oo = | AerF

i€{1,2,...k}

e the probability measure P satisfies

— P is countably additive, i.e.

A€ FVief{l,2,...  k}k<oowith AiNA; =0V je{1,2,... k}i#j

=P| |J 4= ) P,

i€{1,2,....k} ie{1,2,....k}

— the measure of the sample space € is one, i.e.

P(Q) =1.

In short, a probability space is a measure space, but with the additional property that the
measure of the whole space is equal to one. Secondly, we require so called random variables:
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Definition 1.8 (Random variable)
Consider a probability space (2, F, P) and a measurable space E with o—algebra £ of E. Then
we call a function X :  — F a random variable if

VBe&: X Y(B)eF, where X !(B):={we|X(w)eB}.

Hence, a random variable is a function, which allows us to use a more comfortable description
of properties or measurements of a sample, i.e. if B is an interval [a, b] or the property “lottery
player”, then we identify the corresponding event X ~1(B) in the o—algebra F.

Now, we can introduce the expected value, sometimes also called mean, first moment or
expectation:

Definition 1.9 (Expected value or mean)
Consider a probability space (£2, F,P) and a random variable X defined on that triple. Then,
the expected value E (X) or mean of X is defined as the Lebesgue integral

E(X) ::/XdP:/X(w)dP () (1.12)

whenever the integral exists.

Note that since the integral may not converge absolutely, not all random variables have a
finite expected value, and for some it is not defined at all (e.g., Cauchy distribution).

In order to define the second important number, the covariance, we first introduce the notion
of moments:

Definition 1.10 (Moment)
Consider a probability space (€2, F,P), a natural number n € N and a random variable X
defined on that triple. Then, the n—th moment is given by

m, = E(X"). (1.13)

Hence, the mean is also the first moment. Regarding the covariance, we require the second
moment to describe, how much two random variables in one probability space change together,
i.e. what the nature of their connection and how strong this connection is:

Definition 1.11 (Covariance)
Consider a probability space (2, F,P) and two random variables X and Y defined on that
triple. Then, the covariance Cov (X,Y’) is defined as

Cov (X,Y) := E((X — E(X)) (Y — E(Y))) (1.14)

whenever the second moments of X and Y exist.
If X =Y, then covariance is called variance and we obtain Cov (X, X) = o2 (X).
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Higher moments describe the skewness and curtosis of the probability function P, which can
be interpreted as a deviation measure from the normal distribution and a deviation measure
from a symmetric distribution respectively.

The following notion of a so called probability density function uses the nice property of a
random variable to be a transformation to an easily interpretable space. l.e., it describes the
relative likelihood for this random variable to take on a given value (evaluated in the image
space of the random variable):

Definition 1.12 (Probability density function)

Consider a probability space (2, F, P) and a random variable X : Q — E defined on that triple,
where the set E equipped with measure u and £ is a o—algebra of E. Then, any measurable
function f: & — RY, which satisfies

Pr(X € B) | = / dP :/fdp (1.15)
) B

X-1(B

for any measurable set B € £ is called a probability density function.

One of the most famous probability density functions induces the so called Gaussian random
variables.

Definition 1.13 (Gaussian (or normal) distribution)

Consider a probability space (2, F,P) and a random variable X : Q@ — E defined on that
triple, where the set E equipped with measure p and £ is a o-algebra of E. Suppose that the
parameters p, 0 € R with o > 0 define the density function

1 2
epr(%é” . (1.16)

fz) =

2mo

of the random variable X. Then X is called a Gaussian random variable, also written X &
N (p,0?), and f is called Gaussian distribution.

Last, we require some convergence concepts to formally describe what we observed in Figures
1.4 and 1.5. There are several several convergence concepts for different purposes: Some of these
concepts are stronger, i.e. exhibit more requirements. The advantage of a strong concept is
that, if a convergence can be shown for a method using the strong concept, then we also obtain
convergence in the weak one. A schematic illustration of the convergence concepts we consider
here is given in Figure 1.8, and their relation is shown in Figure 1.9.

Convergence in distribution is the most weak concept, but it is suffers from a major disad-
vantage: It is very hard, if not impossible, to show that the required conditions hold:

Definition 1.14 (Convergence in distribution)

Consider a probability space (2, F, P), a measurement vector z € RY and a sequence of random
variables X(N), N € N and a random variable X, both defined on that triple. The respective
probability distribution functions are denoted by fy and f. Then, we call X (V) to converge
to X in distribution if
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Figure 1.8: Schematic illustration of the convergence areas for stochastic limits.

Figure 1.9: Inclusions between stochastic limits.

e lim fy(z,(X(N))(w)) — f(z,X(w)) Vw € Q where f is continuous.

N—o0

For short, we write Lim X (V) = X.

N—oo

Showing this property is particularly hard due to the non—uniqueness of the probability
density function, cf. Definition 1.12. Hence, we would have to find a suitable probability
density function across the sequence of random variables.

Incorporating the probability function, we obtain a more strict and more easily provable
convergence criterion:

Definition 1.15 (Convergence in probability)

Consider a probability space (€2, F,P) and a sequence of random variables X (N), N € N and
a random variable X, both defined on that triple. Then, we call X (V) to converge to X in
probability if

o Ve, >0: ANy eN: P(IX(N) - X|<e)>1-§ VN > N,.

For short, we write p.lim X (N) = X.

N—oo

Using convergence in probability, we need to show existence of bounds Ny for all pairs ¢, d.
Although this is a tricky task, it may be solved using knowledge of the probability function P
and of the random variables, which are also functions, cf. Definition 1.8. Hence, this may also
be difficult.
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Neglecting the probability function P, i.e. impose more restrictions, we can solely focus on
the random variables:

Definition 1.16 (Convergence with probability 1)

Consider a probability space (€2, F,P) and a sequence of random variables X (N), N € N and
a random variable X, both defined on that triple. Then, we call X(NN) to converge to X
with probability 1 if

e lim (X(N))(w) = X(w) for almost all w € Q.

N—oo

For short, we write a.s.lim X (N) = X or P < lim X (N) = X) .y

N—o0 N—oo

For the convergence with probability 1 concept, we still need to check the criterion for
almost all w € 2, which can be done by exploiting properties like continuity etc. of the random
variables. Hence, this concept is appropriate for our forthcoming analyses.

Another nice concept is based on distinct properties of the random variables, i.e. of its first
and second moment:

Definition 1.17 (Mean square convergence)

Consider a probability space (€2, F,P) and a sequence of random variables X (/N), N € N and
a random variable X, both defined on that triple. Then, we call X(N) to converge to X in
mean square if

e B(IXP) < oo,
e E(|X(N)]?) < oo for all N € N, and
e lim E(|X(N)— X?)=0.

N—oo

For short, we write Li.m. X (N) = X.

N—o0

Again, this a checkable concept, which we will consider within the identification process.

Within modeling, we will additionally require the concept of a stochastic differential equa-
tion.

Definition 1.18 (Stochastic differential equation)
Consider deterministic functions a,b : R x R"* — R" a probability space (£, F,P) and a
random variable X : R x 2 — R"* to be given. Then we call

#(t) = alt, x(t)) + b(t, 2(£)) X (L, ) (1.17)

a stochastic differential equation.

In contrast to ordinary differential equations defined in Definition 1.1, the introduction of
the random variable X causes possibly multiple solutions to exists. Since the realization of
the random variable X (-,w) is depending on chance, the solution is also depending on chance.
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In turn, once the realization w € ) is fixed, (1.17) is an ordinary differential equation with a
unique solution, i.e. for each realization which is also called a path, there exists one solution.
Here, we have a more close look at a specific path, the so called Wiener process.

Definition 1.19 (Wiener process)
Consider a probability space (€2, F,P) and a random variable W : R x 2 — R"* to be given.
We call W a Wiener process if the following conditions are satisfied:

1. W(t,-) is a Gaussian random variable with E (W (¢t,-)) = 0 and o* (W (t,-)) = t.

2. For t; > tg > 0 the increments W(ty,-) — Wi(ty,-) are Gaussian random variables with
E (W(th ) - W(to, )) =0 and 0'2 (W(th ) - W(to, )) =t — tp.

3. For t3 >ty > t; > tg > 0 the increments W(ts,-) — W(ts,-) and W (ty,-) — W (to,-) are
Gaussian random variables.

A path W (t,w) of W is one of many possible arbitrary functions, which (in the whole) satisfy
the conditions above. Indeed, one can show that these paths are almost surely continuous in
t, i.e. the event A = {w € Q| X(¢,w) is continuous in ¢t} exhibits probability Pr(A) = 1, and
almost surely nowhere differentiable.

120
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60 - b
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 1.10: Different paths of a Wiener process

Condition 1 in Definition 1.19 states that the spreading of values of paths W (t,w) grows
larger if ¢ grows larger. The mean, however, stays 0 at all times. Condition 2 reveals that a
stochastic process W (t) := W (t — to,-) — W (to,-) is a Wiener process, i.e. all tails of Wiener
processes with translated initial condition 0 are Wiener processes. Last, condition 3 states that
from the knowledge of the path for an interval [¢, 1], no conclusions for future intervals [to, 3]
can be drawn. Hence, a wiener process is memory free, and paths could at any time move
upwards and downwards with exactly the same probability, no matter the past development.
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Modeling
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Chapter 2

Deterministic processes

Deterministic models contain a number of applications such as growth processes, biological
reactions or spread of diseases. These models can also be used in different areas such as market
forecast or product displacements. One of the classical systems modeling growth processes is
also termed the logistic equation. Within this chapter, we will stick to the classical applications
and analyze models with one or several species in more detail, with and without resource
limitations.

2.1 Population dynamics for one species

The analysis of growth of one or more species within an ecosystem is called population dynamics.
Within this section, we concentrate on the case of one species and analyze this problem in detail.

2.1.1 From Difference to Differential Equation

In general, one first needs to ask whether ordinary differential equations are the right instrument
for modeling. Indeed, a differential equation by definition also “lives” on a continuous set.
Population dynamics, however, are discrete in nature: The size of a population is usually
measured by the number of individuals, which is an natural number. This problem is solved in
almost all models by measuring the size of a population by its biomass x instead of the number
of individuals. The biomass z is a non negative real number, and we can model its development
over time by a differential equation.

The next problem is the right choice of a time axis. Biological measurements are never done
continuously for t € [tg, 1], but at discrete instances in time ¢; < ¢ < .... The increase or
decrease of a population is henceforth given for these discrete time instances. Hence, a general
discrete model of a population dynamics for the biomass x is given by

where we use the denotation

AB(ty) Number of births in the time interval [tg, tj1]
AD(t;) Number of deaths in the time interval [ty, txi1]
AM(t;) Number of migrations in the time interval [ty, tg1]

Equations of type (2.1) are called difference equations, and such equation can be used (and
are used) to analyze impacts of certain changes. Here, however, we will focus on differential
equations and derive a respective model from the difference equation displayed above. The

21
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reason for choosing differential equations is that many analysis tools are available for differential
equations, which are either much more involved in the difference equation case, or even don’t
exist. Regarding modeling, both differential and difference equations can considered to be
equal.

To obtain a differential equation from (2.1), we assume that all time instances t;, are equally
distributed, i.e. tx, 1 — t; =: At for all £ € N. Hence, we obtain

w(t+At)—z(t)  AB(t) AD()  AM(t)
Al = TAr A A

Note that AB, AD and AM depend on At, even if this is not explicitly mentioned in our
notation. Letting At — 0, we obtain

(t) = b(t) — d(t) + m(?). (2.2)

One could try to derive the functions b, d and m from AB, AD and AM via

o) — 1im 280

B AD(t) . AM(t)
= Jim —==, d(t) and m(t) = lim .

A0 At At—0 At

Proceeding this way would be a good idea if AB, AD and AM were known. Here, we do not
follow this route but instead deduce b and d from model assumptions directly. We will not
consider migration, and henceforth set m = 0.

2.1.2 Simple growth model

The development of a model is typically done in two steps: First, structural assumptions on the
right hand side of the differential equation are made. This means that we fix the vector field f
to a special form, which follows from known laws or from heuristic considerations. Within this
form, there are certain free parameters. In the second step, these parameters are identified to
fit the model to reality. The identification step is done in the second part of this lecture. Here,
we focus on the first step, the derivation of a model from structural assumptions.

The most simple model of a population dynamic for one species is given by the following
assumptions:

1. The birth rate is linearly proportional to the current size of the population:

b(t) = yx(t) for some v € R

2. The death rate is linearly proportional to the current state of the population:

d(t) = ox(t) for some 0 € R

3. There is no migration:

This leads to the differential equation

(t) = Aa(t) (2.3)
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where A\ = v — o represents the growth rate. One can easily see that solutions of (2.3) with
initial condition x(ty) = x¢ are given by

z(t; toxg) = woexp i)

Note that z(t) denotes the size of the population. Hence, we can only allow for x(t) > 0, and
in particular zyo > 0. Here and in the following, we use the abbreviation Rt = {z € R | x > 0}
and Ry = RT U {0}.

Although this model is very simple, it still describes some growth phenomena pretty well.
Figure 2.1 shows the size of the world population between 1950 and 2010 in billions, and a
respective solution of (2.3). The values z¢ = 2.5747 and A = 0.0172 were identified using given
data using a linear Least Square Estimator, which we will discuss in detail in Chapter 6. The
respective program is shown in Program A.3.

World population
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Figure 2.1: Growth of the world population and solution of (2.3) for identified parameters

The development of the world population growth is represented quite well. Other growth
processes, however, are not described well by this model. One example for this is the de-
velopment of the population in Europe, which has stalled throughout the last decades. The
reason for this can be seen directly by the structure of the solution: From A > 0 we have that
expM — 00 as t — co. Hence, for zy > 0 the population grows exponentially over all bounds.
The choice A < 0, i.e. more deaths than births, cannot repair this problem. In this case we
have exp™ — 0 as t — oo, which again does not reflect the current data correctly, cf. Figure
2.2.

2.1.3 Logistic growth model

To model such a slowed down growth, we have to extend equation (2.3) by a growth boundary,
which we model by an upper bound C' > 0 for the size of the population. C' represents the
capacity of an environment. This capacity is subject to the available resources such as food,
water etc. To this end, we incorporate a factor g(x) with the following properties:
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European population
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Figure 2.2: Growth of the European population and solution of (2.3) for identified parameters

1. If z < C, then we have g(z) > 0 reflect available space for growth.
2. If z > C, then we have g(z) < 0 reflecting negative growth.

The simplest function, which exhibits such a behavior, is the linear function g(x) = C — .
Applying this function, we obtain

#(t) = A (C — z(t)) z(t), (2.4)

which is also called the logistics equation. The expression A (C' — x) is the now nonlinear growth
rate. For this differential equation, the explicit solution is known and given by

C
1+ (Q _ 1) exp—Clt—to)

zo

x<ta tO? ZEO) -

(2.5)

Now, one can analyze the behavior of the solution using this expression. Here, for an exercise,
we want to pursue a different approach, and verify our results using the explicit solution. To
this end, we first introduce some important terms for differential equations.

Definition 2.1 (Equilibrium)
A point z* € R" is called equilibrium (or fixed point) of a differential equation (1.1) if
x(t; to, x*) = x* for all ¢,ty € R.

One can easily see that a point z* is an equilibrium if and only if f(¢,2*) = 0 for all ¢ € R.
For our model (2.4) the zeros of f(z*) = \(C' — x)z are given by 2* =0 and 27 = C.

Equilibria are of particular interest due to their potential in analyzing the long term behavior
of solutions. Regarding model (2.4) we can see that solutions z(t;ty, zo) are growing strictly
monotone between the two equilibria, i.e. &(t) > 0 if z(t) € (0,C), and @(¢) < 0 if z(t) > C.
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Since the solutions in positive time are bounded by the equilibrium solution z(t) = 2™ = C
and cannot intersect due to uniqueness, cf. Theorem 1.5, they are monotone and bounded,
and therefore they converge. Using the following theorem, which is a special case of Barbalat’s
theorem, we can characterize possible equilibria.

Theorem 2.2 (Equilibrium)
Consider differential equation (1.1) where f is autonomous. Moreover, the solution x(t;tg,xo)
converges to a point x* € R™ fort — oo ort — —oo. Then x* is an equilibrium.

Proof. Consider the case t — oo, the case t — —oo follows analogously. Since the solution
x(t; to, ko) converges to x*, we have that f(x(t;t9,x0)) — f(z*). Now suppose that for given
€ > 0 the time t* > 0 is chosen sufficiently large such that

[ (t;to, wo) — ™[] <& and  [[f(x(t; o, m0)) — f(a7)|| < €

holds for all ¢ > t*. Then we have that

||$(t to,l’o) — ZE(t t(),ilf[) || = T to,$0))d7’

“)dr

x(7;5t0, T0)) — f(x)dr

holds for all ¢ > t*. Hence, we can conclude that

(t =) f (="

< |l (t; to, wo) — z(t%; to, o) || + x(T;to, o)) — f(a®)dT

t
< [l(t; to, wo) — ™[] + [l2™ — 2(t%; o, zo) | +/ 1S (2(7 to, w0)) — f(27) || dr
-
<2+ (t—t)e.

Since the last inequality holds for all ¢ > t*, it also holds for ¢ = ¢t* + 1 which gives us

1) < 3e.
Since € > 0 was chosen arbitrarily, we can take the limit ¢ — 0 and obtain || f(z*)| = 0, i.e.
f(2*) = 0. Hence, x* is an equilibrium of the differential equation (1.1). O

An important consequence of Theorem 2.2 is of particular importance for the analysis
of differential equations: In the autonomous case equilibria represent all possible limits of
solutions.

For our model (2.4) we can conclude via monotonicity that all solutions with z(t5) > 0
converge to 7 = C for t — oo. In backwards time we can use an identical monotonicity
argument to obtain that all solutions with z(ty) € [0,C) converge to 0 for t — —oo. The
solutions with z(ty) > C, however, diverge to z(t) — oo for t — —oo. The reason for that
latter is that if the solution was converging, then by Theorem 2.2 another equilibrium z* > C'
would have to exist, which is not the case for our model (2.4).

In the onedimensional case we can use monotonicity to discuss limits of solutions. For
higher dimensions this doesn’t work in general. Hence, we need other techniques. The basis is
the following definition, which describes possible convergence situations for general differential
equations in a neighborhood of an equilibrium.
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Definition 2.3 (Exponential Stability)
Consider a differential equation (1.1).

1. An equilibrium z* € R™ is called (locally) exponentially stable, if there exists a neigh-
borhood N of z* and parameters A, & > 0 such that

—A(t—to) |

|lz(t; to, o) — || < Oexp 2o — 2|

holds for all zy € NV, to € R and all t > t,.

2. An equilibrium z* € R" is called exponentially unstable, if parameter A, § > 0 and a
neighborhood N of x* exist such that within each neighborhood Ny € N of z* there
exists a point x¢ € Ny which satisfies

l2(t; to, %0) — @[] > O exp™ = |

|zo — 2|
for all ¢ > to for which z(¢; ¢, z9) € N holds.

3. An equilibrium z* € R" is called exponentially antistable, if parameter A, # > 0 and a
neighborhood N of x* exist such that for all zo € N with zyp # z* and all t;, € R the
inequality

7)\(t7t0

Hx(t?tme) - x*H 2 QeXp ) ”‘TO — x*H

for all t > to for which z(¢; ¢, z9) € N holds.

Hence, for t — oo and Case 1, all solutions from a neighborhood N of the equilibrium z*
converge to the equilibrium z*. In Case 3, all solutions move away from x* for growing ¢, i.e.
convergence is not possible. In Case 2 there exist solutions which start arbitrarily close to x*
but move away from it. However, there may exist initial values z¢ # x*, for which the solution
x(t; to, xg) converges to z*.

Note that Cases 1-3 do not describe all possible scenarios. For example, a function 5(||zo —
2*||,t) may exist, which converges to zero slower than 6 exp (=) ||zy — 2*|| and that instead
of Case 1 the inequality

[ (t; to, z0) — 27| < B(llwo — 27, 1)

holds. The reason for choosing the definition of the (restricted case of) exponential estimates
lies in the simplicity of checking these criteria — at least for the case of autonomous differential
equations.

Theorem 2.4 (Exponential Stability)

Consider an equilibrium x* € R™ of a differential equation (1.1) with autonomous vector field
f R — R™. Suppose f is continuously differentiable in a neighborhood of x* and that
Df(x*) € R"™*"= represents the Jacobian of f at x*. Then the following holds:

1. The equilibrium z* is (locally) exponentially stable if and only if the real parts of all
Figenvalues \; € C of D f(x*) are negative.

2. The equilibrium x* is exponentially unstable if and only if there exists one Eigenvalue
i € C of Df(x*) with positive real part.
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3. The equilibrium z* is exponentially antistable if and only if the real part of all Figenvalues
i € C of Df(z*) are positive.

Proofs for these results can be found in the book [2]. The Jacobian D f(z*) is also often
called the linearization of (1.1) at x*.

Now, we want to apply and illustrate this result for our model (2.4) and test, whether it
complies with the results from our monotonicity observations. As stated before, we have

flz) =XNC —2)x

and the equilibria are given by 2* = 0 and ™ = C. Since the differential equation is onedi-
mensional, the Jacobian of f is real valued. Using the product rule we obtain

Df(z) =XC—2z)— Xz = Df(z*)=XCand Df(z") = -\C.

The Eigenvalues of these 1 x 1 matrices are given by their real values themselves, i.e we have
AC' > 0 for z* = 0 and —\C < 0 for 2t = C. Hence, the equilibrium z* = 0 is exponentially
antistable and the equilibrium 2™ = C is exponentially stable. This perfectly fits our observa-
tions so far (as was to be expected). We can conclude that ™ = C is a possible limit value of
the state x(t) for t — oo, and * = 0 is not such a limit value.

Once a locally exponentially stable equilibrium like 27 = C' for our model (2.4), the next
step in the analysis is to compute the set of initial values for which solutions z(t) converge
to this equilibrium x* = C. This is called the Bassin of attraction. In general, the bassin
of attraction is a locally exponentially stable equilibrium z* for an autonomous differential
equation is given by

D(x*) = {xo € R | tliglox(t;xo) = x*}.

Moreover, since all solutions which move to this neighborhood converge to x* according to
(1.11) and vice versa all solutions, which converge to 2* must move to a neighborhood N, we
can conclude that for a neighborhood A from Definition 2.3 we have

D(z*) = {xo € R™ | z(t; x9) € N for some ¢t > 0} .

In R™* the computation of D is a complicated and often unsolvable task. In the onedimensional
case this is much simpler since we can apply monotonicity arguments. Indeed, the bassins of
(2.4) are almost completely described in the discussion after Theorem 2.4.

Here, we have seen that all solutions with x(tg) > 0 converge to ¥ = C. Hence, we have
D(xzt) C (a*,00) = (0,00). Since solutions with z(ty) < 2* = 0 will not converge to z* = C
as they would have to cross an equilibrium which they cannot leave anymore, we can conclude
equality D(zT) = (0, 00).

To summarize the results for our model (2.4), we have the following:

1. There are two equilibria z* = 0 and 7 = C. The equilibrium z* = C is exponentially
stable, the equilibrium z* = 0 is exponentially antistable.

2. Exactly those solutions with initial value zy € (0, 00) converge to 27 = C.

3. All solutions with initial value zy € [0,C) converge in backwards time to z* = 0, all
solutions with initial value xy > C' diverge in backwards time to oo.
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Figure 2.3: Solutions of the logistics equation (2.4)

Note that initial values xyg < 0 make no sense for our model, which is why we don’t consider
them here.

In Figure 2.3 we display solutions using the explicit formula (2.5) with C' = A = 1 for initial
values xy € {0,0.1,1,2}. The figure nicely illustrates our results nicely.

Note that also the logistic growth can be adapted to real data of the worldwide population.

Remark 2.5
The logistic growth (2.4) is not the only model for bounded growth. To model cellular growth
also the differential equation

C
z(t) = Az(t)In | — 2.6
(0 =alt)n (5 ) (26)
15 used, the so called Gompertz-Growth which reflects clinical results nicely. For this equation,
an explicit solution is unknown. With the methodology displayed above, one can show equivalent
solutions properties as for the logistic growth (2.4).

To conclude this section, we observed that the model (2.4) is well suited to describe growth
under ideal circumstances and that results for lab experiments can be reproduced nicely. In
real applications there are a number of further influencing parameters, which are not included
in (2.4):

e Environmental conditions are variable and not constant in general, i.e. influenced by
summer and winter. In our model, these are all constant and may require time dependent
or stochastic parameters, which we will discuss in the financial processes chapter.

e The spatial distribution of both the population and the resources is not modeled. This
could be done using a partial differential equation, which allows a location dependent
modeling of population.
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e The birth and death rates are directly connected to the size of the population. Factors
like age distribution are not considered. These could be included using delay differential
equations.

e The impact of other species is not considered, which will be our central concern in the
next section.

2.2 Population dynamics for several species

In this section we extend the model (2.3) to the case of several species. To this end, we first
focus on the case with two species where the first one represents a food source (prey) for the
second species (predator). The case of limited resources (2.4) can be treated similarly.

To extend our model (2.3) to two species, we denote the population of the first species, the
prey, by x; and the second species, the predators, by x5. For our model, we make the following
assumptions:

1. The prey population z; evolves according to (2.3) with A\ = v —o. Here, the birthrate 7 is
constant and the deathrate is given by o = ¢ + bxy. The deathrate consists of a constant
term & € (0, ) representing the natural deaths, and a proportional term representing the
death by predators bzs. Hence, for x5 = 0 the population z; grows exponentially. Here,
we set a =y —o0.

2. The predator population xs also evolves according to (2.3) with A = v — 0. Here, the
deathrate o is constant and the birthrate v = 4 + dx; consists of the natural birthrate
4 € (0,0) and a proportional term with cofactor d > 0. Hence, the birthrate is affin
linearly depending on the number of preys x;. For x; = 0 the predator population is
dieing out since o > 7. Here, we set ¢ = o — 7.

Combined, we obtain the two dimensional differential equation

T1(t) =  axi(t) — bxy(t)za(t) (2.7)
Ig(t) = —CZEQ(t> + dCL’l(t)l’Q(t)
with parameters a, b, c,d > 0. This model is called the Lotka—Volterra Model.

For the analysis of (2.7), we first reduce the number of parameters. To this end, we apply
the coordinate transformations x; — g:pl and o — 2:1:2. This gives us

T1(t) =  azi(t)(1 — zo(t)) (2.8)
To(t) = —cxa(t)(1 — z1(1))

Note that the solutions of Z(¢;t, xo) of (2.7) and x(t;tg, xo) of (2.8) are related via

d
x(t; to, ko) = AZ(t;to, xo) and Z(t;to, xg) = Ax(t;to, xg) with A= (6 2) :

a

Hence, all solutions of (2.7) can be computed from (2.8) and vice versa. For this reason, the
two differential equation systems are called equivalent.

For our analysis, we first compute the equilibria of (2.8), i.e. the zeros of the vector field

_ (am(t)(1 — xa(t))
flz) = (ch(t)(l - :L‘l(t))> '
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One can easily see that the points

=) ()

are the only equilibria. To determine the stability property of these equilibria, we compute

prer- () (5 ) e pre- (0 3)

The Eigenvalues of these matrices are given by a and —c for * and 4+/—ca for . From
Theorem 2.4 we can then conclude exponential unstability (not antistability) of z*. This can
be interpreted as follows: For initial values g = (21,0)", i.e. no predators, with z; # 0
the solution grows exponentially, i.e. it diverges from x* = 0. The set of all points which
exponentially diverge is called unstable manifold M,(xz*) of ¥ — in our case this is the subspace
M,(z*) = {(1,0)"}. For initial values zp = (0,z5), i.e. no prey, with z, € R, the solutions
exponentially converge to x* = 0. This is the so called stable manifold M,(z*) = {(0,1)"}.

In case of 2+ we have that the real parts of the Eigenvalues are 0 due to ca > 0. Hence,
none of the cases of Theorem 2.4 applies. Therefore, we can conclude that the solutions neither
exponentially converge nor diverge. To get a feeling for what happens here, we consider a
numerical solution of the system, which is shown in Figure 2.4 for a = ¢ = 1.

Predator population

I L 1
2 4 6 8 10 12 14 16
Prey population

Figure 2.4: Solutions for the predator—prey model (2.8) with a = ¢ =1

From Figure 2.4 we can see why the equilibrium 2+ = (1,1) " is neither exponentially stable
nor unstable: All solutions, which do not lie on M,(z*) or M,(x*) are moving along periodic
orbits around x*. More formally, we can state the following:

Definition 2.6 (Periodicity)
A solution x(t; to, o) is called periodic, if there exists a T" > 0 such that

x(t; to, xo) = x(t + T to, x0)
holds for all ¢ € R. The time 7' is called the period of the solution.
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Note that the solution of an autonomous differential equation is periodic if and only if there
exist two time instances t; < t2 € R such that z(¢t;) = z(t3) = xp. This follows directly from
the identity x(t) = x(t;t1,zp) = x(t;t2, zp), which gives us x(t + ty — t;) = z(t) for all t € R,
i.e. periodicity for T' =ty — t;.

For our model (2.8) we want to show the numerical observation of periodicity also rigorously.
To this end, we consider the quotient

o(t) _ —cxa(t)(L = x1(1))

i1(t)  axi(t)(1— x2(t)

From this equality it follows that
axy(t)ao(t) — axy(t)xo(t)io(t) = —cwo(t)dr(t) + cao(t)xy (t)d1(t)

and hence

&1 (t)

$1(t>

cii(t) — ¢ + aiy(t) — aZ

Note that these equations only hold if all divisors are nonzero, i.e. only for solutions z(t) €
R* x RT and which are no equilibria.
Integrating this equation from 0 to ¢ reveals

cx1(t) — cln(z1(t)) + axa(t) — aln(za(t)) = k(x(0))

with k(x(0)) = cx1(0) — cln(x1(0)) 4+ ax2(0) — aln(x2(0)). Now we define the function V :
Rt x RT — R* via

V(x) = cxy — cln(zy) + azy — aln(xs). (2.9)
This function is constant along solutions, i.e. we have
V(z(t;to, o)) = V(z0) for all t > ¢,

and

%V(I(t; to, o)) = 0.

The function V' is called the first integral or constant of motion for our model (2.8). The
solutions of (2.8) with initial value xy € RT x RT are moving along contour lines V~1(¢) :=
{r € RT x R" | V(x) = ¢} of V. We say that a contour line V~1(¢) is an invariant set with
respect to (2.8). Note that V' exhibits a global minimum at z* with V(z") = ¢ + a.

To conclude periodicity, we divide the contour lines in four segments

Si={xcV )|z, <29 <2— 11}
So={r eVl |zy <1 <2— 15}
Ss={r eVl |z >1>2— 11}
Sy={z eV |xg >z >2— 15}
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From the form of the contour lines it follows that there exists o > 0 such that |z; — 1| > « for
allz € S; and x € S3, and |2y — 1| > a for all x € Sy and = € Sy. Moreover, we have that there
exists 8 > 0 such that z; > 8 and x5 > 8 for all x € V~!({). Hence, from (2.8) we obtain

In each sector one of the components is strictly monotone increasing or decreasing. Therefore,
the solution must leave each sector in finite time in the sequence S; — Sy — S35 — S, — S;.
Therefore, the solutions are indeed periodic.

To interpret the solutions of a model, we need to consider them depending on the time
component t. An exemplary solution is given in Figure 2.5. We can see that both populations

24

22

Predator/prey population

0.8

0.6~

0.4

Time

Figure 2.5: Time to state plot for the predator—prey model (2.8) with @ = ¢ = 1 and initial
value zg = (2,2) 7

are oscillating periodically. If (like at the beginning) many predators and many preys are
present, the number of the predators increases while the number of preys reduces up to a
certain point until both populations are decaying. Once the number predators is sufficiently
small, the number of preys is increasing again, and once the number of preys is large enough
then also the number of predators starts to increase. Such a periodic behavior can also be
spotted in reality.

2.2.1 Predator—prey model with limited resources

Since we generalized our model (2.3) to the two species case, the resulting model (2.7) possesses
the unrealistic property that the prey population can grow unbounded if no predators are
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present. Similar to the one species case, we switch to the more realistic model (2.4). For
simplicity of notation in the two species case, we set © = AC' and e = A\ and obtain

i1 (t) = pay(t) — exq (1) (2.10)
Hence, we modify our model assumption 1 as follows:

1’. The prey population x; evolves according to (2.10) with 4 = v — ¢ and e > 0. Here, the
birthrate v and the bounding rate e are constant and the deathrate is given by o = 6+bxs.
There only exist bounded resources for the prey and the deathrate consists of a constant
term & € (0, ) representing the natural deaths, and a proportional term representing the
death by predators bzy. Hence, for xo = 0 the population z; approaches C' = a/e with
a=vy—o0.

Hence, we obtain the equation system

i1(t) = axy(t) — bry(t)wa(t) — exy(t)? (2.11)
l’g(t) = —CZL‘Q(t) + dl‘l(t)l‘g(t)
with parameters a, b, ¢,d and e > 0. Similar to (2.7), we first reduce the number of parameters.

To this end, we apply the coordinate transformations z; — xl and zo9 — Zo. This gives
us

da ec

1 (t) azi(t)(1 — x2(t)) + Bai(t)(1 — x41(1)) (2.12)

with @ = a — ec/d and 5 = ec/d. Here, we have to be careful that positive z; and xo are
mapped on positive values. Since a, b, ¢, d and e > 0 this is the case if and only if dabflec > 0,
i.e. if da > ec.

For da < ec one can show that the predator population is going to die out for ¢ — oo. Here,
we want to treat the more interesting case of two coexisting species. Henceforth da > ec, which
is a necessary condition for the respective setting.

We now obtain the equilibria 2* = (0,0)", 2** = ((a + 8)/8,0)" and 2+ = (1,1)". Only
x7 is an element of RT x R, for the other equilibria the populations of the predators or both
species are zero.

The linearization of the dynamic reveals

Df(z) = (a(1 — )+ B(1 —271) —am ) 7

CIo —C(l — xl)

which gives us

o= (7 )

c

The Eigenvalues of this matrix are

[ 32
)\1/2———:|: B——CCL

If the root is complex, then the real part —3/2 is negative. If the root is real valued, then Ay,

is real valued and we have
(32 /
)\1/2_—§+ 5——ca<§ —0
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i.e. in either case we obtain negative real parts. Therefore, T is locally exponentially stable.

Now we know that there exists a neighborhood of z* such that all solutions within this
neighborhood are converging to . To compute this bassin D(z"), we utilize the first integral
given by

V(z) = cxy — cln(xy) + axy — aln(xs). (2.9)

In contrast to (2.7), this function is not constant along solutions of (2.12). Instead, for each
solution x(t) the following holds:

Ly () = cin(t) — cigg

dt
= (cazi(t)(1 — z2(t) + cBr1(t)(1 — 21(1))) <1 - )

— acas()(1 - 21(1)) <1 _ L)

[Eg(t>
= (1 — () (21 (8) = 1)
= —cB(x(t) - 1)*

Hence, the function V(x(¢)) is monotone decreasing, for x1(t) # 1 even strictly. Note that V (z)
exhibits a global minimum at x = z*, and there exist no further local minima. In Stability
Theory, such a function is called a Lyapunov function. Here, we face the special case of a
semidefinite Lyapunov function, since its derivative is not strictly decreasing along a solution,
but instead we only have < 0.

+ iy (t) — a

Next we show that z(t) — at for t — oco. Since V(x(t)) is monotone decreasing and
bounded from below, we know that V(x(t)) converges to a value V... Similar to the proof of
Theorem 2.2 we see that £V (z(t)) — 0 for ¢ — oco. Hence, z;(t) — 1 for ¢ — oo must hold.
The latter is only possible if z5(t) — 1. To see that, consider |zo(t) — 1| > §. Hence, by (2.12)
we obtain for x; () that &1(¢) > € or @1 (t) < —¢ holds for a neighborhood of 1. This contradicts
convergence of z1(t) — 1. Hence, x5(t) — 1 for t — oo and therefore also z(t) — x for t — 0.
We can conclude that all solutions for the definition set of the Lyapunov function V'(x) converge
to 7, and that the bassin is given by D(x%) = R x R, which is also exemplary verified in
Figure 2.6. The argumentation used here is also called Lasalle’s principle of invariance.

In order to interpret the model, the time plot of a solution is useful, cf. Figure 2.7. The
solution does show oscillations similar to Figure 2.5, but the solutions converge for growing
t towards the equilibrium z*. Such equilibria between two coexisting species are regularly
observed in nature, and also the oscillations are know if the system is “pushed” out of its
equilibrium.

2.2.2 (Generalization to multiple species

We can generalize the model (2.11) to n different species x; to z,. If we consider identical
model assumptions for all species, i.e. dynamic (2.10), where the growth rate x depends affine
linearly on the other species, we obtain the model

Bi(t) = k() + b, agmi(z(t),  i=1,....n (2.13)
Jj=1

with k; # 0, a;; < 0 and b; > 0. Via a;; we define the matrix A. The coefficient a;; corresponds
to the factor e from (2.10) and models the limited resources. The values a;; with ¢ # j represent
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Figure 2.6: Solutions for the predator—prey model (2.12) with a =c =1 and = 0.5
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Figure 2.7: Time to state plot for the predator—prey model (2.12) with @ = ¢ = 1 and initial
value g = (2,2)"

the interaction of species. For prey z; and predator x; we require a;; < 0 and aj; > 0. The
strange notation b; ! is due to the original, a little bit different denotation of the model. Note
that models (2.4) and (2.11) are special cases of this model.

The special case a; = 0 and a;; = —aj; is called a Volterra ecology. In that case, the matrix
A = (a;) is anti-symmetric, i.e. 2" Az =0 for all x € R"=.
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Similar to the previous section we are interested in equilibria =™, for which all species
coexist, i.e. ¥ > 0. Here, we obtain

k’[E +b Za” tot = — biki+zn:aij$j:0

Therefore, the equilibria are given as solutions of a linear equation system. If A is invertible, at
most one such equilibrium exists. Note that in the latter case there exists exactly one solution
to the linear equation system, but this solutions not necessarily satisfies ;" > 0.

The construction of the first integral can be generalized for this model. Suppose an equi-
librium z with 27 > 0,4 =1,...,n exists. Then the function

Zb — zFIn(xy)))

satisfies the equation

d . :
SV (a(t) = (a(t) — o) T A (t) - o).

If A is negative semidefinite, then the derivative is negative semidefinite and we can generalize
the argumentation from the two species case to the n—dimensional model. For the Volterra
ecology, A is anti-symmetric, which gives us £V (z(¢)) = 0. Again, we will obtain similar
periodic phenomena.
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Mechanical processes

The mathematical foundations of modeling in classical mechanics were given by the works of
Isaac Newton!, Jean Baptiste le Rond d’Alembert?, Joseph-Louis Lagrange® and William R.
Hamilton*. Newton developed the elementary equations of motion (and by that the differen-
tial equation itself). Lagrange and Hamilton invented continuing methods for modeling and
analysis, which we will discuss in Section 3.2.

3.1 Technical elements

Within this first section, we will introduce an approach which is know as d’Alembert Principle.
It represents a modularization and combination of mechanical systems. Each of the modules
(or elements) is described by a graphical symbol and a respective equation of motion, which
not always corresponds to a differential equation. Within our models and formulas, we will use
the denotation given in Figure 3.1.

Variable | Meaning | Unit

m Mass kg [kilogramm]|

h Height m [meter]

g Gravitation m/s* [meter per second square]
E Energy kgm?/s? [Joule]

Table 3.1: Denomination for technical elements and models

One distinguishes between two different kinds of motion, which we will discuss in the fol-
lowing. The approach itself is constructive an — in principle — allows us to model arbitrarily
complex mechanical system at very low mathematical costs. Yet, the approach is impracticable
for complex system. To cope with this issue, we discuss mathematically more sophisticated
methods later.

3.1.1 Translational models

Here, we consider elements of motion, which allow for a movement along a stright line, i.e. a
one—-dimensional movement. We will use the denomination displayed in Table 3.2.

!English mathematician and physicist, 1642 — 1727
2French mathematician and physicist, 1717 — 1783
3French mathematician, 1736 — 1813

“4Irish mathematician, 1805 — 1865

37
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Variable ‘ Meaning ‘ Unit

Yy Location, dilation m [meter]

v Velocity m/s [meter per second|

a Acceleration m/s? [meter per second square]
F Force N =kgm/s* [Newton]

Table 3.2: Denomination for translational models

Mass element

A mass element consists of a (constant in time) mass m, a force F' applied to this mass and
the velocity v of the mass. The symbol for a mass element is depicted in Figure 3.1.

Figure 3.1: Symbol for a mass element

Utilizing Newton’s second law, the differential equation for the mass element is given by
F(t) = ma(t) = mo(t). (3.1)

Note that the force F' and the velocity v have to point into the same direction. Otherwise, we
have to replace F' by —F', which is a popular source for sign errors.

There are different sources of energy that are stored within a mass, the kinetic and potential
energy.
e [f a mass is in motion, then its kinetic energy is given by
m

Ei(t) = 51)(15)2.

e If a mass is caught in a gravity field, then its potential energy is given by

E,(t) = mgh(t).

Spring element

The spring (or more generally the elasticity) element is a deformable object, for which the
dilation y is a function of the applied force F'. The symbol for a mass element is given in Figure
3.2.

For the ansatz of a linear model we use Hook’s law to describe the spring element. Hence,
we have

sy(t) = F(1) (3.2)

where y = yo — y; is the dilation of the spring and s > 0 the spring constant. By convention,
Yo is the point of action in positive direction, and y; for negative direction.
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Figure 3.2: Symbols for a spring element

This model describes a real life spring sufficiently well for small dilations. For more real-
istic models, a nonlinear mapping between F' and y is applied, which we will not cover here.
Independent from the modeling of this mapping, pure spring elements are an idealization by
themselves. In reality, there exists no spring without mass and damper. Note that for y = 0,
the spring is in a position of rest, hence the dilation can be either positive or negative within
this model.

Similar to mass elements, also spring elements can store potential energy. If equation (3.2)
is supposed to hold, then this energy is given by

Damper element

A damper or damping element is a mechanical element, which cannot store energy, but instead
converts the received energy into heat and releases the latter. This is referred to as a dissipator.
The symbol for a damper element is given in Figure 3.3.

<F—o—| | ® F:

Figure 3.3: Symbol for a damper element

Again, we consider the linear model given by
F(t) = do(t), (3.3)

where v is the relative velocity of the body (which corresponds to the piston in the cylinder), F'
the attacking force and d > 0 the damping constant. If a force F' is applied, then the velocity
dv will be reached. The relative velocity v is computed via v = v, — v_, where v, denotes the
velocity of the terminal point in positive direction, and v_ the velocity of the terminal point in
negative direction.

This model is also called wviscosity model or viscous friction. Other models are given by, e.g., dry
friction or drag/air resistance. In the first case, the force F' is increasing for slower velocities,
in the latter the force quadratically depends on the velocity via F' = dv|v|. Even more complex
connections arise in the case of stiction, which cannot be modeled by a classical function, but
required hysteresis models instead.
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The absorbed energy of a damping element at time ¢ is the product F(¢)v(t). Hence, in
the time interval [to, 1], a damping element absorbs the energy given by the integral over the
power, i.e.

E, - / " Ryl

to

3.1.2 Rotational models

So far, we consider elements of motion, which allow for a movement along a stright line. In the
following, we will introduce three analog elements for rotations. We will use the denomination
displayed in Table 3.3.

Variable ‘ Meaning ‘ Unit

0 Angle rad [radiant]

w Angular velocity rad/s [radiant per second]

o Angular acceleration rad/s* [radiant per second square]
T Torque Nm [Newton meter]

J Moment of inertia kgm?  [kilogramm meter square]

Table 3.3: Denomination for rotational models

The torque describes the force, which is applied to a rotating body: Consider F' = (F}, F5,0)
to be a directed force and a body, which is rotating around the x5 axis. The force is applied at
the body at point = (z1,x5,0) as illustrated in Figure 3.4. The vector x can be interpreted

A

) X

€3

Y

Figure 3.4: Schematic illustration of torque

as a leverage of the body. The resulting torque is given by
T =x1Fy — 2o Fy = ||z|||| F|| sin(@), (3.4)

where 0 is the angle between z and F'. Again, the sign is important. Positive direction must
be chosen such that both expressions in (3.4) coincide.

Note that the force F' is now a vector in a coordinate system. In contrast to the translational
models, the information regarding direction is contained in F', hence we can compute contact
forces without having to take care of directions.
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Mass element

The mass element for rotations consists of a mass, which is rotating around an axis. The
respective formula is given by

() = Ja(t) = Jo(t) (3.5)

where J represents the moment of inertia, which is given by the mass of the object and its
distribution around the rotation axis. Figure 3.5 give the symbol for the rotational mass
element.

77
/////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////

Figure 3.5: Schematic illustration of rotational mass element

For a rotating body B C R? with mass m and density p: B — R} we have

J = /B r(2)2p(z) dz

where r(x) is the distance of x to the rotation axis.

In special cases, a closed formula is known. A rotating point mass with mass m and distance
r to the rotation axis possesses the moment of inertia

J =mr?.

In general, the Parallel Axis Theorem (also know as Steiner’s Theorem) holds:

Theorem 3.1 (Parallel Axis Theorem)
Consider a body B C R? of mass m with density distribution p: B — R and point of mass

1
f:—/:c,o(:c)dxeR?’.
W e

Let J be the moment of inertia of the body around an arbitrary axis, and J' be the moment of
wertia of the body around a parallel axis containing the point of mass. Then the equality

J=J +mR?

holds where R denote the distance between the axis.

Spring/torsion element

The spring and the following damper element are completely analog to their translational
counterparts. Similarly, we consider the linear models only. For the rotational spring element
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the equation reads

Figure 3.6 gives the respective symbol.

Figure 3.6: Symbols for a rotational spring element

Damper element

For the damper element, the following equation

holds and the symbol of the damper element is given in 3.7

— .
v,

Figure 3.7: Symbol for a rotational damper element

3.1.3 Building complex models

In the previous sections, we discussed basic modules for mechanical systems. The ansatz to
build more complex system is given by the following procedure:

1. Model the mechanical system using mass, spring and damping elements
2. Prepare the respective equations of motion
3. Formulate the connecting laws / contact forces

The basis for this ansatz is given by Newton’s 3rd Law actio = reactio: In each mass, the sum
of forces is zero. If additionally an external force is present, then the sum of internal forces is
equal to the external force. Note that the direction of the force needs to be taken into account
using a respective sign.

Here, we will exemplary discuss how this procedure works using a simple quarter car model.

Example 3.2 (Quarter Car Model)
For our model depicted in Figure 3.8, we make the following assumptions:

o We consider vertical movements only.

e We model one wheel only.
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e The chassis is modeled as mass my at position yy, the suspension is modeled using a spring
and a damper element sy, d;.

e The wheel and the axis are modeled as mass mo at position yo, the wheel is modeled using
a spring and a damper element so, ds.

e Road undulations are modeled via the road height function u(t).

From the equations of motion, we obtain the individual forces

mid"(t) = F(t),  dof(t) = F(t), sigi(t) = F(t)

fori=1,2 where we used
v (t) = (t), 0 (t) = 01(t) — 0a(1), vi(t) = y1(t) — w2(t),
vy () = a(t), 05(t) = va(t) — a(?), v3(t) = y2(t) — u(t).

To combine the equations, we need to describe the forces in all masses. To this end, the direction
of the forces has to be treated carefully. In my, the force F{" points into the upwards direction:
Since my is the upper end of the attached spring and damper, F& and F{ also point upwards.
Hence, in my we obtain

F'"+ Ff+ Ff =0.
In my, forces F2, F¥ point downwards, all other forces upwards and we obtain
F'—Ff—F+Fl+F=0.
Combined, we have
0=F"+ F{ + F}

=m0 (t) + di 0 (t) + s1y5(t)
= m§i(t) + di(§1(t) — §2(t)) + s1(y1(t) — a(t))

and
0=F"—-F!—F +F}+F}
= ma0y(t) — dio{(t) — s15(£) + davy(t) + s235(t)
= mafp(t) — di(91(t) — 92(t)) — s1(y1(t) — ya(t)) + da(Pa(t) — u(t)) + sa(y2(t) — u(t)).

These equations display two second order differential equations and can be reformulated as a
system of four first order differential equations.

Example 3.3 (Pendulum)
In this example, we utilize rotational elements to generate a model of a pendulum. Here, we
impose the following assumptions:

e The pendulum is a point mass m which is mounted on a massless rod of length £.
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mao
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Figure 3.8: Schematic drawing of a quarter car test bench

e There is no friction.

A schematic sketch of the model is given in Figure 3.9. Let x(t) = (z1(t),22(t))" be the
endpoint of the pendulum. The rotation axis is located at x4, and we set x4 = 0. As usual,
the coordinates 1, xo are increasing rightwards and upwards respectively. The point x(t) can
be calculated from the length ¢ and the angle 6(t) via

z(t) = (¢sin(0(t)), —Lcos(0(t))) " .

Due to earth’s gravitation, the force F acting in x(t) is given by F = (0, —mg) . Utilizing (3.4)
we obtain the torque

Tr(t) = 21(t) - (—mg) + z2(t) - 0 = —mgx1(t) = —mglsin(0(t)).

Moreover, for the mass element we obtain from equation (3.5)

75(t) = JO(t) = me20(t).
Setting T = Ty, we get

me?0(t) = —mglsin(6(t)),

which gives a second order differential equation. Via w(t) = 6(t), we arrive at the system of
first order differential equations
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A x2

(21(2), (1))
F= (Oa _mg>T

Figure 3.9: Schematic drawing of a pendulum

3.2 Lagrange—Equations

Within the last section we discussed a method to combine basic translational and rotational
models with their forces. For large systems, this procedure is rather complex. The reason lies
in the number of connection laws and contact forces for many points, each resulting in a single
equation. This leads to large equation systems, which are difficult to solve.

An alternative is the so called energy based method using Lagrange—Equations.

The idea of the Lagrange-Equations utilizes the energy of a system. We restrict ourselves
to the case of a system with n points of mass m; at locations r; = (x4, vi,2:) ', i = 1,...,n.
The kinetic energy of this system is given by

=3 Tl
i=1

The mechanical structure with its J connections induces constraints of the form

Co(ryy. .. mn,t) =0 Vn=1,...,J,

where 7; = (24, i, 2;) " € R? marks the positions of the points of mass.

Example 3.4

Consider a pendulum fived at the origin with point mass m at point r(t) = (x(t),y(t),2(t))" of
length £, which is swinging in the x —y plain. All possible positions of r(t) are the given by the
equation

Ci=|r||? - and Cy(r) =z

Let us now assume that we can parametrize the manifold of compatible configurations —
which is implicitly given by the set

M={(r,....ra) " | Cj(r1,...,10,t) =0Vj =1,...,J}
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— by coordinates ¢(t) = (q1(t),...,q(t)) € Q, where @ C R". This means that there exists
continuously differentiable functions r;(q,t) with

M = {(ri(g(8),1), .., rala(),6)) T | a(t) € Q}.

Additionally, we assume that the partial derivatives %(q(t},t), k = 1,...,n, are linearly
independent. The parameters ¢, ..., q, are called generalized coordinates.

Example 3.5
For the pendulum we have
¢sin(q(t))
r(q(t)) = | —Lcos(q(t))
0

with q(t) = q1(t) € Q = (—¢,27) C R for arbitrary ¢ > 0. Note that q describes the angle of
the pendulum, which is denoted by 6 in the previous section.

Now we can describe our system using the generalized coordinates ¢(t). Via the chain rule,
we can also express the velocity in terms of ¢(¢). We obtain

d 87"2 87’1' .
() =— D) + == (q(t), 1), i=1,...,n.

ult) 25% 0+ Sia(e). 1), i "
Due to linear independence of the partial derivatives, this equation system can be solved for
¢(t). The variables ¢y, ..., ¢y, are called generalize velocities.
Example 3.6
For the pendulum we have

Ccos(g(t))
v(t) = | £sin(q(t)) | 4(?)
0

Now, we can write the kinetic energy using ¢ and ¢ via

n

R S

=1 =1

J
ﬁ%wmww%wm

which is also denoted by T (¢(t), ¢(t),t).

Example 3.7
For the pendulum we have
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For forces Fi(t) € R3, i =1,...,n, which are applied at the ith point of mass, we define the
the so called generalized forces via

R0 =3 (RO 00 ) E= 1,

1=1

Furthermore, we call a mechanical system conservative, if there exists a function W(r(q(t),t),t)
such that

ow

E(t) = - ar; (r(q(t),t),t) =: _viw(r1<Q(t)7t)a S 7rn<Q(t)>t)7 t)

holds. For the generalized forces, we have to compute

fult) = —%w,w

with W(q(t),t) = W(r(q(t),t),t), which gives us f(t) = =V, W(q(t),t). The function W is
typically interpreted as potential energy of the system. This is why one typically adds a suitable
constant to arrive at min, W(q(t),t) = 0.

Example 3.8

Utilizing the pendulum example without friction, the force F(t) = (0,—mg,0)" applies to the
pendulum, which can be written as f(t) = =V W(q(t),t) with W(q(t),t) = mgy(t). Insert-
ing r(q(t)) = (Lsin(q(t)), —Ccos(q(t)),0)", we have W(q(t),t) = —mglcos(q(t)). To satisfy
min, W(q(t),t) = 0, we add mgl to the expression and obtain

W(q(t),t) = —mgl cos(q(t)) + mgl.

Having defined the notation above, we are now ready to define the Lagrangian:

Definition 3.9 (Lagrangian)
Consider a conservative mechanical system. Then we call the function

the Lagrangian of the system.

Utilizing the Lagrangian, we can derive the equations of motion of the system: The so called
Lagrangian Equation

(B tta01.0) - ottt a(0.0 = 0. k=1..m 39

holds. Note that this equation can be obtained from the physical condition that the functional
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is minimal along solutions ¢. Setting g(a) = Z(q + az) for an arbitrary differentiable function
z with z(tg) = 2z(t1) = 0, then we have ¢(0) = 0. After some computations we obtain

Z / (dt (aqk q(t), '<t>,t)) —g—fk(q<t>,q<t>,t>) 2(t) dt

revealing (3.9).

Example 3.10
Considering the pendulum without friction, we obtain

L{g(t),d(t).1) = TLd()* + mgl cos(q(t)) — myt.

Hence, we have

oL

a—q(q(t), q(t), t) = me*(t)
%@(t}, §(t), t) = —mglsin(q(t)).

Hence, we obtain the equations of motion via (3.9)

d
0= % (mf3(1)) + mgtsin(y(1))
= ml%§(t) + mglsin(q(t)).
Since £ > 0 and m > 0, the latter simplifies to
0 = £4(t) + gsin(q(t)),

which corresponds to our earlier results with ¢ = 6.

Remark 3.11

The Lagrangian approach we presented here is given for conservative systems, i.e. systems
without loss of energy, e.g., via friction. To integrate such effects gives us a so called dissipa-
tive system. Within the modeling, a dissipation rate needs to be defined and translated into a
generalized friction force. Then, we can add this force to the right hand side of the Lagrangian
Equation (3.9) and solve the latter.




Chapter 4

Stochastic processes

Financial processes are a rather young field of research, which received quite some attention
during the “New Economy”. Its limitation may also have been a source for the dot-com bubble
in the late 1990s. Since then, the field was less attractive, but since complex financial products
will also be traded in the future, respective models and research will still have their place.

These complex products not only arise in the context of financial speculations, but also as
safeguards for changes of currency exchange rates, i.e. daily business of international companies.
Here, we will focus on the latter, and particularly discuss the simplest form known as the
Furopean Option. These derivatives depend on the underlying portfolio, that is a mixture of
stock prices and currency exchange rates. Our aim is to compute the value of such a derivative
at a given time instant. Since the value depends on the unknown future development of the
stocks and rates, we require a respective model of these.

Since nobody can honestly claim to be able to predict the future development of stock
prices and exchange rates, we will not use deterministic differential equations but stochastic
ones instead, cf. Definition 1.18. For each initial condition, stochastic differential equations
exhibit a number of possible solutions, which depend on chance. The idea of these stochastic
differential equations is to approximate possible future developments such that known statistical
values from past data (such as expected value or variance) are best modeled.

Within this chapter, we first provide the means of modeling and analyzing a model via the
Ito stochastic differential equation and the Ito integral. Thereafter, we introduce one of the most
simple task in finance, the assessment of options, and derive models for the stock development.
Last, we show two practical methods which allow for computing prices of options.

4.1 Ito integral

In the introductory Chapter 1, we observed in Figure 1.10 that the paths of a Wiener process
look similar to stock prices. Yet, even for a very simple modeling of stocks, the Wiener process
is too simple. The reason for the latter is the absence of parameters, which can be fit to adapt
the model to real data. The Wiener process lacks this structure.

However, the Wiener process is ideally suited to comprise as an ingredient in the definition of
a stochastic differential equation in (1.17). Indeed, we will use the Wiener process to describe
the derivative of the random variable X in (1.17). To discuss the resulting mathematical
problems, we focus on the most simple stochastic differential equation first, and extend our
findings to the more general case afterwards.

Since the Wiener process (cf. Definition 1.19) is a stochastic function, the solutions of a
stochastic differential equation (1.17) based on a Wiener process are again stochastic functions.

49
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Here, we continue to use the notation ¢ € R for time and z(¢) € R" for the state of the
stochastic process and zy € R™ for the initial value. FEach state x can be a vector, i.e.
r=(T1,%2,...,T N)T where each x; is a real valued stochastic process. Each of these solutions
x; is connected to one Wiener process W (t,w). The solution of the stochastic process for a
given path W (t,w) is then denoted by x(t; o, xo,w).

The main technical difficulty in formulating a stochastic differential equation arises already
in a seemingly trivial task — the formulation of a problem where the Wiener process is the
solution of that problem. The task is only seemingly trivial since we consider the Wiener
process to be given and might be tempted to use

#(t) = W(t,w) (4.1)

with initial condition 2y = W (0,w) at initial time ty = 0. Yet, what is W (¢, w)? One might think
of it as a pathwise derivative, i.e. computing the derivative of each path W (t,w) separately.
As noted before, a typical path is nowhere differentiable.

To circumvent that problem, we can write (4.1) in form of an integral equation
t .
x(t;tg, vo,w) = o +/ W (t,w)dt. (4.2)
0

Now we can formally integrate, yet it doesn’t answer the question “what is W(t, w)”. For the
integral in (4.2) we will use the abbreviation fot dW;. This denotation already shows the way,

which we want to follow to solve our problem: Instead of analyzing the derivative W(t, w), we
state a mathematical definition of the integral which satisfies the following properties:

o [ dW, is well defined.
. fg dW, provides the desired result z(t; to, zo,w) = W (t,w).

e A generalization to

I(F) = /0 t F(t)dW, (4.3)

is possible, which allows for formulation of more complex stochastic differential equations.
Note that F'is again a stochastic process.

Here, we want to state such a concept for integrals of form (4.3). The idea of this concept is to
approximate the integral for each pair of paths F(t,w) and W (t,w) by the limit of a suitable
sum.

Definition 4.1 (Ito Integral)
Consider a probability space (€2, F,P), a random variable F' : R x Q2 — R"» N € N and a

sequence of time instances TIEN), 7 =0,1,..., N with

(N) (N)

lo=17 '"<71 '<...<7Ty =t

to be given. For each w € (2 we define

IM(F)w) = Y P, w) - (Wi, w) - WV, w))




4.1 Tto integral 51

For a family of sequences <7‘,§N)> with limy_,o{maxy_1 y7, ~ — T,Ei\q} =0 we call
NeR

I(F) :=Llim. I™(F) (4.4)

N—o0

the Ito integral of the stochastic process F'.

Here, the question arises whether or not the limit of the integral sequence exists. The
trick of Ito is to not consider the limit to be understood for each path — i.e. anticipating
limy oo I™)(F)(w) for each sample w € 2 — but instead to consider the values I™")(F) and
the integral /™) as random variables I™)(F) : @ — R and I™) : Q — R. Utilizing the
concept of Mean Square Convergence, cf. Definition 1.17, we can show that given respective
assumptions on F' the sequence (IN)(F))yen converges and (4.4) is well defined.

Now, we can formalize the definition of a stochastic differential equation from Definition
1.18 in the sense of Ito:

Definition 4.2 (Ito Stochastic differential equation)
Consider deterministic functions a,b : R x R™ — R"* a probability space (2, F,P) and a
random variable W : R x 2 — R" to be given. Then we call

dz(t) = a(t,z(t))dt + b(t, x(t))dW,; (4.5)

an Ito stochastic differential equation.

Note that this is only a symbolic notation. Equation (4.4) relates to the (longer) integral
formulation

x(t) =z + /t a(t,xz(t))dt + /tb(t, x(t))dW;

to to

where the second integral is the Ito integral. The deterministic part a(t,z(t)) of the equation
is called drift, and the stochastic part b(t,z(t)) is referred to as diffusion.

Remark 4.3
Equation (4.4) can be extended in many ways, i.e. by inserting various independent Wiener
processes WY, W2, . ... Among other properties, we can show that

E ( /: F(t)th) ~0, (4.6)

which follows directly from the independence of the random variables F' and W (s) — W (t) for
s>t>0 wva

BEEN ) = WEN) = EEE)) BIE) = WiE) =T

=0

and going to the limit I(F).
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To calculate with the Ito integral in general, we require respective rules. Ito’s Lemma
provides an extension of the chain rule for stochastic differential equations, and is also sometimes
referred to as the stochastic chain rule.

Lemma 4.4 (Ito’s Lemma)

Consider a function g : R x R — R which is twice continuously differentiable and suppose x(t)
to be the solution of a stochastic differential equation of form (4.5). Then &(t) = g(t,z(t))
satisfies

di(t) = (%(t, o(0) + 2 (1, a(t)alt, (1) + 5 o a:(t))b(t,x(t))2> it

+ g—z(t, x(t))b(t, z(t))dWy, (4.7)

where W is the Wiener process of the stochastic differential equation satisfied by z(t). Formula
(4.7) is also called Ito formula.

4.2 Options

The assessment of options is one of the simpler tasks in finance, yet it is far from trivial. Here,
we will define what an option is. Then, we will shortly discuss an important formula from
stochastic analysis, and develop models mimicking stock development.

An option is a contract, which provides the holder with the possibility (but not the obliga-
tion) to sell or buy a share at a future time instant for a fixed price. The price is referred to as
strike price, the selling option is also called a put and the buying option is called a call.

Here, we consider the Furopean option. The difference to other options is that the strike
time is apriori fixed, and we denote it by T'. The task now is the following:

What is the value of the option itself at time ¢ < T'?

This question arises if, e.g., a bank wants to emit such an option, or if a holder wants to sell it
prior to the strike time. Focusing on the call, we denote the (known) base value of a share at a
certain time ¢ € [0, 7] by S, and the value of the option (which we like to compute) by V (¢, .5).
Furthermore, let K the fixed strike price.

For t = T, we obtain that if S > K, then the value of the option equals the profit V(T,S) =
S—K>0.If S <K, then we would have to buy the share for a higher price than we would
sell it for using the option. Hence, we don’t use the option and get V(7',.S) = 0. Combined,
we obtain

V(T,S) = max{S — K,0} =: (S — K)".
The put case is inverted, i.e. we have

V(T,S) =max{K — 5,0} =: (K — 9)".
To compute the value of the option at any time ¢ < T we require

(1) a rule for computing V' (¢, S) from V(T,S(T)) if S(T) is known, and
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(2) an estimate of the base value S(T") at time 7" depending on the base value S at time t.

If (1) and (2) are available, then we can estimate V (7, S(7")) via (2) and apply the rule (1) to
this estimate.

Regarding (1): We assume that S(T) is known, and henceforth also V(T,S(T)) is known.
Now we could simply set V(¢,5(t)) = V(T,5(T)), which however doesn’t fit the economic
reality. Instead, we have to add a discount factor exp """ where r > 0 is the interest rate
for a risk free fund. The discount is motivated by a general assumption in modeling of financial
processes — no-arbitrage bounds. Arbitrage is the benefit from a risk free fund. The respective
postulate assumes that if a product is traded at two markets at different prices, then the prices
would converge immediately, rendering arbitrage to be impossible. Although this doesn’t hold
in practice, it is an accepted assumption. Considering the absence of arbitrage, the payoff of an
option at time 7" is given by B(T') = exp" ™9 V (¢, S(t)). If we consider the value V (T, S(T)) to
be known and if V (t,S(t)) > exp™ "= V(T, S(T)), then we could sell the option immediately
and invest the payoff risk free. Hence, we obtain

B(T) = exp” Y V(t,S(t)) > V(T,S(T))

and our risk free profit is given by B(T) — V(T,S(T)) > 0. Vice versa, if V(t,5(t)) <
exp "D V(T, S(T)), then we could buy that option for B(t) = V(¢,S(t)) and at strike time
get the return

B(T) = V(T,S(T)) > exp" TV (¢, S(t)).

Now the risk free profit is given by B(T) — exp™ =9 V/(¢,S(t)) > 0. Since the postulate of
no-arbitrage bounds excludes risk free profits, the following equality holds:

V(t,S(t)) = exp " T V(T, S(T))

Regarding (2): We model the typical stock development using a stochastic differential equa-
tion of form (4.5) and set S(T") = x(T';t, S(t)). Note that S(T") is not a fixed value but a random
variable. The value of V/(T', S(T")) can be estimated via the expected value E (V(T, z(T';t, S(t)))).

Combining (1) and (2), we obtain the equation
V(t,5(t) = exp O (V(T, 2(T3t, (1)) (45)

which allows us to compute the value of the option at time ¢ based on the value of S(t).

The minimal requirements for modeling stock development are the parameters trend p € R
and the spreading o > 0. The first parameter p gives the general direction of the stock
development, either up, down or leveling, while the second parameter o corresponds to the
variance/jitter of the stock development around the gene