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Foreword

This script originates from a correspondent lecture held during the summer term 2015 at the
University of Bremen. The lecture itself is split into a theoretical and an application part. The
theoretical part deals with

e Penalty- and Multiplier-Methods

e SQP and Interior Point Methods

e Integer Optimization and Heuristics
and the application part contains

e Production and Inventory

e Maintenance and Replacement

At the end of the lecture, students should understand the concepts of different kinds of opti-
mization methods and be able to apply these methods to different applications.

Parts of the scripts are based on script of Prof. Gerdts [5] and the books [2,9], which will
be used without further notice. Additional useful information may be found in [3].
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Chapter 1

Introduction

Optimization problem arise in many areas such as econometrics, engineering and natural sci-
ences. In this lecture, we will discuss optimization problems, which are subject to constraints,
respective solution methods, and a number of economic applications.

1.1 Problem Setting Optimization

Within the standard setting of this lecture, we suppose functions

F:R"™ — R,

G :R"™ — R"¢,

H:R"™ — R"
to be given where R denotes the set of real numbers. We refer to the function F' as the cost
function. The functions G and H are called the inequality and equality constraints. These

functions shall be sufficiently often continuously differentiable. Within this lecture, we will use
the notation for derivatives, which is common in nonlinear optimization. For a continuously

differentiable function g = (g1, ..., gp) : R"* — RP? we denote the Jacobian matriz by
91 ... 9
021 0z1
Veg(z) = :
o0 ... O
Ozn Ozn

which we abbreviate to Vg if there is no ambiguity. For a twice continuously differentiable
function g : R™ — R we write the so called Hessian as

%9 . 0%g
0z121 3Z1an
2
V..9(z) = : :
29 ... 0%g
Ozn, 21 O0Zn, Zn,

which we abbreviate to V?¢ if there is no danger of confusion.

The argument of the functions F, G, H is called the optimization variable and will be
denoted by z € R™=. Last, we will use the sets Z ={1,...,ng} and € = {1,...,ng}, which we
refer to as the set of inequality and equality constraints.

Then, we define the standard nonlinear optimization problem (NLP) as follows:
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Definition 1.1 (Nonlinear Optimization Problem)
We call the problem

minimize  F(2)
with respect to z € R™ (NLP)
subject to G;(z) <0 for alli € Z and H;(z) =0 for alli € £

with maps F': R"* - R, G : R™ — R"¢ and H : R™ — R"  a nonlinear optimization problem
i standard form.

The constraints induce the following feasible set:

Definition 1.2 (Feasible Set)
For a problem (NLP) the set

F={2]Gi(z) <0,i€T; H(z)=0,icé&} (1.1)

is called the feasible set and the elements z € F are called feasible points.

Note that the set F from Definition 1.2 can only be shown to be closed if the functions G
and H are continuous.

The cost function F now allows us to introduce so called local minimizers, i.e. points for
which the value of the cost function is lower than for surrounding points. These point — at best
with the lowest value possible — will be the target points for any of the algorithms we discuss
later. Since a minimizer for the problem (NLP) has to be an element of F by definition, this
property need to be included in the definition of a local minimizer in the context of constrained
optimization problems:

Definition 1.3 (Local Minimizer)
A point z* € R™* is a local minimizer of the problem (NLP) if there exists a neighborhood A
of z* such that F(2*) < F(z) holds for all z € N N F.

Our aim now is to construct numerical methods to compute such a local minimizer z*
of a problem (NLP). In high school, the problem at hand was (at least) twice continuously
differentiable and without constraints. In that case, taking the first derivative and computing
its zeros reveals candidates for optimality. Inserting these candidates into the second derivative,
local minima, maxima and inflection points can be identified.

The mathematical background of the necessary and sufficient conditions given in respective
theorems is Taylor’s Theorem, cf. Appendix A.1. Here, we need to include the constraint
functions. To find our target z*, we will require a so called search direction. This can be done
by arbitrarily picking new candidates and trying to identify areas within which the values of
the cost function are particularly low. Or, if the functions F', G, H exhibit differentiability
properties, then linear approximations can be used. Before coming to the search direction of
the optimization method, we have to know which directions will give us a feasible solution. To
this end, also the constraints are linearized

G(z+d)~G(2) +VG(2)'d and H(z+d)~ H(z)+ VH(z)"d.
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Note that such an approximation makes sense only if the geometry of the feasible set F is —
at least locally — reflected properly when G and H are replaced by approximations. To this
end so called constraint qualifications are considered in the literature.

The linearized functions allow to introduce the tangent cone Tx(z) to the feasible set F.

Definition 1.4 (Tangent Cone)
A vector v € R" is called tangent vector to F at a point z € F if there exists a sequence
of feasible points (zx)ren With 2z — z, zx € F and a sequence of positive scalars (¢;)reny With
tr — 0 such that

Zk — %

li = 1.2
i, e S0 42

holds. The set of all tangent vectors to F at z is called the tangent cone and is denoted by
T]:(Z)

The tangent cone T depends on the geometry of F only. At a given feasible point z € F,
the set Tx(z) can be seen as a local approximation of all feasible directions, i.e. all vectors
d € R"* for which z+ad € F holds for all sufficiently small & > 0. The definition of T» implies
that each feasible direction is contained in Tz(z). Conversely, for each element v € T'#(z) and
each € > 0 there exists a feasible direction d with ||d —v|| < e.

We directly observe that all equality constraints H; restrict the set of feasible directions.
Yet this is not necessarily the case for all inequality constraints: If G;(z) > 0 holds, then we can
utilize continuity of G; to get G;(z+ad) > 0 for all d € R™ provided o > 0 is sufficiently small.
If, however, G;(z) = 0 holds, then an arbitrarily small change of z in the “wrong” direction may
lead to G;(z + ad) < 0. Hence, the latter inequality constraints also restrict the set of feasible
directions. This gives rise to the so called active set and the respective active constraints:

Definition 1.5 (Active Set)
The active set A(z) at any feasible point z consists of the equality constraint indices from &
together with the indices of the inequality constraints i € Z where G;(z) = 0 holds, that is

A(z) = EU{i € T| Gi(z) = 0}

Definition 1.6 (Active Constraints)
Consider the active set A(z) of a feasible point z € F. Then we call

) = ( (Gi)i;«:gﬂf > (1.3)

the set or vector of active constraints and ny = #.A(z) the number or dimension of active
constraints at z. Moreover, we denote the corresponding Lagrange multiplier vector by \4.

1.1.1 Necessary Conditions for Optimality

The center of many numerical algorithms for computing the optimum of a nonlinear optimiza-
tion problem (NLP) are the so called Karush—Kuhn—Tucker (KKT) conditions. To state these
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conditions, we introduce the Lagrangian L : R™ x Ri*retna 5 R For its definition, we re-
quire the Lagrange multipliers A\ € R, A € R™ and p € R"¢ and define the Lagrangian as a
modification of the cost function F' by

L(z, M0, A\, 1) := N F(2) + A G(2) + p" H(2). (1.4)

Note that the additional terms AT G(z) + " H(z) penalize violations of the constraints.
Before coming to the general case of a nonlinear optimization problem, let us consider the
more simple convex case, i.e.

minimize  F(2)
with respect to z € R™
subject to G;(z) <O forallie€Z and Hi(z) = Az—b=0forallie&

where we assume the feasible set F to be nonempty. From standard calculus we know that the
set F is convex. Moreover, since F' is convex, then also the set of global minima is convex,
and local minima are also global ones. Additionally, we can formulate necessary and sufficient
conditions rather simple:

Theorem 1.7 (Fritz John Conditions — Necessary Conditions for the Convex Case)
Let z* be optimal for a convex optimization problem. Then there exist non trivial Lagrange
multipliers (Ao, \, 1) € RYeTnH sych that the following conditions hold:

e Sign condition:
Ao > 0, A >0, 1=1,...,n¢g (1.5)
e Minimality of the Lagrangian:
L(2%, X0y A, ) < Lz, Ao, A, ) Vze F (1.6)
e Complementarity condition:
NGy =0, 1=1,...,n¢ (1.7)
o Feasibility:

z*eF (1.8)

Theorem 1.8 (Sufficient Conditions for the Convex Case)
Suppose z* € F is given. If conditions (1.5) — (1.8) hold with Ao = 1, then z* is optimal.

Since we know how to deal with unconstrained optimization problems, we like to reduce
the constrained one to an unconstrained one and apply known methods to it. To this end, we
make use of the active set A, which represent all constraints that are satisfied with equality.
We solve these restrictions for some components of z, and optimize over the components that
are left. We illustrate this via an example.
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Example 1.9

In order to produce tins, two different materials are used for the lids and the shell, which costs
p1 and ps units per square unit respectively. The aim is to produce the tins for a given volume
V' > 0 at cheapest cost.

Formulation of the (NLP):

1. The lids are circular with radius r > 0 and area r*mw. Hence the costs are 2p r?m.

2. The area of the shell measures 2rmh, where h > 0 is the height of the tin. The costs are
gien by 2pormh.

3. The volume of the tin is given by r*mh.

Hence, we have

minimize  F(2) = 2pir°m + 2pormh
with respect to z = (r, h) € R?
subject to H(z) = r?’rh —V = 0.

Solution of the equality restriction:
If r # 0, then the constraint H(r,h) = r*th —V =0 can be reformulated as

h(r) =+ (1.9)

r2mr’

The case v = 0 can be ruled out since the condition V' > 0 cannot be met. For h(r) we then
have

H(r,h(r)) =0.

Inserting (1.9) into F', we obtain the equivalent optimization problem
2Vp2

minimize  F(r, h(r)) = 2pr°m +

with respect to z =r € R.

Computing the optimum:
We apply the known first order necessary conditions to F(r,h(r)) to obtain a candidate. Dif-
ferentiating F(r, h(r)) gives us

dF oF oOF oh
%(r, h(r)) = W(r,h(r)) + %(7’, h(r)) - E(r) (1.10)

To evaluate this expression, we differentiate H(r,h(r)) = 0 with respect to r using the chain
rule which gives us

0= aa—i[(r, h(r)) + aa—lz(r, h(r)) - %(r)

Since GL(r,h(r)) = r’m # 0 for r # 0, we can solve the latter for 9%(r) and obtain

E(r) %(r, h(r)) —(r,h(r)) = ——==2rmh(r) = —

—_ 1.11
or rim 3T ( )

oh B <6H )‘1 oH 1 2V




6 Chapter 1: Introduction

Inserting (1.11) into (1.10) and setting (1.10) equal to zero gives us

dF 2V
0= %(r,h(r)) = 4rmp; — sz
and reveals the positive solution
Vpg |4
3
" 27mpr’ (r) r2m

Since the cost function F' is convex, this solution represents the minimum.

Alternative solution:
We define the Lagrange multiplier

OF OH -
A= —%(r,h(r)) (%(7‘, h(?")))

and insert (1.13) into (1.10) which gives us

0= a—F(r, h(r)) + )\aa—lj(

o r, h(r)).

Moreover, (1.13) is equivalent to

0= %Z(n h(r)) + A%—g(n h(r))

Using the Lagrangian, these conditions can be written as

oL
0= E(Tv h7 )‘)
oL
0= %(Tv h’7 )\)
0= H(r,h)

(1.12)

(1.13)

representing the so called Lagrangian multiplier rule. These conditions form a nonlinear equa-

tion system, and its solution corresponds to the one from the first approach.

To state the KKT conditions in the convex case, one typically introduces the Slater condition

JdzeF: G(z) <O.

(1.14)

Note that if no Slater point exists, then only the Fritz—John conditions hold. Since the cost
function F' is not present in these conditions due to A\g = 0, the Fritz—John conditions can also

be seen as degenerate KKT conditions.

The approach we followed in Example 1.9 utilized one of the fundamental theorems of
calculus, and is not limited to the convex case but applies for the general nonlinear case as well.
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Theorem 1.10 (Implicit Function Theorem)

Suppose H : R"=""# xR™ to be continuously differentiable and (n*,0*) € R="nu)+nu o satisfy
H(n*,6*) = 0. If the px p matriz %4 (n*, %) is invertible, then there exist neighborhoods B.(n*)
and Bs(0*) with radii €,d > 0 and a mapping 0 : B.(n*) — R with 6(n*) = 60* and

H(n,0(n) =0  V(n,0(n) € B-(n") x Bs(6").

Moreover, 0(-) is continuously differentiable in B.(n*) and the Jacobian of 6(-) is given by

T =-(Sr00) Sr.0) .0 € B x Bi(o")

Tracking along the footsteps of Example 1.9, we can define the Lagrange multiplier A via

OF oy (aH

T . * YA x g

_%(77 3

and the Lagrangian via
L(z,A) i= F(2) + \TH(z) with z = (1,0) ",

which allows us to apply first order necessary condition for an unconstrained problem revealing

Theorem 1.11 (Lagrange multiplier rule)

Consider F': R™ — R and H : R"* — R" to be continuously differentiable. Suppose z* to be
a minimizer of F' with H(z*) = 0 and rang(dH(z*)/dz) = ng. Then there ezists a Lagrange
multiplier A € R™ satisfying

dH

= V.L(z*,\) = VF(2*) +
0=V_.L(z"\) V(z)—l—dz

()T

Now, the nonlinear equation system
V.L(z,\) =0, H(z)=0

can be solved for z and A using, e.g., Newton’s method, which leads to the so called Lagrange—
Newton Method.

For the more general nonlinear case, the Linear Independent Constraint Qualification LICQ
is used. To define this condition, we utilize the active set, which basically plays this case back
to the one with equality constraints only. We first introduce the set of “linearized” feasible
directions obtained from the linearizations of G.

Definition 1.12 (Linearized Feasible Directions)
For a feasible point z € F and the active set A(z) we call the set

F(z) = {U € R™ (1.15)

v VGy(2) <0 for all i € A(z) NZ and
v'VHi(z) =0 forallie€ &

the set (or cone) of linearized feasible directions.
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Since Tx(z) C F(z) and we want to show necessary optimality conditons based on lin-
earizations, these sets should coincide. This is the intention of constraint qualifications, i.e.,
that the geometry of T'x is captured by the linearizations of GG; and H;. The linear independence
constraint qualification is probably the most popular one.

Definition 1.13 (LICQ)

Consider a feasible point z and the active set A(z). Suppose that F', H and G are continuously
differentiable. If the elements of the gradient set {VG;(z) | i € A(z) NZ}U{V H;(z) | i € £} are
linearly independent then we say that the linear independence constraint qualification (LICQ)
holds.

Under this condition we obtain Tx(z) = F(z), see [3, Lemma 9.2.1].
Similar to the Lagrange multiplier rule from Theorem 1.11, we can now state a first order
necessary optimality condition — usually called KKT (Karush—Kuhn—Tucker) condition —

for the constrained case, which will serve as a guideline to find local minimizers, see [3, Theorem
9.1.1].

Theorem 1.14 (KKT Conditions)

Consider the problem (NLP) with local minimizer z* € F. Moreover suppose the functions F,
G and H to be continuously differentiable and the (LICQ)) to hold at z*. Then there exists
Lagrange multiplier \* € R"¢, u* € R™ such that the following conditions hold.

V.L(z*, X, 1) =0 (1.16)
Gi(z) <0 VieT (1.17)
H(z)=0 Vie& (1.18)

X>0  Viel (1.19)
NGi(z)=0 Viel (1.20)
wiH;(z5) =0 Vie & (1.21)

The identity (1.20) is a so called strict complementarity condition which says that either
AF =0 or G;(z*) = 0 must hold. A special case which is important for nonlinear optimization
algorithms is the following.

Definition 1.15
Consider the problem (NLP) with local minimizer z* € F and Lagrange multipliers A\* € R"¢,

p* € R™ gatisfying (1.16) - (1.21). Then we say that the strict complementarity condition
holds if A¥ > 0 for all i € Z N A(2%).

We see that the KKT conditions connect the gradient of the cost function to active con-
straints. In particular, Theorem 1.14 states that for a given minimizer z* moving along an
arbitrary vector v € F(z*) either increases the value of the first order approximation of the
cost function, i.e. v"VF(2*) > 0, or keeps its value at the same level in the case v’ VF(2*) = 0.

In the second case, it is unknown if the cost function value is increasing or decreasing along
v. Here, second order conditions can be used to obtain more information about change of F,
see [3, Theorem 9.3.1] for a corresponding proof.
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Theorem 1.16 (Second Order Necessary Conditions)
Consider the problem (NLP) with local minimizer z* € F. Suppose the functions F', G and

H to be continuously differentiable and the (LICQ) to hold at z*. Let \* € R"¢, pu* € R™® be
Lagrange multipliers satisfying the KKT conditions (1.16)—(1.21). Then the inequality

v V2 L(2%, M\, 1)v >0 (1.22)

holds for all

(1.23)

veC(zJ)::{vGﬂz) i€ A(z*) N T with A\ > 0

v VGi(2*) = 0 for all }

1.1.2 Sufficient Conditions for Optimality

The set C is also called the critical cone. It contains all directions which leave the active
inequality constraints with \; > 0 as well as all equality constraints active if one moves a
sufficiently small step along these directions. This, however, does not need to hold for those
active inequality constraints with A; = 0. In particular, we have the equivalence

VGi(z*)"v =0, forallie A(z*)NZ with \¥ > 0,
vEC(NN) << VG(z*)Tv <0, forallie€ A(2*)NZ with \¥ =0,
VH(z*)"v =0, forallicé.

Now, we want to get a converse result, i.e. we want to check whether a given feasible point is
actually a local minimizer. As it turns out, the only differences between the previous necessary
conditions and the sufficient conditions presented next is that the constraint qualification is not
required whereas inequality (1.22) needs to be strengthened to a strict inequality, cf. [3, Theorem
9.3.2]:

Theorem 1.17 (Second Order Sufficient Conditions)
Consider a feasible point z* € F and suppose Lagrange multiplier \* € R"¢ | u* € R" to exist
satisfying (1.16) — (1.21). If we have

v V2 L(z*, X, 1i*)v > 0 (1.24)

for allv € C(z*, \*) with v # 0, then z* is a strict local minimizer of problem (NLP).

1.2 Problem Setting Economic Processes

In contrast to the previous Section 1.1, we want to consider processes in our applications, i.e.
dynamic systems and not static problems. Here, we define a process to be driven by a model,
which is a a discrete or continuous time control system. And our aim in this section is to play
this dynamic problem back to a static one in order to apply methods based on the theory from
Section 1.1.

First, we need to introduce a basic definition of a our variables:
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Definition 1.18 (Time set)
A time set T is a subgroup of (R, +).

By setting 7 = Z or T = R, we can formally switch between discrete and continuous time.
Having defined time, we now introduce the states and controls of a system:

Definition 1.19 (State and Control)

We call the set U the control set and the set X the state set. Moreover, the set of all maps
from a set Z C T to a set U is denoted by UL = {u | u : T — U} and called the set of control
functions. The elements x € X and u € U are called state and control of a system.

Given time, states and control, we can now define their connection via a dynamic system:

Definition 1.20 (Discrete time Control System)
Consider a function f: X x U — X. A system of difference equations

zu(k+1,20) := f(zu(k,z0),u(k)), k € Ny (1.25)

is called a discrete time control system. Moreover x,(k,zo) € X is called state vector and
u(k) € u control vector.

Existence and uniqueness of a solution of (1.25) is clear by induction. In particular, we
obtain a unique solution in positive time direction for a certain maximal existence interval.
In the continuous time setting, a control system is given as follows:

Definition 1.21 (Continuous time Control System)
Consider a function f : X x U — X. A system of first order ordinary differential equations

Tu(t) = f(zu(t, z0), ut)),  tER (1.26)

is called a continuous time control system.

The control system itself only gives us the state change over time. To compute a possible
future trajectory, we require additional information on the starting point.

Definition 1.22 (Initial Value Condition)
Consider a point o € X. Then the equation

2(0) =z € X (1.27)

is called the initial value condition.

Note that existence and uniqueness of a trajectory is guaranteed if the system is Lipschitz or
if the requirements of Caratheodory’s Theorem are met, cf. [6] and [10] respectively. Utilizing
existence and uniqueness, we can introduce the notion of a trajectory or solution:
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Definition 1.23 (Solution)
We call the unique function z,(t, zy) a solution for t € T if it satisfies the initial value condition
(1.27) and the control system equation (1.25) or (1.26).

Similar to the static case, we assign costs to a trajectory of the control system. In principle,
this simple fact already removes the dynamics from our problem by simply considering the
entire time stream as an optimization variable. This brings us to the notion of a so called
optimal control problem. The costs are given via the functional

In(xo,u) = i C(zy(k, o), u(k)) + L(xy (N, x0)) (1.28)

where ¢/ : X xU — R and L : X — R are the so called stage and terminal costs. A typical
choice of these functions is the quadratic version

Ua,u) = [l2]I* + Allull®,  L(z) = |||
Note that computing a control

u* = argmin Jy(xo, u) (1.29)
ueUN
may not be tractable if NV is very large or even N = oc.

For control systems (1.25) or (1.26), constraints are motivated by boundaries of processes,
e.g. that there exists only a finite number of gears in a gearbox or that the capacity of a road is
bounded. The most general approach to incorporate constraints in the control system setting
Is via sets:

Definition 1.24 (Constraints)
For given state and control sets X and U, we call the subsets

Xcx and UcU (1.30)

the constrained state and control sets.

Based on these constraints, we can now introduce the concept of feasibility sets. Since
we have to anticipate future events in the state space, feasibility sets require us to change the
perspective in time. Hence, a reverse time view is needed. This leads to the following definition:

Definition 1.25 (Feasible Set and Admissible Set)
Consider a control system (1.25) (1.30) and X° C X. For any time frame Z = [0, N] C Ny the
feasible set is defined via

XN o= {mg | Fu: zu(N,70) € X0, zy(k,20) €X, w(k) eUVE € {0,...,N—1}}.  (1.31)
Moreover, the admissible set is given by

Ul (w0) == {u | (N, z0) € X0, 2 (k,m0) €X, u(k) €eUVk€{0,...,N—1}}.  (1.32)

The difference between feasibility and admissibility is the following:
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Admissibility deals with controls, feasibility is about states. In particular, a control
is called admissible for a specific state. And a state is called feasible if there exists
a control sequence such that future states satisfy the state constraints.

Last, we can combine the cost functional (1.28) with the control system dynamics (1.25),
the initial value condition (1.27) and the feasibility condition (1.31) to obtain an dynamic
equivalent to our nonlinear optimization problem (NLP):

Definition 1.26 (Optimal Control Problem (OCP))
We call the problem

N-1
Minimize  Jy(xo,u) == » _ (xu(k), u(k)) + L(zu(N, o))

k=0
with respect to u(-) € Ufy(zo), subject to (OCP)

T, (0,20) = 9 € X0,z (k +1,20) = f(zu(k, z0), u(k))

an optimal control problem.

Remark 1.27
If the time period between two time instances s fixed to T', we can obtain the equivalent con-
tinuous time optimal control problem by replacing (1.25) by (1.26) and the cost (1.28) by

In(zo,u) = /t 0 (24 (t, x0), u(t)) dt + L(z,(NT, x0)).

=0

The aim of the remainder of this section we give the foundations of the so called “first
discretize then optimize” approach. In a transformation step, we discretize the optimal control
problem (OCP) into a nonlinear optimization problem in standard form (NLP).

Remark 1.28

Apart from the “first discretize then optimize” approach there also exists a so called “first op-
timize then discretized” method. Applying the latter requires in deep knowledge of Pontryagin’s
minimum principle. The basic idea is to introduce the adjoint differential equation as part of
an integrated solution. Yet, this approach is no universal remedy as computing the solution of
this approach requires numerical methods similar to optimization methods as well.

1.2.1 Discretization Methods

Even though (OCP) is already a discrete time problem, the process of converting (OCP) into
(NLP) is called discretization. Here, we will stick with this commonly used term while in a
strict sense we only convert one discrete problem into another.

As we will see, the (NLP) problem related to (OCP) can be formulated in different ways. The
first variant, called full discretization, incorporates the dynamics (1.25) as additional constraints
into (NLP). This approach is very straightforward but causes large computing times for solving
the problem (NLP) due to its dimensionality.
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The second approach is designed to deal with this dimensionality problem. It recursively
computes x,(k, zo) from the dynamics (1.25) outside of the optimization problem (NLP), thus
reducing the number of constraints. However, this so called recursive discretization has some
drawbacks regarding parallelization, warm start and sensitivity.

1.2.2 Full Discretization

Within the full discretization technique, the trajectory z,(k,z¢) in (OCP) is given by the
dynamics (1.25) or (1.26). Now, each control value w(k), k¥ € {0,...,N — 1} is an opti-
mization variable in (OCP) and also an optimization variable in (NLP). The idea of the full
discretization is now to treat each point on the trajectory z,(k, zo) as an additional independent
n,-dimensional optimization variable and define the total optimization variable via

2= (24(0,20) ", ... 2u(N,20) T, u(0)T, .. u(N -1, (1.33)

To guarantee that the solution of (NLP) also corresponds to a trajectory of (1.25), we add
respective equality constraints to (NLP), which read

(k4 1,20) — f(au(k,z0),u(k)) =0 for k € {0,...,N — 1} (1.34)
2, (0,20) — 29 =0 (1.35)
Additionally, we have to reformulate the constraints v € Uy (2¢), which can be written as
zy(k,zp) € X ke{0,...,N}
u(k) € U kel0,...,N—1) (1.36)
Note that the setting is easily extended to the case of time varying constraints.
In the following, we assume X and U to be given by a set of functions
GY R R =R, icT%={1,...,ng}
H? :R"xR" =R, i€&={1,...,ny}
via equality and inequality constraints of the form
G¥(wy(k,z0),u(k)) <0, i€Z% ke K; C{0,...,N} (1.37)
HY (zy(k, m0),u(k)) =0, i€& ke K, C{0,...,N}. (1.38)

where the index sets K;, i € 7% U £ formalize the possibility that some of these constraints
are not required at time instant k£ € {0,..., N}. This reveals the following:

Definition 1.29 (Full Discretization)
The nonlinear programming problem in standard form (NLP)

Minimize Zlf 2 (k, z0), u(k)) + L(zu(N, 20))

with respect to
2= (@u(0,20)T, -, (N, 20) T, u(0)T, .., u(N = )T)T € R™
subject to G(z) = [GF (zu(k, k), u (kngs ker; =0

[H (zu(k, o), u(k))] ;s pex,

and H(2) = | [zu(k+1,70) — F(@ulk, 20), 0k ]egon. sy | =0
24 (0, ) — xg
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is called the full discretization of Problem (OCP).

The advantage of the full discretization is its simplicity. On the backside, the method
results in a high dimensional optimization variable z € RW+Dma+N 1w anq a large number of
both equality and inequality constraints. Since computing times of solvers for (NLP) depend
massively on the size of the problem, this is unwanted.

1.2.3 Recursive Discretization

The methodology of the recursive discretization is inspired by the (hierarchical) divide and
conquer principle. Basically, the control system dynamics is decoupled and treated as a sub-
problem of the optimization problem. These two layers exchange information regarding the
control sequence u and the initial value xy from the (NLP) to the simulation, and the state
sequences (-, zo) in the opposite direction.

The optimization variable z reduces to

z:=(u0)", .., u(N-1)"T (1.39)

and the constraint functions HY : R? x R?” — R, i € £ are given by (1.37). The inequality
constraints G5 : R” x R — R, i € Z° and the cost function F' remain unchanged. Hence, the
recursively discretized problem takes the following form:

Definition 1.30 (Recursive Discretization)
The nonlinear programming problem in standard form (NLP)

minimize = Z Uz, (k,z0),u(k)) + L(zy(N, z0))
k=0
with respect to z := (u(0)7,...,u(N —1)T)T € R

subject to H(z) = [Hs(a:u(k: $0) (k))]iess,kem =0

7

and G(z) = [Gf(xu(k"IO)’u(k))]ieIS,keKi >0

is called the recursive discretization of Problem (OCP).

Analyzing the dimension of the optimization variable and the number of equality constraints,
we see that using the recursive discretization the optimization variable consists of N - n, scalar
components and the number of equality constraints is reduced to the number of conditions in
(1.37). We can conclude that this discretization is minimal in these regards.

Unfortunately, the method has some drawbacks regarding parallelization, warm start and
sensitivity. These shortcomings can to some extend be circumvented by incorporating multiple
shooting techniques, which are beyond the scope of this lecture. The basic idea is to find
a suitable compromise between the full and the recursive discretization by introducing few
breaking points into the recursive discretization.




Part 1

Optimization
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Chapter 2

Penalty— and Multiplier—Methods

Within this chapter, we discuss the popular Penalty— and Multiplier-Methods, which are based
on coupling the constraints to the cost function via weighted penalty terms. The penalty term
penalizes inadmissible points. The advantage of the method lies the removal of constraints,
which allows for a direct use of algorithms from unconstrained optimization. Here, we do not
display any proofs and instead refer to the book [4], which serves as the basis of this chapter.
Further details may also be obtained from the book [9].

The concept of Penalty—Methods for the general task

minimize  F(2)
(PP)
with respect to z € F C R™.

works as follows: First, we require a function r : R" — R{ such that

=0, ifzeF
r(z) .
>0, ifz2¢&F.

[K]

Then, for a suitably chosen sequence of weighting parameters (1), with 7% > 0 we minimize

the unconstrained penalty function
P(zy) = F(2) + 1" (2). (2.1)

For each n*/ > 0 we obtain a solution z¥! := z(n/*) and we need to ask how the weighting
parameters ¥, k& € N have to be chosen for the sequence (z[k]) x to converge to a minimum of
the original problem (PP).

The function r can be defined in many ways. Differentiable functions are ideal as they allow
for the usage of known methods for unconstrained optimization. In case r is continuous but
not continuously differentiable, the solution of the penalty problem is more involved.

2.1 Penalty—Methods

Let’s start this section with an example:

Example 2.1
Consider the optimization problem

Minimize F(z1,2) 1= 21+ 2y subject to H(z,2) =23 — 2 = 0.

17
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Now we want to eliminate the constraint. To achieve the latter, we could solve the constraint
function for ze and insert it into the cost function as illustrated in the Lagrange approach in
the previous Chapter 1. Here, we want to couple a penalty term to the cost function, which
penalizes point satisfying 23 — 2o # 0. One such function is given by

(21, 22) i= (22 — 23)? = H (21, 22)°.

This function realizes r(z1,22) = 0 if and only if H(z1,22) = 0. Note that r is differentiable.
We could also have used the absolute value |r(z1, z2)| instead of the square, but this function is
not differentiable.

Instead of F', we now consider the penalty function

2
P(21,29,m) == F(21,22) + 37(21,2’2) =21+2+ g (Z% - 22) ;

where n > 0 is the weighting parameter.

We can now apply methods for unconstrained optimization, but the question remains on how
the weighting parameter n influences the solution, and under which conditions the solutions
converge to the solution of the original problem. To this end, we first consider the necessary
conditions

1420z (2 — 2
0=V,P(z1,2,1n) = ( 1 _?7(1,2(% _ 22)2)> '

cf. Theorem A.2. From these conditions, we obtain the stationary points

To see how these point correlate with the solutions of the original problem, we first compute the
stationary points of the Lagrangian

L(z1,22,\) = 21+ 20+ A (2] — 22) ,
which are given by
_1
0=V,L(z1,22,)\) = (1 IF_Q/;ZI) — (2&;) = ( 12) with A = 1.
1

For the latter, we observe that the solutions of the Penalty—Problem (PP) converge to the
solution of the constrained problem for n — oo.

For more general results, we consider the equality constrained optimization problem

minimize  F(z)
(PPE)
with respect to z € F ={z € R"™ | Hi(2) =0, i=1,...,ng}.
where all functions z : R"* — R and H; : R™ — R, i = 1,...,nyg are continuous. The idea of

the penalty method is to approximate the solution z* of the original problem (PPE) iteratively
by a series of unconstrained auxiliary problems. The latter problems consist in minimizing the
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penalty function

P(zn) = F(2) + 3 3 (Hi(2) (22)

for suitable values of n > 0. By attaching the constraints to the cost, leaving the feasible set
F is penalized. The constant n represents a weighting factor, which can be used to adapt the
intensity of the penalization. The Penalty method is given by the following algorithm.

Algorithm 2.2 (Penalty Method)
Suppose a pair of initial values ([, 7%) to be given and set k := 0.

While H(z") 2 0 do

1. Compute solution 2 of

minimize P(z,n*) = F(z) + 9 Z (Hi(2))* over z€R™

2. Determine n**1 > nlkl and set k := k + 1

Since (PPE) is not differentiable in general, we require methods from unconstrained non
differentiable optimization to solve the minimization of (2.2) in Step 1 of Algorithm 2.2. Here,
the question arises whether such a method actually converges to the solution of problem (PPE).
The answer to that is given in the following theorem:

Theorem 2.3 (Convergence of the Penalty Method)
Suppose F' and H;, 1 =1,...,ng to be continuous functions and (n[k])k to be strictly monotone

increasing with n*l — co. Moreover, consider the feasible set F to be nonempty and (z[k])k 1
a sequence generated by Algorithm 2.2. Then the following holds:

1. The sequence of penalty function values (P(z[k], n[’“]))k 1S monotone increasing.
2. The sequence of violations of constraints (|| H (zM)]|), is monotone decreasing.
3. The sequence of cost function values (F(z[k]))k 1S monotone increasing.

4. We have limy_,o H(z*) = 0.

5. Each limit point of the sequence (2™), is a solution of (PPE).

Within problem (PPE) we considered equality constraints only. However, we only required
these function to be continuous, which also applies for the modification

max{0,G;(z)} =0, i=1,...,n¢

of the inequality constraints G;, i = 1,...,ng and allow us to simply extend the penalty
function (2.2) to

nH

Pem) = F()+ 33 (H(2)) + 13 (max{0, G()})°.

=1
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The main disadvantage of the Penalty method is the fact that the weighting factor 7 must tend
to 0o to obtain convergence of the method. This leads to ill-conditioned problems in Step 1 of
Algorithm 2.2.

Note that so far we didn’t state how the weighting factor n**1 shall be determined in
Step 2 of Algorithm 2.2. To derive the latter, we analyze how we can construct a sequence
(n[k]) , along (Z[k})k such that both sequences converge to a KKT point (z*, A*) of the original
problem (PPE). To this end, we require continuous differentiability of the functions F' and H;,
i=1,...,ng. A KKT point (z*, \*) satisfies

0=VF(z*)+ X Y VH(2).

i=1

k]

Since 2 is a minimum of P, we have that

nH
0= V.PEM gy = VFEM) + > " 1 (M) v H,; (1),
i=1
Comparing these expressions, it seems promising to choose
AT = (1) (23)

as an approximation of the Lagrange multipliers AF. For this choice, the following result holds
true:

Theorem 2.4 (Convergence of Adjoints)
Consider F' and H;, © = 1,...,ng to be continuous functions and (z[k])k to be a sequence

generated by Algorithm 2.2 with 2™ — z* for k — oo. Moreover, the gradients V H;(z*),
v = 1,...,ng are linear independent and the sequence (/\[k])k is given by (2.3). Then, the
following holds:

1. The sequence ()\[k]),C converges to a vector \*.

2. (2%, A%) is a KKT point of the original problem (PPE).

At the same time, (2.3) gives rise to the determination of the weighting factor via

ng
e+t = k] Z H;(1F
1=1

2.2 Multiplier—Penalty—Methods

Multiplier—Penalty methods are similar to Penalty methods, but utilize exact and differentiable
penalty functions — the so called Lagrange function. Again, we consider the equality con-
strained problem

minimize  F(2)

(PPE)
with respect to z € F = {z €e R™ | H;(2) =0, i=1,...,ny}.

where all functions z : R™ — R and H; : R — R, ¢ = 1,...,nyg are twice continuously
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differentiable. Suppose z* is a local minimum of (PPE). Then, for > 0 we have that z* is also
a local minimum for

minimize F(z) + g“l—[(z)ﬂ2 over z € R™ such that H(z) = 0.
The Lagrangian of this problem is given by
Lo(2,A,n) == F MHE)P + T H
alz, A n) = F(2) + SIH )" +n H(z)

and is called extended or augmented Lagrangian or Multiplier—Penalty—Function. It can be
shown, that the weighting factor n within L, is not required to tend to infinity in order to
obtain a local minimum of the original problem (PPE).

Lemma 2.5

Suppose (z*, \*) is a KKT point of (PPE). Moreover, the second order sufficient conditions from
Theorem 1.17 hold. Then there exists a finite ng > 0 such that z* is a strict local minimum of
Lo(-,A\*,m) for all n > no.

As a conclusion from Lemma 2.5, we can solve the original problem (PPE) indirectly via

minimize Ly (z, A*, )

(PPA)

with respect to z € R"=.

The penalty parameter n is not required to tend to oo as it is the case for the Penalty method
from Algorithm 2.2. Additionally, L, is differentiable, which allows us to apply known methods
from unconstrained optimization.

Unfortunately, the optimal Lagrange multiplier \* is unknown. To approximate the latter,
we suppose 7 to be sufficiently large and z[¥ to be a stationary point of

minimize Lq(z, A\ ) over z € R™.
Necessary condition now read

nH
0= VeLo(z 1AM, ) = VEGI) 37 (A 4 (141 ) v (540)),

i=1
Moreover, for a KKT point (2*, \*) of (PPE), condition
ny
0=V.L(z" \) = VF(z*) + Y _ \[VH;(2")
i=1
must necessarily hold. Comparing the last two expressions, we obtain the updating technique
AL — A () (2.4)

which gives rise to the following algorithm.

Algorithm 2.6 (Multiplier—Penalty Method)

Suppose a pair of initial values (2% nl%), a weight 7/ > 0 and a o € (0, 1) to be given and set
k= 0.

While (2% 7]} is not a KKT point of (PPE) do
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1. Compute solution z**1 of (PPA)

minimize L, (z, A n¥l)  over 2 e R™

2. Set A\F1 according to (2.4)

AW A 8] (o

3. If |H(ZF|| > o||H (2|, then set nl*+1 = 10n!*| otherwise set nl*+1 = plk

4. Set k:=k+1

We can extend our setting (PPE) to include inequality constraints
minimize F(z) over z € R™ such that G(z) <0, H(z) =0.

To this end, we introduce slack variables s = (sy,...,s,,) € R"¢ and obtain

minimize  F(2)

over (z,s) € Rm=tne

such that G;(z) +s2=0,i=1,...,ng
Hi(2)=0,i=1,...,ng

The augmented Lagrangian of this problem is given by
n n
Loz s, A ) = F(2) + 2 HE)| +uH(:) Z( 50+ 2(Gi() +57)?)

For a given z, we can explicitly solve this minimization with respect to s and obtain

\ 1/2
Si:(maX(O,—(—z+Gi(z)>>) , 1=1,...,ng.
n

Inserting the latter in the augmented Lagrangian we see
n 1<
La(2, A pom) = F(2) + p " H(z) + S| H()|* + o > ((max{0, X +nGi(2)})* = A7)

+Z(Mm H())

Tt else

Note that this function is only continuously differentiable once. For the multipliers, we obtain
the following updating formulas:

pl T o= 8 o H (1)),
)\[k’+l] ‘= max (O’ )\[k] + nG<Z[k+1])) ,




Chapter 3
SQP and Interior Point Methods

Within this chapter, we discuss two methods, which can be termed state—of-the—art in nonlinear
optimization at present. Since the research field for these methods — the so called Sequential
Quadratic Programming approach (SQP) and the Interior Point Method (IP) — are quite
active, we focus on the basics of these methods only. For deeper insights, we refer to the
books [4,9], which also serve as sources for proofs of theorems stated in this chapter.

3.1 Sequential Quadratic Programming

To motivate the sequential quadratic programming approach (SQP), we discuss the so called
Lagrange—Newton method. This method is suitable to solve optimization problem, which are
subject to equality constraints

minimize  F(z)

(PPE)
with respect to z € F ={z € R" | Hi(2) =0, i=1,...,ng}

where the functions F' : R™ — R and H : R — R™ are twice continuously differentiable
and L(z,)\) = F(2)+ A" H(z) is the Lagrange function. The Lagrange-Newton method applies
Newton’s method to the KKT conditions

V.L(z,A\)=0 and  H(z)=0

and reads as follows:

Algorithm 3.1 (Lagrange-Newton Method)
Suppose 2% € R Al € R*# and € > 0 to be given and set k = 0.
While max{ ||V, Lz, XE) ||, | H(zF)||} > € do

1. Solve the linear equation system

(TR SO (8 (S

2. Set

PO o VPN 1 sl AEHT . — ARy, (3.2)

3. Setki=k+1

23
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Alternatively, the Lagrange—Newton method can be introduced using a quadratic approx-
imation of the cost function, which is also referred to as the direct approach. Utilizing the
KKT conditions is known as the indirect approach. Note that both ideas result in the same
algorithm.

3.1.1 Quadratic Approximation

The alternative approach deals with the approximation

minimize 1d"V..L(zM AFd + V_ F(zM)Td
with respect to d € R™ (QPE)
subject to H(zF) + V. H(z")d = 0.

The Lagrangian for this quadratic problem is given by
1
Ligr)(d, ) = 5d Vo LG N d + V. F (M) Td 4 " (H () + V. H (M) d)

Now, applying the KK'T' conditions reveals the linear equation system

Vo L NN+ V FEHY + V. H(M) =0
H(M) + V. H(*)d =0

or equivalently

(A TR e

Subtracting V., H (21)T ¥l from both sides of the first equation in (3.3) now reveals

V.. L(ZFNFY v, H(F)T d [ =V.L(zM \R) A
V. H (=) 0 p— ) == TEemy ) (34)

which is equivalent to (3.1) with v =  — A¥l. Hence, the new iterates can be evaluated via
A=W g and AEH = (3.5)

This gives rise to the following conclusion:

Conclusion 3.2

For equality constraint problems (PPE), the Lagrange-Newton method is equivalent to the
sequential quadratic optimization method displayed above if the multiplier x4 in the quadratic
auxiliary problem is chosen as the new approximation of the multiplier A of problem (PPE).

3.1.2 SQP Algorithm

Utilizing this conclusion, we can apply the approximation idea to our standard optimization
problem (NLP) from Definition 1.1, which gives us
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minimize %dTVZZL(zW, )\[k])d + VZF(Z[k])Td
with respect to d € R™
subject to G(zM) 4+ V,G(zF)d < 0,

H(zW) + V. H(:M)d = 0.

(QP)

To play this problem back to an equality constrained one (QPE), we introduce the constraint
function C' : R"* — R™*"¢ which combines the constraints G; and H; into one function

o e

Now, we can define the Lagrangian via
L(z,\) := F(2) + \'C(2). (3.6)

Then, we introduce a so called working set Wy, of the current operating point z;. This working
set contains all indexes of constraints which are currently active, that is all equality constraints
i € € and all inequality constraints ¢ € Z satisfying equality. Note that this is similar to the
active constraints introduced in Definition 1.5. Yet, in order to update the working set, the
entire combination of constraints is more useful. For the working set W;, the constraints are
linearized and the cost functional is approximated using a second order Taylor approximation
of the Lagrangian, which reveals

minimize 1al[k] V2 L(z! ,)\%[k )dH + V_F (M) Tql¥l
with respect to d¥l € R (SQP)

subject to C;(zM) 4+ V,C;(2F)Td* = 0 for all 1 € W

We can solve this problem by computing the solution of the linear equation

V2, L(z )\[k] V..Cop (2N T " L V. F (M)

Wk

The next iterate is then given by
g1 1= 2+ dy and AR+ — A\ [K]

At each iterate, the working set is updated and a new search direction step is computed until
the first order optimality conditions are satisfied sufficiently well.
Hence, we obtain the following algorithm:

Algorithm 3.3 (Local SQP Method)
Suppose W, 210 ¢ R"Z )\ 0][0] € R"¢*t# and € > 0 to be given and set k := 0.
While max{||V,L(z*, Wlk Il ||/\[k 1Coyie 1|} > € do

1. Solve the linear equation system

V2 LM A Y V.Y (d¥B Y (VL (M)
Vﬁg] [k] = k]
\Y C’W z 0 A Cyia (27)

and obtain dl¥!, A\*! and ylk+1]
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2. Set

SR . R gk il AR+ . ([

3. Setki=k+1

Within Algorithm 3.3, a priori knowledge of the index set W = A(z*) is not required.

However, the iterates z!*! are typically not feasible. Regarding convergence, the following result
holds:

Theorem 3.4 (Convergence of the local SQP method)
Suppose the following holds:

e z* is a local minimum of our standard problem (NLP) and X\*, p* denote the respective

Lagrange multipliers.

e The functions F', G;, 1 € Z, H;, © € € are twice continuously differentiable and the second
order derivatives are Lipschitz.

o LICQ) holds.
o The strict complementarity condition X\ — G;(z*) > 0 holds for all i € A(z*).

e The second order sufficient condition
d"V2 L(z*, \*, u*)d > 0
holds for all d # 0 satisfying

VZGi(z*)Td =0, 1€ A(2") and VZHi(z*)Td =0,i€f.

Then there exist neighborhoods U of (z*, X\*, u*) and V of (0, \*, u*) such that for arbitrary initial
values

(0 201 0y ¢ g4
all problems (QP) possess a unique local solution
(), A1 B0y 2y

Moreover, the solution converges quadratically to (2*, \*, u*).

As the result shows, the SQP method converges for all initial values in a neighborhood of the
local minimum. Yet, this neighborhood can be very small. Therefore it is necessary to globalize
the SQP method so that it converges for arbitrary initial values. As in the unconstrained case,
this can be done by introducing a step size al¥! > 0, and defining the new iterate via

To obtain the step size al¥!, a one-dimensional line search is executed. However, it is not clear
whether z**1 is  better® than z!*/. The reason for this lies in the construction of the iterates:
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The iterates shall improve the costs and the constraint violations, which may be contradicting
goals.

3.1.3 Globalization of SQP

To avert this dilemma, a merit function is introduced, which at simplest is a combination of
the cost function and the constrained violation, cf. the idea of the penalty function in Chapter
2. Based on this merit function, an improvement can be measured. The general class of merit
functions is defined by

P(z,n) = F(2) +nr(2) (3.8)
where 7 > 0 is a weighting parameter and r : R"* — R{ is a continuous function satisfying
=0, ifzeF
r(z) .
>0, ifz¢F.

Of particular interest are the so called exact merit functions. For these functions, the local
minima of the restricted original problem (NLP) are also local minima of the unconstrained
merit function, and the weighting factor n can be chosen to be finite.

Definition 3.5 (Exact Merit Function)
The merit function P(z,7n) from (3.8) is called exact in a local minimum z* of (NLP), if there
exists a finite parameter n* > 0 such that z* is a local minimum of P(-,n) for all n > n*.

It would be nice if a differentiable exact merit function was available. Unfortunately, one
can show that P(z,n) from (3.8) is not differentiable in z* if P(z,n) is exact and V,F(z*) # 0,
which is the usual case in constrained optimization. Still, one can show the following;:

Theorem 3.6 (Exact Merit Function)
Suppose z* € F is an isolated local minimum of (NLP) satisfying the Linear Independent
Constraint Qualification LICQ) from Definition 1.13. Then the merit function £, with

ng ny 1/q
y(2,m) = F(2) +n (Z (max{0, G(2)})? + Z IHi(Z)|q> ; 1<g<oo
loo(2,m) = F(2) + nmax {0, G1(2), ..., Gn,(2), |[H1(2)], ..., [Hny (2)|}

1s exact for 1 < q < oo.

Here, we restrict ourselves to ¢;—merit functions. We can assume that for sufficiently large
n > 0 the constrained problem (NLP) can be replaced by the unconstrained problem

minimize  ¢1(z,7n)

with respect to z € R"=.

(]

This idea can be used in the SQP method to compute the step size o' via the one dimensional

line search regarding the function

o(aM) .= 0, 4 oF gk p).
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Although ¢ is not differentiable, it is still directionally differentiable, i.e. the limit value of

(k] R T 1 ) 1 )
V.l (2", n) = LIL% G

exists for all z € R and all d € R™. Moreover, one can show that a KKT point (d[k], AEL u[k])
with d¥l # 0 of (QP) satisfies the estimate

V.0 (W) < —d® V2 LN AN Yk < o

if the Hessian is symmetric positive definite and if the weighting parameter is chosen such that

k-‘rl] )\[k’-i—l k‘+1| |,U +1]|}

n>max{A; .. A0

Combined, we obtain the following algorithm:

Algorithm 3.7 (Global SQP Method)
Suppose WU, 2101 ¢ R"= )\O] , € R"é*tm and € > 0, 0 € (0,1) to be given and set k := 0.

While max{||V.L(z1, Wm IW’“] O (M)} > e do

1. Solve the linear equation system

v2 k : [k][k szW{k] (Z[k])T dlik} _ VZF(Z[k])
\Y CW z% 0 o Cyyi (219)

and obtain d¥, A\l and Wik+1]
2. Choose nl*+1 > max{nl A1 a0ty
3. Compute step size al¥! to satisfy

4. Set

Sy g ang AL L\

5. Set ki =k+1

Note that the Hessian needs to be symmetric positive definite for Algorithm 3.7 in order to
work. The latter can be achieved by utilizing BEFGS updates instead of computing the Hessian,
cf. [4,9] for details.

3.2 Interior Point Method

In contrast to the (SQP) approach, the interior point method (IP) is based on constructing ap-
proximated solutions, which are strictly contained in the interior of the feasible set F. Hence,
each iterate of the interior point algorithm is feasible, quite in contrast to the (SQP) algo-
rithm. This behavior is achieved by attaching penalty terms, which penalize points lying on
the boundary of F. Note that this is different from penalty methods discussed in Chapter 2,
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which penalize unfeasible points only, i.e. points outside the boundary of F. The method is
rather popular by now as one can show that — in contrast to the Simplex method — interior
point methods can solve linear optimization problems polynomially regarding the dimension of
the problem.

3.2.1 Linear Optimization Problem

Here, we start with the linear case and recall the standard problem of linear optimization in
primal normal form

minimize c¢'z

subject to Az = b, (LP)
z > 0.

where A € R"#*"= represents the linear constraint function, b € R™# the right hand side of the
constraints, and ¢ € R™ the cost vector. Utilizing the Lagrangian

Lz, \p)=c'z+ X (—2) +pu'(b— Az)

we obtain the KKT conditions

ATp+r=c (3.9)
Az =1b (3.10)
2>0 (3.11)
A>0 (3.12)
Nizi=0 1=1,...,n,. (3.13)

Now we eliminate the inequalities z > 0 in the primal problem by including them as penalties
in the costs. For n > 0 we obtain the (logarithmic) barrier problem

minimize ¢’z — 7 Z?:Zl log(z;)

(BP)
subject to Az = b.

Note that log(z;) — —o0 as z; \, 0. Hence, the term —nlog(z;) generates a barrier with value
oo at z; = 0 such that the minimum never lies on the barrier. Now, the aim is to iteratively
adapt the parameter n to generate a sequence of feasible solutions z > 0, which converges to
the minimum of (LP).

Due to the logarithmic terms, the barrier problem (BP) is a nonlinear convex optimization
problem. The KKT conditions read

ci—ﬁ—(ATu)i:O, i1=1,...,n,

Zi

Az =0b.
By defining \; :=n/z;, i =1,...,n,, we can reformulate the KKT conditions to

Alp+r=c (3.14)
Az=1b (3.15)
Nzi=mn, i=1,...,n,. (3.16)
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Comparing (3.9)—(3.13) to (3.14)—(3.16), we see that the KKT conditions of the barrier problem
(BP) can be interpreted as disturbed KKT conditions of (LP) if additionally z > 0 and A > 0
holds. The disturbance occurs explicitly by the presence of the weighting factor n > 0 in the
complementarity condition (3.13), which then reads (3.16).

If for each n > 0 the nonlinear equation system (3.14)—(3.16) possesses a solution

(z(n); A(n), u(n)),

then there is hope that this solution converges to the solution of (LP) for n \, 0. The set

{(z(n), A(m), u(n)) | n > 0}

is referred to as central path. Since the KKT conditions (3.14)—(3.16) are necessary and due to
convexity of problem (BP) also sufficient, the following result holds:

Theorem 3.8
Suppose n > 0. Then barrier problem (BP) has a solution z > 0 if and only if the central path
conditions (3.14)—(3.16) have a solution (z(n), \(n), u(n)) with z(n) > 0 and A(n) > 0.

3.2.2 1P Algorithm

To solve (3.14)—(3.16) numerically, Newton’s method can be applied to the function

ATu+X—c
Foy(z, 1, ) == Az —b
ZAe —ne

where
Z =diag(z1,...,2zn,), A=diag(\y,...,\,.) and e=(1,...,1)".

The Jacobian of F}, is given by

0 AT 1d
DFE,(z,pN)=|A 0 0
A0 Z

For this matrix, the following result holds, which will allow us to apply Newton’s method:

Theorem 3.9
Suppose (z, pu, \) € R*=>*"2>"= 4s q yector with z > 0 and A > 0 and we have rank(A) = ny.
Then the Jacobian DF,(z, j, \) is invertible for each n > 0.

Suppose (2, ul¥1 A1) is a given iterate in the Newton method. The Newton correction is
given by the linear equation system

Az lFl
DFn[k](z[k},u[’“}, )\[k]) Au[k} — _Fn[k](z[k};,u[k}a )\[k])
AN
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which gives us

0 AT Id Azl AT plEl 4 2R ¢
A 0 0 Apltl ] = — AzlFl —p (3.17)
AR o zK )\ AN ZWAMe — plkle

The damped Newton method reveals the new iterate

SR+1] K] Ak
plE )= B F A
ALE+1] AEl ANF

with step length alfl > 0.
For both the damped and the undamped Newton sequence, one can show that if a central
path starts feasible, it will always remain feasible, i.e. if conditions (3.14)—(3.15) hold for
(200, 01 A1) then the hold for all (z¥, u* X*) k> 0. To guarantee this property, we
require
ATl N e =0
AH —p = 0.

With regards to the Newton iteration (3.17), it follows that
ATApE 4 AN =
AN =0,
For the next iterate, we obtain

AT+ B AT (00 oA ) 4 A 4 BN
_ AT A
—0,
A = A oFAMY
=0,

showing the assertion. Combined, we obtain the following algorithm:

Algorithm 3.10 (Interior Point Method)
Suppose € > 0, 2% € R?, ;0 € R A0l € R™= to be given and satisfy

A =p AT N0 = 0 50 AP,

kT

and set k= 0.
While w > ¢

do

1. Set 0¥l € [0, 1] and solve the linear equation system

0 AT Id AzlF] 0
L AL AN FAGTN PR POENG e
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2. Set
lk+1] K] Azl
\[ke+1] L A

where alf! > 0 is chose such that z*t1 > 0 and AM**4 > 0 hold

3. Set k:=k+1

Remark 3.11 o The iterates z¥ are primal feasible since by construction we have

e The algorithms can always be executed if we can guarantee rank(A) = ny, cf. Theorem

3.9.
e Among conditions (3.9)~(3.13) the complementarity condition )\Ek]zgk] =0,i=1,...,n,
18 not satisfied by the iterates. To meet this condition, we approach it by utilizing the

[]A[]

breaking criterion = also in the iteration.

e The algorithm still contains two degrees of freedom the step size al¥l > 0 and the centering

parameter o > 0. Note that the term (j[k]M plays the role of the penalty parameter

n. Depending on the choice of these pammeters we obtain different methods.

For Algorithm 3.10, we can show that an € optimal solution can be computed in polynomial
time:

Theorem 3.12 (Convergence Interior Point Method)
Suppose ¢ € (0,1) to be given and {(z*, uFl \E) Y, o, e defined by Algorithm 3.10. Suppose

(3.18)

n, n,

STy le+1] < 5) SR T\ k]
— < (1

n;
to hold for parameters § > 0 and s > 0. Moreover, the starting vector (2%, % \O) shall satisfy

LS00
S )
n, er

k> 0.

Then there ezists an index K € N with K = O(n}|log(e)|) and ELIPL >‘ <e¢ forallk>K.

In implementations, the step size al¥! is typically chosen such that the iterates remain close
to the central path. These methods are called path following methods. There are feasible
and infeasible methods, which either keep the iterates within the feasible set throughout the
iteration, or allow violations of the feasible set. The feasible methods are based on smaller sets,
which allow for smaller steps only. They are also referred to as short step methods, in contrast
to infeasible methods which are known as long step methods. While converging slower, short
step methods still show better convergence properties.
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3.2.3 Nonlinear Optimization Problem

After considering the linear case, we now turn towards the nonlinear case and our standard
problem

minimize  F(2)
with respect to z € R™ (NLP)
subject to G;(z) <0 foralli € Z and H;(z) =0 for alli € &

from Definition 1.1. Similar to the linear case, we eliminate the inequality constraints by
introducing slack variables s > 0 and attaching the restriction to the cost function using
logarithmic terms with weighting factors. Note that we want to keep the solution within the
feasible set, hence the slack is strictly positive. This gives us the nonlinear barrier problem

ng
minimize  F(z) —n Z log(s;)
i=1

(NBP)
with respect to (z,s) € R"=*"¢

subject to G(z) +s; =0 for all i € Z and H;(z) =0 for alli € £

The Lagrangian of the barrier problem reads

L(z,s, A 1) = F(z) — nzlog(si) + Z Ai(Gi(2) + 1) + ZMHi(Z)

=1

With S = diag(sy, ..., s, ), the KKT conditions of the barrier problem (NBP) are given by

nag ng
0=V.L(z,8\p) = V.F(2) + > ANV.Gi(2) + > uV.Hi(2) (3.19)
=1 i=1
0=V,L(z,5\u =-nS"tet+ A (3.20)
0= H(z2) i=1,....,ng  (3.22)

We can reformulate (3.20) equivalently into
ne =S\ = n=sN\, t=1,...,n¢g.

Combined with s; = —G;(z) < 0,7 =1,...,ng from (3.21), we obtain the so called disturbed
complementarity condition

—n=XNG;i(2), i=1,...,ng. (3.23)

Similar to the linear case, we aim to guarantee s; > 0 within the Interior Point Method for the
nonlinear case. Due to (3.21), the latter is equivalent to G;(z) < 0. Since furthermore (3.23)
and —n < 0 hold, it follows that A\; > 0 for ¢ = 1,...,ng. The solution is again characterized
by the penalty parameter n and, given that (z(n), s(n), A(n), u(n)) exists, the parametrized
solutions again defines the central path.

Similar to the linear case, the nonlinear equation system (3.19)—(3.22) can be solved for
(z(n),s(n), A(n), u(n)) via Newton’s method. Here, we can follow the steps of the Lagrange—
Newton method from Algorithm 3.1. Note that within the nonlinear barrier problem (NBP) we
only have equality constraints. Hence, applying the Lagrange-Newton method from Algorithm
3.1 to (NBP) is identical to applying the local SQP method from Algorithm 3.3. Therefore,
the search directions can be computed by solving the quadratic approximation (QPE).
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Chapter 4

Integer Optimization and Heuristics

In the previous chapters, we assumed that the optimization variable can take any real value
within the feasible set F. Within the present chapter, we change this policy and suppose
that there exist optimization values, which are from the set of integers only. Utilizing integer
variables, we can model logical values, alternatives from finite sets, gear shifts, lot sizes, staff
requirements and so on. Since only finitely many integer combinations are possible for a compact
set, optimization problems with integer variables appear to be simpler than problems with real
variables on first sight. Unfortunately, our basic auxiliary mean of computing an optimum —
the gradient — is not available for integer variables. Hence, gradient based methods are not
suitable in our present case and we require an alternative. The basis of this chapter is given by
the books [1,8,9], which we refer to for further details and proofs.

4.1 Mixed Integer Optimization

In contrast to your standard problem in nonlinear optimization (NLP) from Definition 1.1,
mixed integer problems additionally contain constraints of type

z; € 7.

Writing all constraints as implicit constraints, we obtain the following problem:

Definition 4.1 (Mixed Integer Optimization Problem)
We call the problem

minimize  F(2)
with respect to z € R":1 x Z"= (MINLP)
subject to z € F.

with map F': R™1 x Z™2 — R and feasible set /' C R":1 x Z"2 a mixed integer optimization
problem in standard form.

For n,, = 0 we obtain our standard nonlinear optimization problem (NLP), and for n,, =0
the problem will be purely integer. In case of z; € Z where we only allow for values in {0, 1},
the variable is called a boolean and (MINLP) is referred to as a combinatoric optimization
problem. To integrate booleans within problem (MINLP), we add restrictions of the form

For further details on combinatoric optimization problems can be found in [7].

35
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4.1.1 Mixed Integer Linear Optimization

Here, we start with the linear case with pure integer optimization variable, which is given by

minimize ¢’z
subject to Az = b,
z >0,

z € L2,

(MILP)

where again A € R™#*"=2 represents the linear constraint function, b € R™# the right hand side
of the constraints, and ¢ € Rz the cost vector.

To motivate why we cannot simply round the real valued solution to the next integer vector,
consider the following example:

Example 4.2
Consider the mized integer linear problem
minimize — — 221 — 32
subject to  z + 229 < 8,
221 + 29 <9,
21,22 2 0,
21,20 € 7.

The optimal solution is given by the point z* = (2,3)T with costs —13. The point Zrelazed =

(13—0, g)T with costs —13% s the optimal solution of the real valued linear optimization problem,

where z1, zo € 7 is replaced by z1, zo € R. The resulting problem is called relaxation of the integer
problem. If we consider the point closest to the relazed solution 2™ given by z = (3,2)7,

then we obtain costs of —12, which is not optimal.

From this example we can see that simple rounding to the next feasible integer will not do
the trick in general. The relaxation of (MILP) is given by problem (LP), which we considered
in Section 3.2.1. This problem possesses a solution, which is quite close to the optimal integer
solution, and we will exploit this property more rigorously. Since the feasible set of the relaxed
problem (LP) is larger than the feasible set of (MILP), the optimal solution of the relaxed
problem is a lower bound for the costs of (MILP):

Theorem 4.3 (Bound for Costs)
Suppose z* is the solution of (MILP) and z},,,..q the solution of the corresponding relaxation
(LP). Then we have

T _* T _x
c zrela:tedS c z.

There are noteworthy special cases, where the lower bound of the relaxed problem is actually
tight, i.e. the relaxed solution is equal to the integer solution 2. . .4 = #*.

relaxe
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Theorem 4.4 (Tight Bound for Costs)

Suppose z* is the solution of (MILP) and z},,,..q the solution of the corresponding relaxation
(LP). If A is totally unimodular, i.e. the determinant of each quadratic submatriz of A is 0,
—1 or 1 only, and b is integer, then we have

T _* N
C Zrelaged — € % -

Totally unimodular constraint matrices occur in many network optimization problems like
e transport problems,

e shortest path problems or

e maximal flow problems.

In this case, any method computing able to exactly compute optimal corners of the feasible set
(like the Simplex method) can be applied to solve the integer problem (MILP).

Remark 4.5
Note that more than one corner can be optimal. Hence, Theorem 4.4 compares costs only.

4.1.2 Cutting Plane Method by Gomory

Cutting planes is one method to rigorously utilize the property of closeness of the relaxed
solution to the integer solution of (MILP). The idea is to iteratively refine the feasible set.
This method is not restricted to the linear case, but may also be applied to (not necessarily
differentiable) convex optimization problems. The class of cutting plane methods goes back to
works of Gomory in the late 1950s/early 1960s.

Within the cutting plane algorithm, there are three main steps: First, the relaxed problem
is solved. The obtained solution is tested whether it is integer. If it is not, then there exists a
linear inequality that separates the optimum from the convex hull of the true feasible set. In
the second step, the separation problem of finding such an inequality is solved. The respective
inequality is called a cut. Last, the computed cut is added to the relaxed problem. Since the
current non—integer solution is rendered infeasible for the extended problem by the cut, the
process can be iterated until an optimal integer solution is found.

Suppose the solution of (LP) is given by
* _A—lb_A—lA * _ —FN *
ZB.relaxed — 1B B “ANZN relaxed — BB B ?N relaxed

with basis index set B and non basis index set N. If 25 . .q 1S integer, then 23 . .4 = BB,
2N relaxed = 0 18 optimal for (MILP).

If 23 elaxeq 15 DOt integer, there exists i € B such that f; € Z. For Ty = (Vij)iep,jen we
have that

— * .. *
6i = Zj relaxed + E :/71] Zj relaxed
jEN
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holds for all i € B. Due to |v;] < 7i; and 25 > 0 for all j € BU N the inequality
Bi > Z;relaxed + Z L,YUJ Z;,relaxed (41)
jEN
holds. Now, for a feasible point of (MILP) we have
i+ Y w7 e 2
jJEN
and due to the integer property the compared to (4.1) tightened constraint
LﬂlJ > Z;(,relaxed + ZL’%JJZ’; (42)
jEN

must hold for any solution of (MILP). Hence, using (4.1) and (4.2) each feasible point of (MILP)
must satisfy the relative condition

18i] = Bi > Z (lvig] = i) 25 (4.3)

JEN

Since | 3] — B; < 0 for each optimal solution of (LP) with 8; € Z, 2}, j.ca = 0, j € N, this
condition can be used to cut the optimal solution of the relaxed problem (MILP).

Combined, we obtain the following algorithm:

Algorithm 4.6 (Cutting Plane Algorithm)
Suppose 2% € R"= \ Z"=2 to be given and set k = 0.
While zI¥l & Z= do

1. Solve the relaxed problem (LP) of problem (MILP) to obtain the sets B and N as well
as the solution 23 1.ca = BB and 23 olaxed

2. If the (LP) has no solution, then (MILP) has no solution, STOP

3. Fix index 7 € B satisfying ; ¢ Z and construct the cut

Zna,+1 + Z (L] =) 55 = LBi] = Bi
jEN
Zn22+1 Z 0

where 2,_ 11 is a slack variable for (4.3)

4. Add the cut to problem (MILP) to obtain (MILP)" and set (MILP) := (MILP)’

While being simple in construction, each iteration adds one constraint and one slack variable
to the problem. Since the growing number leads to increasing computing times of the steps,
this is the main disadvantage of Algorithm 4.6. An efficient implementation relies on the dual
simplex algorithm and is beyond the scope of the lecture. For details on the latter and finite
termination of Algorithm 4.6, we refer to [8] and references therein.

The cutting plane method can also be applied to nonlinear problem (MINLP), yet it requires
the feasible set F to be convex. To obtain a respective algorithm, one simply replaces (LP) by
(NLP) in Step 1 of Algorithm 4.6.
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4.1.3 Branch and Bound Method

One of the popular methods to solve mixed integer problem of linear and nonlinear type is the
so called Branch and Bound Method, sometimes also termed Branch and Cut Method. As the
name already states, the method incorporates two ideas: branching and bounding/cutting.

The branch idea generates a systematic enumeration of candidate solutions by means of
a state space search using a tree structure. The root of this tree is given by the full set of
choices for all variables. On the next level of the tree, one variable is branched out, i.e. for each
possible choice of the variable a subproblem is generated within which the variable is fixed.
Applying this branching idea to all variables, we obtain a tree where the variables of problems
on the last level, the so called leafs, are completely fixed. Hence, either the feasible set is empty
or contains exactly one element, rendering the solution for each leaf to be easily obtainable.
Unfortunately, for large number of variables and choices, the number of leafs grows rapidly.

To avoid checking all leafs, the bounding idea is used to rule out branches completely
without having to consider all their leafs. To this end, the branch is checked against bounds on
the optimal solution, and is discarded if it cannot produce a better solution than the best one
found by the algorithm so far. There are several situations where analyzing subtrees/branches
doesn’t make sense anymore:

e Infeasibility: Fixing variables makes the feasible set smaller. Hence, if the feasible set of
a node is empty, then the feasible sets of its branches are empty as well. These branches
can be cut.

e Optimal Nodes: If the optimization problem of a node can be solved, it already incor-
porates the optimal solution among the solutions of its branches. Hence, we can omit
solving all its branches.

e Bounding: Considering two nodes on the same level, we can estimate the lower and
upper bounds on the solution of each node. If these ranges are intersection free, the one
of them and all its branches can be ruled out.

These bounding/cutting rules can help to drastically reduce the size of the search tree. The
performance of the cuts depends on the quality of the bounds, for which the following approaches
are useful:

e Each feasible point reveals an upper bound for the optimal value of (MINLP).

e Each optimal solution of the relaxation (NLP) gives us an upper bound for the optimal
value of (MINLP).

e Each feasible solution of a suitable chosen dual problem presents a lower bound for the
optimal value of (MINLP).

Combining these ideas, a general Branch and Bound Method consists of the following rules:

1. The branching rule defines how new nodes in the tree are generated. The rule determines
how the feasible set is partitioned.

2. The bounding rule defines lower and upper bounds for the optimal value.

3. The traversing rule determines the sequence of nodes being handled, i.e. depth—first or
breadth—first search.
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4. The cutting rule assesses when computing the solution of a node and respective branches
can be omitted.

We now apply these rule to the linear case (LP). The nonlinear case can be treated similarly.

Branching

Consider a node within the branch and bound search tree to be given by problem

minimize ¢'z  subject to Az =b, 2> 0, z € Z"=2. (MILP)

Suppose z* is the solution of (MILP) and 2.4 the solution of the relaxed problem

minimize ¢’z  subject to Az =0, 2 >0, z € R"2. (LP)

If 2 .eq is feasible for (MILP), then no further branching is required. Otherwise we have
2 oxed € 22, and branching consist of the following two steps:

(i) Choose an index k with 2} ..cq & Z

(ii) Generate left and right nodes (Sy) and (Sg) given by the problems

minimize ¢"z  subject to Az =b, 2 >0, z € Z"*2, 2 < | 2} Lelaxed] (SL)

and

minimize ¢’z subject to Az =b, 2 >0, z € Z"2, 2z > | 2} rejaxea) T 1 (Skr)

Applying this branching rule recursively with (LP) as root, we obtain the branching tree struc-
ture. Each edge in this tree represents a new additional constraint, and the union of the feasible
sets of (Sp) and (Sg) is equivalent to the feasible set of the parenting node.

Bounding

Again, we consider a single node and the respective mixed integer linear optimization problem

minimize ¢’z  subject to Az =b, 2 >0, 2 € Z"=2. (MILP)

Then we obtain an upper bound b, € R via
' <b,=c'z VzeF, (4.4)

i.e. each feasible point reveals an upper bound. A lower bound b; € R can be obtained by
utilizing the relaxed problem

minimize ¢'z  subject to Az =0, 2 >0, z € R"2. (LP)

Here, we have that

b =c' 2 <c'z2 (4.5)

relaxed —

Alternatively, a lower bound can be computed using any feasible point of dual problem, which
can be shown via the Weak Duality Theorem.
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Cutting

A node is termed examined and any further branching can be omitted if one of the following
conditions applies:

e The relaxed problem (LP) is infeasible.
e The relaxed problem (LP) has an integer solution.

e The lower bound of the node is larger or equal to the current upper bound.

Branch and Bound Algorithm

Having discussed the rules of the branch and bound algorithm, we can now combine them to
obtain an integrated algorithm:

Algorithm 4.7 (Branch and Bound Algorithm)
Suppose b, € RU{oco} is given. Initialize set of active nodes S := {(MILP)}.
While S # () do

1. Choose node S € § according to traversing rule

2. Compute optimal solution 2}, .q of the relaxed problem of S

TZ*

* : P —
3. If 27yj0xeq 18 bounded, set b := ¢’ 27y, eq

Else set b := —o0
4. If S is infeasible, remove S from S

5. If 2%

relaxe

(a) If b < b, then
Save z%,..q as current best solution
Set b, :=1b

(b) Remove S from S

4 € Z"=2 then

6. If b > b, then
Remove S from S
7. If b < b, then

(a) Choose an index k with zj 1. .q € Z

(b) Generate left and right nodes (Sy) and (Sg) of S given by the problems

minimize ¢’z subject to Az =b, 2 >0, z € Z™2, 2t < |2} elaxed) (St)

and

minimize ¢'z  subject to Az =b, 2 >0, 2 € Z™2, 2z > | 2 relaxea) + 1|  (SR)

(c¢) Set S : =S\ {StU{(SL), (Sr)}
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The size of the tree generated by the branch and bound method depends on the data of
the problem and can be very large. In practice, the algorithm may have to be stopped without
having found the optimal solution. Yet, even after stopping, upper and lower bounds are
available. The upper bound is given by the current b, whereas the lower bound is given by the
minimum over all b; of active nodes. These values can also be used to terminate the iteration,
e.g. via b, — b; < ¢ with a user defined tolerance £ > 0.

Additionally, the Branch and Bound method can be combined with the Cutting Edge
method. This combination allows to improve the quality of the bounds and leads to much
smaller search trees.

4.2 Heuristics

The second class of algorithms we consider in the context of mixed integer nonlinear optimiza-
tion problems (MINLP) are so called heuristics. In contrast to the gradient based methods,
heuristics always aim for global minima, while gradient based methods may get stuck in local
ones. Moreover, heuristics can be designed to deal even with non—differentiable problems, re-
quiring function evaluations only and avoiding first order information, which makes them not
only easily applicable, but they also cover a broader class of problems. The denotation heuris-
tics is due to the fact that for the methods no convergence results exists. Hence, we cannot
guarantee that a method will return a local or global minimum or even only a stationary point.
Despite these shortcomings, the methods have shown to provide good results in practice.

4.2.1 Nelder Mead Algorithm

Since the Nelder Mead algorithm is independent from requirements of the cost function F, it
has become quite popular. The method is based on the construction of simplexes.

Definition 4.8 (Simplex)
Consider vectors 2%, ..., 2" € R™ where the differences 2* — z
pendent. The convex hull of these points

0 i =1,...,n are linearly inde-

S:{Z:Z)\izi|)\izo,i:(),...,n, )\izl} (4.6)
=0 0

1=

is called n-dimensional simplex with vertexes 2, ..., 2".

Upon start of the method, a simplex S is given. Now, each iterate of the method consists
of the following steps:

1. For the current simplex S with vertexes 2"

cost function value

, ..., 2" identify the vertex z™ with maximal

F(z™) = max{F(2°),..., F(z")}.

2. Compute a point Z satisfying F'(2) < F(z™) and replace z™ by Z to obtain the new
simplex S with vertexes 7 and 27, i # m.
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For the following computations, we utilize the center of mass of the vertexes regarding 27, which

is given by

1=0
k#j

To compute the new point Z in the second step of the outlined procedure, we apply three
construction principles:

(i) Reflection: The new point z” is given by reflection of vertex 2™ at center of mass ¢™
2=y —-2"), 0<y <L

(ii) Expansion: The new point z¢ is pushed out further in direction ¢™ — 2™

2=+ P =), [B>1.

(iii) Contraction:
— Inner partial contraction: The point 2¢ is shifted between 2" and ¢™
=" +alz"-c"), 0<a<l
— External partial contraction: The point z¢ is shifted between 2" and ¢™
=" +alz' =), 0<a<l.

— Total contraction: The points 2°, i = 0,...,n, i # k are replaced by the centers
of the segments between 2 and z*
si i Lok Lok
=2+ = —2)==( +2).
S =) = 5( + 2

Combined, we obtain the following algorithm:

Algorithm 4.9 (Nelder Mead Algorithm)
Suppose initial value z[%% € R and parameters 0 < o < 1, > 1 and 0 < v < 1 as well as

the tolerance tol > 0 to be given and set k := 0.

e Set the vertexes of the initial simplex S

LAOD] — 00, o
where e; denotes the ¢-th unity vector

, , 1/2
o While (%ﬂ S [Py — s F(z[kﬂl)f) > tol do

1. Determine a vertex z[(#™)] satisfying

F(ZEm) = max{F(I:ON) | F([m])}

and a vertex z[(*)] satisfying

F(ZED) = min{ (&0 | F(lkMh)
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2. Compute the center of mass with respect to z[(*m)l

1 — .
m_ + (k)]
c - Z;z

i#Em
3. Compute the reflection point of z[+™)] at ¢
2hi=cm 4 (™ — z[(k’m)])

(a) If F(2") < F(2®Y), then 2" is the new minimal point. Test whether the
expansion point

26 ="+ Bz =)
improve the cost function even further, set

erm) _ ) 25 ?f F()<FQET) 0 (010) 0k Vi £ m
2" if F(2°) > F(2")

and goto 4
(b) If F(lV]) < F(27) < max{F(2[*))) | i & {I,m}}, then set

z[(k+1=m)] — ZT and Z[(k"!‘lﬂ/)} — Z[(kvl)] vl 7é m
and goto 4. Here, 2" is at most worse than z[*)] and normally better than
[(k,m)]
z
(c) If F(2") > max{F(zl®) | i # m}, then
i. If F(2") > F(z[(+™)]) then 2" is a deterioration and it is typically advisable
not to leave the simplex. Apply inner partial contraction and compute

22 =c"+ a(z[(k’m)] —c")

ii. If F(2") < F(2l®»™) then 2" improves zl(*™)] vet it is worse than other
vertexes. It is typically advisable to search closer to the simplex. Apply
outer partial contraction and compute

2¢:=c" 4 a(z" — ™)

(d) If F(2¢) < F(zl=m)]) then set 2l(k+1m)l = ze
Else, no improvement could be achieved. Apply a total contraction with respect
to the current best point z!*H! and set

(S 05) IO (%)) IO SN (S ) I %(an 4D £

4. Set k:=k+1

Within Algorithm 4.9, we utilized the standard deviation of the cost function values at the
vertexes of the simplex as a termination criterion. Apart from this criterion used, e.g., in the
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NAG library, one can also utilize the diameter of the simplex S!¥! to abort the iteration.
The vertex with minimal costs z*! can be interpreted as the current iterate. By construc-
tion, we can show

F) < PR, k=0,1,..

Within practical applications, the constants 0.4 < o < 0.6, 2 < f < 3 and v = 1 have proven
to be of value.

4.2.2 Evolution Algorithm

An evolution algorithm is inspired by mechanisms of biological evolution, such as reproduction,
mutation, recombination, and selection. In practice, these algorithm are very widespread, typi-
cal applications are operation sequencing, personell planning, container transport, minimization
of setup times of machines, nonlinear mixed integer optimization, structure optimization and
many more. Candidate solutions to the optimization problem play the role of individuals in a
population and are assessed by a fitness function, which determines their quality. Evolution of
the population then takes place after the repeated application of the above operators.

Evolutionary algorithms often perform well at approximating solutions to all types of prob-
lems because they ideally do not make any assumption about the underlying fitness landscape.
Yet, applying evolutionary algorithms typically only shows good initial improvements and find-
ing an optimum with sufficient accuracy is leading to difficulties. Moreover, the algorithm
contains stochastic components and no convergence proofs are available. Last, the incorpora-
tion of restrictions is problematic and is typically realized via penalty function, cf. Chapter
2

Modeling

Here, we consider the constrained optimization problem

minimize  F(2)
(PP)
with respect to z € F C R™=.

where again F denotes the feasible set of the problem and F': R"* — RU{+00} is an arbitrary
function satisfying F(z) # oo for all z € F. Apart from this restriction, no other assumptions
are made regarding the cost function F. The restriction z € F can formally be modelled via
F(z) = —oo for all z € F and optimizing over the entire R"=.

Evolutionary algorithms simulate the natural selection. To formalize respective operators,
we introduce the following denotation:

Definition 4.10 (Individual, Fitness Function, Population)
Suppose problem (PP) to be given.

e Fach z € F is called an individual.

e the function F': R" — R U {zoo} is called fitness function, its value is called the fitness
of an individual.

e A subset {z1,...,2,} C F is called population of size k.




46 Chapter 4: Integer Optimization and Heuristics

The aim of each evolutionary algorithm is to find an individual with maximal fitness. To
this end, the following operators are applied:

Definition 4.11 (Mutation, Recombination, Selection)
Suppose problem (PP) to be given.

e A mutation operator is a mapping M : R™ — R", which is subject to a stochastic
process.

e A function R : (R™#)? — (R")", which combined ¢ individual with each other to generate
r new individuals is called a recombination operator. The recombination operator may
be subject to a stochastic process.

e A function § : (R"#)* — (R™)? is called a selection operator, if it selects p individuals
from a set of s > p individuals via their respective fitness possibly using a stochastic
process.

To illustrate the operators, we consider the following example:

Example 4.12
Suppose n, =1 and x,y € R. Then the mappings

e M:R — R with M(z) := 2+ N (0,1),
e R:R xR — R with R(z,y) := (v +y)/2, and
e $:R xR — R with S(x,y) := argmin{ F(z), F(y)}

define mutation, recombination and selection operators. In this example, the mutation operator
18 subject to a stochastic process, while the recombination and selection operators are determin-
1stic.

Popular Operators

In applications, some operators have become rather popular. Here, we discuss the principles
of these operators on a very basic scale. Suppose that F is a set with finitely many elements.
The individuals of this set can be coded as bit strings of length ¢ such that

F C{o,1}~

1-Point—Crossover Suppose two individuals z and y are given and used to generate a new
individual via

I hn hn
T2 Y2 :
I3 Ys T
x=|.1,0€e{0,....0L/y=1] . — 7
: : Yo+1

Ty Ye Ye
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Uniform—Crossover Suppose two individuals z and y are given and used to generate a new
individual via

T1 U1 n
X9 Y2 :
x3 ys Toy—1

xTr = . 71§0’1<O’2<...<0y§€7y: . = i
: . Yo

Toi4+1
Xy Ye '

Mutation Suppose p,, is the probability of mutation of a bit. Then an individual x mutates
to a new individual v via

x U1
T2 Yo
€3 Y3
T = — =1,
Ty Ye

where P (zy, # yx) = pp for all k =1,... (.

Fitness Proportional Selection The probability of selection a individual x; for the next
parent generation is proportional to its fitness. The selection of p individual is performed by
turning a wheel of fortune with one selection arrow u times, or alternatively to turn it once
with p selection arrows.

Elite Selection The probability of selection a individual xy is 1 if it exhibits the best fitness.

Combining Operators to Algorithm

To conclude this section, we new combine the presented general forms of mutation, recombi-
nation and selection operators to form a unified algorithm. We like to note that by applying
a evolutionary algorithm, we cannot guarantee that the algorithm will terminate after a finite
number of steps. Indeed, evolutionary algorithms tend to require a large number of iterations,
and the stochastic nature of the operators may hinder a replication of results.

Algorithm 4.13 (Concept of an Evolution Algorithm)
Initialize population PO with m individuals and set k := 0.
While a suitable breaking criterion is not met do

1. Choose ¢ individuals z; € PRI 5 =1,..., qand generate new individuals yi,j=1,...,r
by applying the recombination operator

(Y1, Yr) == R(x1, ..., 74)
2. Apply the mutation operator on the recombined individuals

z; = M(y;), j=1,...,r
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3. Apply the selection operator on the population PI®I U {z,.. ., 2.} and set

PED . — S(xy, .. T, 21, ..., 21)

4. Set ki =k+1




Part 11

Economic Processes
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Chapter 5

Production and Inventory

The so called production and inventory problems belong to the classical topics in Operations
Research. Starting from the 1950s, a number of models and methods arose. Here, we discuss
some of the deterministic continuous time models and leave aside stochastic processes. The
basis of this chapter is the book of Feichtinger and Hartl [2], which we will use without further
notice.

First, we describe a model for production and inventory, which is subject to a given demand
and nonnegativity conditions from the production rate and the inventory stock. In this regards,
we introduce the concept of the decision and prediction horizons. Thereafter, we discuss the
simultaneous choice of an optimal production and price policy. Without further notice, we
assume all functions used in this chapter to be continuously differentiable in their arguments.

5.1 Production and Inventory for given Demand

Within this section, we suppose the demand d(t) for a product to be given on an interval [0, 7).
The demand is assumed to be positive and continuously differentiable. To satisfy the demand,
the products can either be produced or be taken from the inventory. Here, we denote the
production rate by v(t) and the inventory level by z(t). Hence, the inventory rate of change is
given by the difference between the production rate and the demand

A1) = o(t) —d(t),  2(0) = 2, (5.1)

where 2y € R} denotes the inventory level at the beginning of the considered interval [0, T7].
Moreover, we denote the production and inventory costs by cprda(v,t) and ciny(2,t). Upon
termination of the planning, the state of the inventory is assessed via the function ¢y 7(2(7),T').
Therefore, the total costs arising for the production and inventory planning problem are given
by

Jr(v,z) = /0 (Cproa(v(t), 1) + cinv(2(2), 1)) dt + cinyr(2(T),T). (5.2)

Additionally, the production rate and the inventory level shall be non negative, which reveals
the constraints

0<o(t)<w, 0<z2(t)<z Vtel0,T]. (5.3)

Note that the system dynamics is given by (5.1), where z(-) is the state of the system, v(-) the
external control and d(t) an external known disturbance.

51
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5.2 HMMS Model

One approach to solve the production and inventory problem is the linear quadratic problem
introduced by Holt, Modigliani, Muth and Simon in the 1960s, which is referred to as the
HMMS model. Within this model, the dynamics are linear differential equations and the costs
are quadratic functionals. In particular, the inventory costs are assessed as quadratic deviations
from a wanted stock level Z(¢) and the production costs are penalized regarding their deviation
from the ideal production level (t). Hence, we obtain

Ciny (2(1), 1) = %cinv (2(t) — 2(t))2 (5.4)
Caroa (0(1),6) = 5 (0(8) — (1)) (5.5
et (2(T), T) = %cinv,T (2(T) — 5(T))? (5.6)

Note that we can omit to add a weighting parameter to the second equation (5.5), instead
the weighting can be balanced using the parameters from (5.4), (5.6). For this model, the LQ
solution approach via the Riccati equations can be followed, which is beyond the scope of this
lecture. The optimal solution for problem (5.1), (5.2), (5.4), (5.5), (5.6)

1

minimize  Jp(v,2) = 5/0 ((v(t) — () + Ciny - (2(8) — 2(75))2) dt

1 -
Ll (1) = 2y
with respect to v : [0,7] — Ry

subject to 2(t) = v(t) —d(t), =2(0) = 2.

is given by

v(t) = 0(t) — 2(t)y/Ciny tanh (\/ciny T’ + arctanh(ciny 7/+/Cinv) — t) + (1), (5.7)

where ~(t) is given by the differential equation

F(t) =y(t)/Ciny tanh (/¢ T + arctanh(Ciny 7/v/Ciny) — /Cinvt)

+ \/Ciny tanh (\/cin T + arctanh(Ciny 7/v/Ciny) — V/Cinvt) (0(t — d(t))) — Ciny - Z(t)
with terminal condition v(7T') = ¢y - 2(T). The optimal production rate equals the idea
production level corrected by two summands: The first correction term depends on the current
stock and reduces the production rate proportionally to the current stock level. The reduction
is increasing if either ¢,y is larger, if the terminal time 7" is further away or if ¢, is larger.
The second correction term depends on the model parameters. For the plausible case v < d for
all t € [0, 7] and ¢y > 0 we have y(¢) > 0. An increase in demand then triggers an increase
of v, and in turn of the production rate v.

Remark 5.1
In the special case © = d for allt € [0,T], Z = const and ¢, = 0, we obtain vy, v and z in the
closed form

1(2) = /o tanth (G(T — 1)
v(t) = d(t) + (2 = 2(t))y/Ciny tanh (v/Ciny(T' — 1))
2(t) = Z 4 (20 — 2) cosh (\/Cino(T — t)) / cosh (v/CinT) -
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Unfortunately, due to the lack of constraints (5.3), the linear quadratic inventory problem
is unrealistic. To include such constraints for the simplest case of linear costs, let us consider
that the production and inventory costs neither depend on the time nor on the batch size

T
minimize  Jp(v, 2) :/ (Cproa¥(t) + Cinyv2(t)) dt
0

with respect to v : [0,7] — Ry
subject to 2(t) = v(t) —d(t), z(0) = 2o,
0<w(t)<vand z(t) >0 Vtel0,T].

Due to linearity of the control, the production is limited by the maximal rate v. Here, we
assume that d(t) <o holds for all £ € [0,77, i.e. the demand can always be satisfied. Since the
terminal inventory is not assessed, we not necessarily have v < .

From an economic point of view, it is clear that the optimal strategy possesses the following
structure: There is no production until the initial inventory is empty. Thereafter, the produc-
tion rate and the demand rate coincide. Denoting the accumulated demand by D and defining
the time instant ¢; via

D(ty) = / d(t)dt = =, (5.8)

the optimal solution is given by

0, 0<t<t
OER S (5.9)
dt) t,<t<T
which gives us
—D(), 0<t<t
Ay =0~ PW, Ost<ti (5.10)
0 f<t<T

Note that the optimal strategy remains the same even if general inventory costs c¢iny(2(t),%) > 0
for z(t) > 0 are used. In contrast to the HMMS model, no production smoothing occurs. As
soon as the stock is consumed, the production rate suffers from the fluctuations of the demand.
This property of the optimal strategy is due to the linearity of the production costs. Applying
convex production costs as outlined in the following section, the optimal production is smoothed
out.

5.3 Arrow-Karlin-Model

The model from Arrow and Karlin (late 1950s) is the starting point for a series of Inventory
and Production models. Within this model, it is assumed that production costs are time
independent and marginally increasing. Additionally, for simplicity of exposition, we assume
the inventory costs to be linear, which gives us
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T
minimize  Jp(v, z) = / (Cprod(V(t)) + Cinvz(t)) dt + Cinyr(2(T), T)
0
with respect to v : [0,7] — Ry
subject to 2(t) = v(t) — d(t), z(0) = 2o,
0<wo(t)<vand 0 < z(t) <z Vtel0,T].

where we have ¢pp0a(v(t)) > 0 for v(t) > 0 and ¢poa(v(t)) > 0. Similar to the linear case in
the previous Section 7?7, we suppose that d(t) < v holds for all t € [0,77, i.e. the demand can
always be satisfied.

For this problem, we can directly derive the optimal solution for a very special case:

Lemma 5.2
Suppose the Arrow-Karlin model to be given. If we have zg < D(T), then the inventory satisfies
2(T) = 0. Otherwise, v(t) =0 for all t € [0,T] is optimal, i.e. nothing is produced.

We now extend this case to so called boundary solution intervals and inner solution intervals.
We define a boundary solution interval |1y, 73] by z(t) = 0 for all ¢ € [ry, 73] where 71 = 0 or
z(p —e) > 0and 7 = T or z(2 +¢) > 0 for small € > 0. We call [t1,t5] an inner solution
interval if z(t) > 0 for ¢t € (t1,t2), t; =0 or z(t;) = 0 and ¢, = T or z(t2) = 0.

For these particular intervals, the following holds:

Lemma 5.3 (Optimal Strategy on Inner Solution Intervals)
On an inner solution interval the production rate satisfies v(t) > 0 and we have

V() = (proa(v(£))) ™" (Mo + Cinot) (5.11)

for a constant \g, which is defined later and different for each inner solution interval.

Lemma 5.4 (Optimal Strategy on Boundary Solution Intervals)
On an boundary solution interval the production rate is equal to the demand

v(t) =d(t) >0 (5.12)
and we have

Cino > d(t)Eproa(d(t)). (5.13)

From Lemma 5.4, we can directly conclude a result similar to the linear constrained case
from Section 77:

Theorem 5.5 (Full Boundary Solution)
If (5.13) hold for allt € [0,T], then the production rate is identical to the demand, i.e.

v(t) = d(t) (5.14)
z 0

for allt € [0,T].
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Additionally, we can use Lemmas 5.3, 5.4 to concatenate inner and boundary solutions.

Lemma 5.6 (Combination of Inner and Boundary Solution Intervals)
If an inner solution interval (t1,t2) follows a boundary solution interval, then we can specify o
in (5.11) as Ao = Cproa(d(t1)) — cinst1 and obtain

0(t) = (Eproald(t))) ™ (Eproald(tr)) + Cina(t — 1)) (5.16)

Moreover, the optimal production rate is continuous and positive for all t € [0,T]

Given continuity and concatenatabiliy of the solution, we can conclude that once we are
on a inner solution interval, we can either stay on it until the terminal time is reached, or
continuously switch to a boundary solution interval. In particular, the following theorem holds:

Theorem 5.7 (Concatenation of Solution Intervals)
Suppose there exists an interval (o1, 02), where (5.13) does not hold, i.e.

Cim(t) < d(t)épmoa(d(t)) Yt € (01, 02) (5.17)

Then, there ezists an interval (ty,ts), which is an inner solution interval and satisfies (o1, 09) C
(t1,t2). The boundary points ti, to are given by

/w@ﬁ:/ﬂ%ﬂwmqﬁﬁﬂWMt (5.18)

t1
)\0 = épmd (d(tl)) — Cinul1 thl >0 (519)
/\0 = éprod (d(tg)) — Cinvlo thg <T. (520)

From (5.18), we obtain that the areas under the curves of d and v are identical, i.e. the sum
of demands equals the produced products. Equations (5.19), (5.20) state that if before or after
the inner solution interval there is a boundary solution interval, then the production rate and
the demand are identical at the beginning and at the end of the inner solution interval. Hence,
the exit from and the entrance of an empty stock is tangential.

Note that the optimal production strategy is a smoothed version of the demand: An optimal
production and inventory strategy has to weigh between the extremes of a smooth production
with large fluctuations in the inventory and a production synchronous to demand without
inventory. Hence, demand spikes are flattened and period of low demand are filled. The way
the costs influence the production is given by its derivative

’U(t) = Cinv% (C;rlodv(t)) -

Cinv

Cproa(v(1))

Remark 5.8
The flattening and filling is depending on the capacity of the inventory Z, i.e. only the mazimal
storage capacity can be used to smooth the optimal production rate.

Theorem 5.7 allows us to derive an optimal solution for any time interval. Additionally,
we see that if t* € [0,7] is a time instant where z(t*) = 0, v(t*) = d(¢*) (boundary solution
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interval), then the optimal solution in [0,#*] is independent from changes in the rest interval
[t*, T] if the accumulated demand satisfies

¢ ¢
/ d(s)ds < / 61 1 (Conoa (A(E)) + cin (5 — ), (5.21)
t t
i.e. the inventory level is positive for all ¢ € (t*,T].

For an inner solution interval, let ¢; € [0,7] be an instant with z(¢;) > 0 and let ¢y € (¢4, 7
be the first time instant where z(t3) = 0, i.e. the first instant after ¢; that the inventory is
empty. If (5.21) holds, then we obtain the same independence, that is the solution on [0, t5] is
independent from the solution on (¢, 7).

This observation gives rise to the so called prediction and decision horizon.

5.4 Prediction and Decision Horizon

As we have seen in the previous section, for some dynamical optimal control problems it is
not necessary to compute the optimal strategy for the entire planning interval immediately.
It is more important to find the optimal solution for the next time steps with least possible
information regarding the future development of the demand, of the costs and of the prices. To
this end, we can utilize the independence property, which we have shown for the production
and inventory problem. This property allows us to derive an optimal solution for a shorter
optimization horizon, which is independent from the solution on the remaining part of the
prediction horizon.
Here, we define these time instances as follows:

Definition 5.9 (Decision and Prediction Horizon)

Given an optimal control problem (OCP) from Definition 1.26 in the continuous version of
Remark 1.27, where the planning horizon 7" may be infinite. If there exist time instances ¢;, o
with 0 < t; <ty < T such that the optimal solution on [0, ] is independent from the solution
for t > ty, then t; is called decision horizon, and t5 is called prediction horizon.

Hence, to obtain the optimal solution on [0,t;] C [0,77, it is sufficient to look at the time
interval [0,%5]. This property is particularly important for the inventory problem. Here, we
obtain:

Theorem 5.10
Suppose an optimal control problem (OCP) from Definition 1.26 in the continuous version of
Remark 1.27 with constraints

z<z(t)<%=

to be given. If there exists two instances 11,7 € [0,T] such that the optimal solution satisfies
z(m) = z and x(m2) = T, then t; = min(m, 7o) is the decision horizon and to = max(my,72) is
the prediction horizon.

Now the model functions, i.e. the demand, can change for any ¢ > ¢ and even the terminal
time T can be changed to any value T > t,, the optimal solution on [0, ¢1] will remain unchanged.
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5.5 Simultaneous Price and Production Decision

In the previous Section 5.1, we considered different variants of the Production and Inventory
problem, where we supposed the demand to be fixed. Hence, by a given price development
p(t), the payoff p(t)d(t) was not controllable. As a consequence, only the total costs had to be
minimized.

Here, we assume the demand to be depending on the price d(p(t),t), i.e. the price now
is an additional degree of freedom within our optimal control problem. Hence, the payoff
p(t)d(p(t),t) can be controlled. To integrate this freedom in our production and inventory
problem, we modify the cost function and utilize

T
Jr(p,v,z) = / (p(t)d(p(t),t) — cproa(v(t),t) — cinv(2(£), 1)) dt + cinyr(2(T),T). (5.22)
0
The underlying dynamics is given by

At) = o(t) — d(p(t), 1),  2(0) = z, (5.23)

p(t) >0, o(t)>0, =21t)>0 Vtelo,T], (5.24)

which gives us the problem

maximize  Jp(p,v,z) = /0 (p(t)d(p(t),t) — cproa(v(t), 1) — cinv(2(2), 1)) dt
+ CinV’T(Z<T), T)
with respect to p,v : [0,T] — RS
subject to 2(t) = v(t) — d(p(t),t), 2(0) = zp,
0<v(t)<7,0<z2(t)<zandp(t) >0 Vtel0,T].

Different variants of this problem type only differ in the functional form of the demand d and
the costs cprod, Cinv, and possibly existing or non existing bounds on the production rate and
the inventory stock.

5.6 Pekelman Model

Within the Pekelman Model, we assume that the demand is linearly and nonautonomously
depending on the price p(t) via

d(p(t), 1) = a(t) = B(t)p(t), (5.25)

where «(t), B(t) > 0 are given functions in time describing fluctuations. Moreover, we as-
sume the production costs cpea(v(t),t) to be convex and the inventory costs to be linear, i.e.
Ciny(2(t), 1) = ciny2(t). Additionally, we impose the constraint

Coroa(0) < % vt € [0,T]. (5.26)

This condition ensures that the marginal costs of the first unit to be produced are larger or
equal to the price o/, for which demand is equal to zero. Otherwise, production is always
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zero. Hence, the aim of a monopolist is to solve the problem

maximize  Jp(p,v,z) = /0 (p(t)(a(t) — B(t)p(t)) — Cproa(v(t)) — Cinyz(t)) dt
+ Cinv,TZ<T)

with respect to p,v : [0,T] — R

subject to 2(t) = v(t) — (a(t) — B(t)p(t)), =z(0) = zo,

At
0<uv(t) <7,0< () <zand 0 < p(t) < B V€ [0,T].

Now, we can proceed as for the Arrow—Karlin model. Recall that the appearance of an
inner solution interval can be seen from condition (5.17). The condition states that the de-
mand increases minimally at a rate, which is proportional to the inventory costs and indirect
proportional to Cproq. In the present Pekelman model, the demand d depends on the price p,
and we obtain that an exogenous function p(t) takes the role of d(t).

Lemma 5.11 (Marginal Revenue)
The equation

Coroa(P(t)) = 5 (at) — B(t)¢(t)) (5.27)

exhibits a unique solution p(t) for each t € [0,T]. This solution is continuously differentiable
and satisfies

Cproa(0) < (1) < W (5.28)

The function ¢ can be interpreted as marginal revenue of the static problem without in-
ventory max, (p(t)v(t) — cproa(v(t))) with v(t) = o — Bp(t). Eliminating p, first order necessary
conditions reveals

Cproa(v(t)) = == (p(v(1)0(t)) = Z5 =

Hence, (5.27) holds true for ¢(t) := % - 2;’(%).

Utilizing the function (), we can continue similar to the Arrow—Karlin model and obtain:

Lemma 5.12 (Boundary Solution Interval)
On a boundary solution interval z(t) = 0 the conditions

A(t) = o(t) (5.29)
o(t) = Cpfod(w(t))>0 (5.30)

1 a(t) a(t)

hold and

Cinw = P(T). (5.32)
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As a consequence, if the inventory costs ¢, are sufficiently large, i.e. ¢, > max ¢(t), then
we have ¢ = A due to (5.29), i.e. (t) represents the value of the first element in the inventory
at all times. Moreover, we can conclude

Theorem 5.13 (Full Boundary Solution)
If 20 =0, cinpr < @(T) and (5.32) holds for allt € [0,T], then the boundary solution (5.30) is
optimal on [0,T].

Similarly, if the initial inventory level is larger than the total demand, then we obtain a full
inner solution.

Theorem 5.14 (Full Inner Solution)
If cinpr =0 and

2o > /0 min{a(t), %(a(t) — CinmB(t)(t —T)) }dt, (5.33)

then the initial inventory will not be consumed and no products will be produced. Particularly,
we have

2(t) >0 (5.34)
v(t) =0 (5.35)
A(t) = ciny(t = T) (5.36)
p(t) = max {0, % <% + Cino(t T)) } (5.37)

for all t € [0,T].

Similar to boundary solution intervals, we can also characterize inner solution intervals.

Lemma 5.15 (Inner Solution Interval)
If there exists an interval (o1,09), where (5.32) does not hold, then there exists an interval
(t1,t2) D (01,02) with an inner solution satisfying

A(t) = Ao + Coml (5.38)
> if A(t) > ()
)= ifAD) =o(t). (5.39)
)

< fAD) < ot)

o Fort; >0, ty <T, the parameter Ay, t1, ts are given by

/ " oMB) — a(t) + BEOPAD)dE = 0 (5.40)

t1
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with
(5.43)

0 if A(t) < a(t)/5(t)
3(@(®)/BE) +AX) i —at)/BE) < A(t) < at)/B(1) (5.44)
a(t)/B(t) fA) > at)/B().

e Ift; =0, then (5.40) is replaced by

20+ /0 : V(A1) — a(t) + BE)p(AE))dt = 0 (5.45)

and (5.41) can be dropped.

o [fty =T, then (5.42) can be dropped. If the resulting N(T') < Ciny1, then (5.40) is replaced
by

)\(T) = Cina, T (546)
and we have z(T) > 0. Else, (5.40) holds and we have z(T) = 0.

If zo > 0 or cinur > ©(T) holds, then an inner solution interval has to be chosen at the beginning
or the end respectively, independent of (5.38).

Combined, we see that for both the Arrow—Karlin and the Pekelman model, the optimal
solution can be concatenated from boundary and inner pieces. The structure of these pieces
always follows the same principles, which implicitly arise from Pontryagin’s Maximum Principle,
cf. [2, Chapter 1], which is also called the indirect approach. This insight into solution properties
allows us to check whether a direct approach — first discretize the optimal control problem
(OCP), then solve the resulting optimization problem — reveals a good solution. Note that
even in the indirect case, we still need to numerically evaluate the solution.




Chapter 6

Maintenance and Replacement

In the previous chapter, we considered the problem of optimal usage of production capacities in
terms of profit and connected costs for production and inventory. To this end, machines used
to produce the respective goods, which are subject to wearout. Within the present chapter,
we focus on the optimal planning of wear reduction and regenerative activities, i.e. we want
to simultaneously compute the optimal restoration intensity of a machine and the respective
optimal point of replacement.

Production facilities are wearing out over time proportionally to their workload and/or may
suddenly fail. Hence, any machine is subject to (deterministic) wearout and thereby loss in
value, which is also affected by technological improvements, but also subject to (stochastic)
risk of a sudden breakdown. Here, we discuss some fundamental control theoretic maintenance
models. These models contain only one state variable, that is the reliability or the resale value
of a machine, and the two controls preventive maintenance investments and intensity of use of
the machine. For these models, prominent characteristics are the free terminal time denoting
the point of replacement, which is a third control value, and the time dependency of model
parameters.

Within this chapter, we first formalize the problem setting before we present two different
model types. Within the Kamien—Schwartz Model we aim to reduce the risk of a sudden
machine breakdown by taking preventive actions. In the second model, the Thompson model,
we incorporate a deterministic wearout of a machine, which we try to reduce to generate an
optimal solution.

6.1 Problem Formulation

The maintenance problem is a non autonomous control problem with state x denoting the con-
dition of the machine, and two control u and v representing the maintenance and usage rate
respectively. The problem then reads

T
maximize  Jp(u,v) = / exp " e(x,u,v,t)dt +exp T e, (x(T), T)
0

with respect to u,v : [0,7] — RS
subject to &(t) = f(z(t),u(t),v(t),t), x(0)= x.

61



62 Chapter 6: Maintenance and Replacement

Here, we particularly assume the following to hold:

Assumption 6.1
For the maintenance and replacement problem, the following properties shall hold:

of Jc 0?f % Ocu.T
~J _ — Y = = —_— >
Ox <0, ox >0, ox? Oz 0 oxr ~— 0
of e o2 f
=d - >
ou >0, ou <0, O0xOu — 0
of Fe 92 f
Zd - <
ov <0, Ov >0, Oxdv — 0
2 2
TI o, 2¢ o
0xot — 0xot —

We can interpret these assumptions as follows:
e Investments u induce costs, i.e. g—i < 0, but improve the state of the machine, i.e. % > 0.

e The usage rate v induces profits, i.e. % > 0, but has a negative effect on the machine,
. of
Le. 3 <O0.

The following results also hold for general control systems. Therefore, we utilize the notation
from Chapter 1, where (OCP) is given in Definition 1.26. For such problems, the notion of
state separability can be introduced.

Definition 6.2 (State Separability)
A control problem is called state separable if the Hamiltonian

H(x,u, A\ t) == c(x,u,t) + \f(z,u,t)
with state z, control v and adjoint A satisfies

OPH . 0°H OH Peur
orz orou or ’ or2

If a control system is state separable, one can show that the adjoint is monotone, and that
all control variables inherit this property. To this end, we introduce the equilibrium of the
adjoint

. 2 (g, u,t)
At) = —22 )
®) (T — %(x,u)))

As we would expect for the maintenance problem, the shadow price A is decreasing over time
representing the sales price of the machine. Moreover, this decrease induces decreasing main-
tenance costs v and an increasing usage rate v.

(6.1)
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Lemma 6.3 (Monotonicity of Solutions)
Suppose Assumptions 6.1 hold for a state separable maintenance and replacement problem with
A(t) > 0 and

>0 > A(t)
M) =0 = ANO{=A1t) . (6.2)
<0 < A

MO <0, M) >0, a(t)>0, () <o0. (6.3)

Corollary 6.4 _ .
Given the assumptions of Lemma 6.3 hold and \(T') < 0, then we have A(t) < 0, u(t) < 0 and
0(t) > 0 for all t € [0,T].

Additionally to monotonicity properties of the adjoint (or shadow price), we can also show
properties of the terminal time. Recall that in the maintenance and replacement problem, the
terminal time corresponds to the time of replacement.

Lemma 6.5 (Replacement)
Suppose T* > 0 1s the optimal terminal time for the maintenance and replacement problem and
assumptions from Lemma 6.3 hold. If the elasticities satisfy

% (z,u,v,T) -
p= 7 > 1 6.4
0-f7 f(x7 /U/,U’T) N ( )
Jdc
%(ZEvQL?U?T) Y >
e, c(x,u,v,T) (6:5)
8CuT
e (,T)-x <
g w,T's Cu,T(x7T) ( )
and
aCuT
’ 7)<0 6.7
T (0, T) < (67
for each x, u, v and T = T™*, then we have
MT™) < 0. (6.8)

Hence, we can conclude

Lemma 6.6 (Strict Monotonicity)
Suppose a state separable maintenance and replacement problem to be given and Assumption 6.1




64 Chapter 6: Maintenance and Replacement

to hold. Moreover, the elasticities satisfy (6.4), (6.5), (6.6) and inequality (6.7) holds. Then
we have

Mt) <0, a(t)<0, and o(t)>0  Vte[0,T]. (6.9)

Now, Lemmata 6.5 and 6.6 allow us to draw conclusions regarding monotonicity of the
optimal maintenance and replacement control.

6.2 Kamien—Schwartz Model

Within this model, a sudden machine breakdown may occur stochastically. Once such an event
has taken place, the machine cannot be repaired, yet preventive actions may be taken to extend
the lifespan of the machine denoted by =. The probability density function of the lifespan shall
be given by P (Z < t), which allows us to formulate the natural failure rate via

1
h(t)=lim —Pt<=Z2<t+A|=Z>1t) =

A0 A 1-P( (6.10)

To control the process, the maintenance rate v can be used. Here, 100u corresponds to the
percentage at which the failure rate is decreased. From (6.10), we directly obtain

P(E <t)=(1—u(t)h(t) (1 —P(E <)), (6.11)

which coincides with (6.10) for « = 0 while for u = 1 the failure rate and density function P
vanishes.

Within the Kamien—Schwartz Model, the reliability z(¢) = 1 — P(Z < t) is used as the state
of the system. This reveals the dynamics

#(t) = — (1 — u(t)) h(t)z(t), z(0) = 1. (6.12)

Moreover, we denote the costs for maintenance by c,(u), the profit by operating a machine per
time unit by ¢,, the value of an operational machine at time ¢ by V(¢) and the value of a broken
machine by W. For these variables, we consider the following assumption:

Assumption 6.7
The natural failure rate is (weakly) monotone increasing, i.e.

h(t) >0, h(t) >0, (6.13)
and that the maintenance rate is bounded by
0<u(t) <1 Vt € [0,T]. (6.14)

Moreover, the machine shall not fail instantly, i.e. P(Z < 0) = 0. The maintenance costs to
reduce the failure rate is over-proportionally increasing, that is

c(0) =0, ¢Eu(u)>0, éy(u)>0 for u € (0,1). (6.15)
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For simplicity of exposition, we additionally assume that the costs for a small reduction of the
failure rate is almost zero and if failure is to be neglected, then the corresponding costs are
infinite, i.e.

u(0) =0, ¢,(1)=oc. (6.16)
Last, ¢, and W are positive constants and the resale value V' (t) is monotone decreasing with

V() <0, 0<W <V(t) <ey/r (6.17)

Note that these assumptions are economically meaningful: the resale value of an operational
machine is never increasing and always higher than the scrap value. It is, however, smaller than
the operating revenue of the machine.

Remark 6.8
While unimportant for the structure of the optimal control, condition (6.16) rules out the bound-
ary solutions u =0 and u = 1.

Since the gain and the maintenance costs only arise for an intact machine, the expected
discounted net gains of operating and selling an intact machine is given by

T
/ exp " (¢, — cu(u(t))h(t)) x(t)dt + exp™™ V(T)x(T), (6.18)
0
and the expected net gain of scrapping a broken machine in the case = < T reads
T ' T
/ exp ""WP(ZE < t)dt = Way —exp T Wa(T) — TW/ exp " x(t)dt. (6.19)
0 0

These two values can now be combined to form a cost functional. Since Wz is constant, we
can neglect it and obtain the optimal control problem

maximize Jp(u,v) = /o exp "t (¢, — TW — c(u(t))h(t)) z(t)dt
+exp T (V(T) — W) z(T)
with respect to u,v : [0,7] — R
subject to &(t) = — (1 —u(t)) h(t)xz(t), z(0)=1
0<u(t)<1 Vtelo,T].

Hence, we obtain the maintenance and replacement problem from Section 6.1 with
c(zyu,v,t) = cy — W — ¢, (u(t))h(t)
cut(@(T), T) = (V(T) = W) a(T)
f(a(t),u(t),v(t),t) .= — (1 —u(?)) h(t)z(t).

Since Assumption 6.7 induces Assumption 6.1, and since the term (¢, — W)u is linear in u, the
model is state separable. Hence, by Lemma 6.3 it follows that
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Theorem 6.9 (Solution Properties)
Given the Kamien—Schwartz Model and Assumption 6.7 holds, then the conclusion

M >0 = At)>0,u>0

holds for all t > . Additionally, since by optimality A(t) = ¢, (u(t))u(t) and by assumption
éu(u(t) > 0, we have

sgn(u(t)) = sgn(A(?))-

To apply Lemma 6.5, we observe

Ofp = Ocpz = Ocyra =1
8cu,T

o7 (z,T) = 2(T)V(T).

Hence, the following result holds:

Theorem 6.10 (Solution Properties)
Given the Kamien—Schwartz Model and Assumption 6.7 holds, then for optimal replacement at
time T* the optimal maintenance strategy u(t) satisfies the monotonicity condition

o) <0 V(T <0
<o ivTy =0

Therefore, if the time of replacement 7™ is chosen optimally, then the reduction of the
failure rate is decreasing. Since the natural failure rate h(t) is increasing, the true failure rate
(1 —wu(t)) h(t) is increasing as well. Whether or not the costs of a preventive maintenance
cu(u(t))h(t) are de- or increasing, fully depends on the case itself.

6.3 Thompson Model

The Kamien—Schwartz model aims at reducing the risk of a sudden machine breakdown by
taking preventive actions. Within the Thompson model, this aim is changed to reduce de-
terministic wearout. Again, we define T" as the time to replace the machine and denote the
age of a machine by t. The value of a new machine is represented by y(0) = yo and u(t) are
the maintenance actions taken in period t. The effectiveness of a maintenance action is given
by ¢(t), which states by how much the reduction of the resale price is reduced if we invest in
maintenance. The loss in value of a machine consists of two components:

e The technical obsolescence ~y(t) reflects the loss in value due to new inventions, availability
of more powerful machines and the decaying productivity and resale value due to age.

e The wear rate 0(t) describes the loss in value due to deterministic wearout.

Hence, we obtain the dynamic of the resale price of a machine based on obsolescence, wear rate
and maintenance via

y(t) = =) = o()y(t) + g(t)u(t). (6.20)
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For the Thompson model, we consider the following set of assumptions to hold:

Assumption 6.11
The effectiveness of the maintenance g(t) is monotone decreasing with the age of the machine,
while obsolescence () and wear rate 0(¢) are monotone increasing, i.e.

g(t) >0, A1) <0, 6&(t)<0. (6.21)
Similar to the Kamien—Schwartz model, the maintenance rate is bounded by
O<u(t)<u Vtelo,T]. (6.22)

Moreover, the profit of a machine with value y(t) is given by cpoa(t)y(t) and the costs for
maintenance are given by c,u(t).

Combining the profit of a machine with its maintenance costs and a discount factor and
selling the machine at the terminal time instant T', then the current value of the monetary flow
is given by

Jr(u,T) = /0 exp " (Cprod ()y(t) — cuu(t)) dt + exp™ " y(T). (6.23)

The combined optimal control problem forms the Thompson model

maximize Jrp(u,T) = fOT exp " (Cproa (t)y(t) — cyu(t)) dt
+exp T y(T)
with respect to u : [0,T] — Ry
subject to y(t) = —7(t) = 6(t)y(t) + g(t)u(t), y(0) = yo
O<ult)<u Vte[oT].

For the Thompson model, the shadow price is given by
A(t) = (r+0(t)) A(t) — cproalt), NT)=1 (6.24)

and independent from y(¢) and u(t) and therefore can be solved independently. Here, A(?)
represents the cost/profit of an additional unit of the machine at time ¢. The shadow price is
split into the part measuring the increase of the resale value at time 7', and the part measuring
the increase of the production profit from ¢ to 7' if the resale value at time ¢ is increased. To
obtain a meaningful case, we impose the following:

Assumption 6.12
For the Thompson model we suppose that

Coroa(t) > 1+ 06(t) Vt€[0,T] and cpoa(T) > 1+ (7). (6.25)

Following Assumption 6.12, at each time instant ¢ we gain more profit from one unit of
machine value z than we loose by discounting and wearout, i.e. running the machine pays off.

Similar to the Kamien—Schwartz model, we can now conclude monotonicity of the shadow
prices using Lemma 6.3:
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Theorem 6.13 (Monotonicity of Solutions)
Given the Thompson Model, suppose Assumptions 6.11 and 6.12 to hold. Then we have

MT) < 0. (6.26)

Additionally, the function A(t) = Cprod(t)/ (1 + d(t)) is monotone decreasing and
At) = (r +8(t)) - ()\(t) - &(t)) (6.27)
At) <0 (6.28)

holds for all t € [0,T].

Here, due to linearity of the control u(t) and the separability of the shadow price A(t) from
the value of the machine y(t), one can show the following:

Theorem 6.14 (Solution Properties)
If Assumptions 6.11 and 6.12 hold for the Thompson model, then

0 if A(t)g(t) < 1
u(t) = < not defined if \(t)g(t) =1 (6.29)
u if A(t)g(t) > 1

15 the optimal maintenance strategy.

Unfortunately, Theorem 6.14 reveals only the optimal boundary controls and does not state
what should be done if the marginal revenue A(t)g(f) of a maintenance unit u(t) equals a
maintenance unit, i.e. A(t)g(t) = 1. Basically, (6.29) states that if the payoff of one maintenance
unit is larger than the price of the maintenance unit, then the machine is maintained, otherwise
it is not maintained.

Since ¢(t) is monotone decreasing and A(t) is strictly monotone decreasing according to
(6.28), then also A\(t)g(t) exhibits this property. Hence, no inner solution can occur and we can
show:

Corollary 6.15 (Solution)
For a Thompson model satisfying Assumptions 6.11 and 6.12, the optimal maintenance strategy
s given by

0 0<t<
u(t) =4 _ bl e (6.30)
u fort<t<T

for some T € [0,T] satisfying \(7)g(7) = 1. If the latter equation reveals T < 0 we set T =0,
and if it reveals T > T we set 7 =T.
Additionally, the optimal replacement time T is given as the unique solution of

B V(T)
y(T) = Corod(T) — 17— 0(T)

(6.31)
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Appendix A

Theoretical Results

A.1 Unconstrained Optimization

The basis of the analysis of nonlinear optimization problems is given by Taylor’s Theorem:

Theorem A.1 (Taylor’s Theorem)
Consider a function F : R™ — R which is continuously differentiable and a direction vector
d € R*. Then we have

F(z+d) = F(2) + VF(z +td)'d (A1)
for some t € (0,1). If F is twice continuously differentiable, then we also have
1
F(z+d) = F(2) + VF(2)Td + §dTV2F(z + td)d (A.2)

for some t € (0,1).

Proof. Using the fundamental theorem of calculus, we have
1

F(z+d) :F(z)—I—/jt (z + td)dt.
0
By the mean value theorem, there exist a ¢t € (0,1) with
1
/ %F(z + td)dt = %F(z +td) = VF(z +td) " d,
0

where we used the chain rule for the second equality. This shows(A.1). By partial integration
we further obtain

1 1
d d
—F td)dt = — td) l—t td)dt
/ 7 (2 4+ td) il (z+td) + / (z +td)
0 0
and again using the mean value theorem we get
1 1
/(1 t)— & F(z+td)dt - F(z+1t'd) /(1 t)dt = L& F(z+1td)
— z = —F(z — ——F(z
dt? dt? 2 dt?
0 0
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for some ¢’ € (0,t). Since by the chain rule we have

2

1d 1
—| F(z+td)=VF(2)'d and §@F(2 +t'd) = 5czTVQF(z +t'd)d
t=0

this shows (A.2). O

The advantage of Taylor’s theorem is that it allows us to introduce knowledge on the gradient
VF(2*) and the Hessian V2F(z*) into the search for a local minimizer 2*. In particular, first
order necessary conditions are derived very easily.

Theorem A.2 (First Order Necessary Conditions)
Consider a vector z* € R™ and a function F' : R"* — R where F is continuously differentiable in
an open neighborhood of z* and z* € R"™ is a local minimizer of F'. Then we have VF(z*) = 0.

Proof. Suppose VF(2*) # 0 and set d := —VF(2*). Then we get d'VF(2*) = —||VF(2*)|]? <
0. Since VF' is continuous in a neighborhood of z*, there exists a scalar T" > 0 such that
d"VF(z* 4+ td) < 0 holds for all t € [0,T]. By (A.1), for any ¢ € (0,7] we have F(z* +td) =
F(z*) + td"VF(2* + td) for some t € (0,). This implies F(2* + td) < F(z*) for all £ € (0,7
which contradicts the local minimizer property of z*. O

In a similar manner, information on the Hessian can be used to derive second order necessary
conditions from equation (A.2).

Theorem A.3 (Second Order Necessary Conditions)

Consider a vector z* € R" and a function F : R"* — R where F' is twice continuously
differentiable in an open neighborhood of z* and z* € R™ 1is a local minimizer of F'. Then we
have VF(2*) = 0 and the Hessian V*F(z*) is positive semidefinite.

Proof. From Theorem A.2 we know that VF(z*) = 0. Now, suppose V?F(z*) is not positive
semidefinite and choose a vector d such that d'V?F(z*)d < 0 holds. Using continuity of
V2F(z*) in aneighborhood of 2*, we know that there exists a scalar T' > 0 such that d" V2F(2*+
td)d < 0 holds for all ¢ € [0,T]. Hence, using (A.2), for any ¢ € (0,7] and some t € (0,t) we
obtain

_ - 1- _
F(z*+1td) = F(z*) +tVF(2*)"d + §thV2F(z* +td)dt < F(z¥).

Similar to the proof of Theorem A.2, F' is strictly decreasing along the direction d which
contradicts the local minimizer property of z*. O]

The results from Theorems A.2 and A.3 reveal guidelines to what we are looking for, i.e.,
which properties a local minimizer must fulfill. However, these results cannot be used to identify
a local minimizer once we have found a candidate satisfying the previous conditions. In order
to perform such a check, the following theorem can be used.

Theorem A.4 (Second Order Sufficient Conditions)

Consider a vector z* € R™ and a function F' : R" — R where F is twice continuously
differentiable in an open neighborhood of z*. If VF(2*) = 0 and V?F(2*) is positive definite,
then z* is a local minimizer of F'.
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Proof. Due to F' being twice continuously differentiable there exists a radius r > 0 such that
V2F(z) is positive definite for all z € {z | ||z — 2*|| < r}. Now take any vector d € R"* with
|d|l < r, then we have z* +d € {z | ||z — z*|| < r} and

1
F(z*4d) = F(z*) +d"VF(z*) + §dTV2F(z* + td)d
1
=F(z*) + 5CFVQF(Z* + td)d

for some t € (0,1). Since (2* +td) € {z | ||z — z*|| < r}, we have d"V2F(z* + td)d > 0 and
therefore F'(z* + d) > F(z*) holds showing the assertion. O



74 Chapter A: Theoretical Results




Bibliography

[1] W. Alt. Nichtlineare Optimierung: FEine Einfihrung in Theorie, Verfahren und Anwen-
dungen. Springer, 2013.

[2] G. Feichtinger and R. Hartl. Optimale Kontrolle 6konomischer Prozesse. de Gryuter, 1986.
[3] R. Fletcher. Practical methods of optimization. John Wiley & Sons, 2013.

[4] C. Geiger and C. Kanzow. Theorie und Numerik restringierter Optimierungsaufgaben.
Springer, 2002.

[5] M. Gerdts. Optimierung. Technical report, Universitdt der Bundeswehr Miinchen,
Miinchen, 2015.

[6] H. Khalil. Nonlinear Systems. Prentice Hall PTR, 2002.
[7] B. Korte and J. Vygen. Combinatorial Optimization: Theory and Algorithms. 2002.
[8] K. Neumann and M. Morlock. Operations Research. 2002.

[9] J. Nocedal and S. Wright. Numerical optimization. Springer Series in Operations Research
and Financial Engineering. Springer, New York, second edition, 2006.

[10] E. Sontag. Mathematical Control Theory: Deterministic Finite Dimensional Systems.
Springer, 1998.

75



	Contents
	1 Introduction
	1.1 Problem Setting Optimization
	1.1.1 Necessary Conditions for Optimality
	1.1.2 Sufficient Conditions for Optimality

	1.2 Problem Setting Economic Processes
	1.2.1 Discretization Methods
	1.2.2 Full Discretization
	1.2.3 Recursive Discretization


	I Optimization
	2 Penalty– and Multiplier–Methods
	2.1 Penalty–Methods
	2.2 Multiplier–Penalty–Methods

	3 SQP and Interior Point Methods
	3.1 Sequential Quadratic Programming
	3.1.1 Quadratic Approximation
	3.1.2 SQP Algorithm
	3.1.3 Globalization of SQP

	3.2 Interior Point Method
	3.2.1 Linear Optimization Problem
	3.2.2 IP Algorithm
	3.2.3 Nonlinear Optimization Problem


	4 Integer Optimization and Heuristics
	4.1 Mixed Integer Optimization
	4.1.1 Mixed Integer Linear Optimization
	4.1.2 Cutting Plane Method by Gomory
	4.1.3 Branch and Bound Method

	4.2 Heuristics
	4.2.1 Nelder Mead Algorithm
	4.2.2 Evolution Algorithm



	II Economic Processes
	5 Production and Inventory
	5.1 Production and Inventory for given Demand
	5.2 HMMS Model
	5.3 Arrow-Karlin-Model
	5.4 Prediction and Decision Horizon
	5.5 Simultaneous Price and Production Decision
	5.6 Pekelman Model

	6 Maintenance and Replacement
	6.1 Problem Formulation
	6.2 Kamien–Schwartz Model
	6.3 Thompson Model

	Appendices
	A Theoretical Results
	A.1 Unconstrained Optimization

	Bibliography
	Glossary
	Index


