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Foreword

This script originates from a correspondent lecture held during the summer term 2014 at
the University of Bremen. The central aims of the lecture are the introduction of system
identification techniques for both static and dynamic systems. In particular, we discuss

• Basic stochastic definitions,

• Least square estimator,

• Maximum likelihood and Bayes estimator,

• Dynamic system models, and

• Kalman filtering.

Such models are used, e.g., for the control, state estimation or prediction of logistic, mechatronic
or economic systems. At the end of the lecture, students should understand the concepts, know
basic formulas, be able to comprehend and interpret input and output of the methods and to
make a suitable choice between the presented methods.

Parts of the scripts are based on the script of Prof. Schoukens [?] as well as the books [?,?],
which will be used without further notice. Additional useful information may be found in [?,?,?].
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Chapter 1

Introduction

Within this chapter, we give a brief and intuitive introduction to identification theory. To this
end, we use a simple example to illustrate pitfalls associated with a model built from noisy
measurements. Additionally, we give an overview of the identification process and introduce a
statistical characterization of the parameters.

1.1 Identifying identification

What is identification and how can we define it? Intuitively, we all experienced identification by
learning to control our actions using prediction of the effect of these actions. These predictions
are based on a model, which we fit to reality using our past experiences. This can be very simple,
i.e. “I push a ball, then it rolls”, but may also culminate in the design of very complicated
systems such as airplanes, mobile phones or weather forecast. What we also see here is that
we always focus on those aspects we are interested in and do not try to describe all of reality.
Hence, the problem is split into two parts,

• the system, which describes what we are interested in, and

• the environment, which contains everything else.

Interactions between system and environment are described by inputs and outputs.
Here, we will particularly focus on the quantitative analysis, i.e. we will not consider

qualitative results such as “a ball will roll downhill”. Instead, we will utilize laws and models,
which may, e.g., be given by physics or a supply chain, and describes at least some part of our
impression of reality. Fitting these laws or models to our observations creates new problems:

• For one, we consider noisy measurements. In this context, noisy means that if we take a
measurement, e.g. length, weight, time etc., then errors occur since the instruments we
use are not perfect.

• And secondly, our laws and models are imperfect as reality is far more complex than
the rules we apply. They also show a stochastic behavior, which makes it impossible to
predict exactly their output.

To still identify the system, we split the model into a deterministic and a stochastic part. The
deterministic aspects are captured by the mathematical system model. These are complemented
by the stochastic behavior, which modeled as a noise distortion. Hence, the aim of identification
theory is the following:

1



2 Chapter 1: Introduction

Identification theory provides a systematic approach to fit the mathematical model
to the deterministic part as well as possible, and to eliminate the noise distortions
as much as possible.

Before defining the terms system and goodness of fit, we motivate and illustrate many of
the aspects and problems in identification theory by a simple example.

1.2 A simple example

Using two electric circuits as shown in Figure 1.1, we pass a constant but unknown current
through the resistor. The voltage u across the resistor and the current i through it are measured
using a voltmeter and an ampere meter, where the input impedance of the voltmeter is chosen
large compared with the unknown resistor to ensure that all the measured current passes
through the resistor.

i(k) R

u(k)

Figure 1.1: Measurement of a resistor.

Two sets of measurements u(k), i(k) with k = 1, 2, . . . , N are taken and called group A and
B, cf. Figure 1.2, and the resistances r(k), k = 1, 2, . . . , N are computed via r(k) = u(k)/i(k),
see Figure 1.3 for respective results.
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(a) Group A of measurements
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(b) Group B of measurements

Figure 1.2: Measurement values for two groups

Since the measurements are very noise, different estimators can be analyzed:

R̂SA(N) =
1

N

N∑
k=1

u(k)

i(k)
(1.1)
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(a) Computed resistance from group A
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(b) Computed resistance from group B

Figure 1.3: Computed resistances from measurement groups

R̂EV(N) =

1
N

N∑
k=1

u(k)

1
N

N∑
k=1

i(k)

(1.2)

R̂LS(N) = argmin
R∈R

N∑
k=1

(R · i(k)− u(k))2 (1.3)

Within these estimators, N indicates the number of used measurements. Note that the three
estimators result in the same estimate on noiseless data. The first estimator, the Simple
Approach, averages the quotients of voltage and current measurements. The second estimator,
the Error-in-Variable approach, averages the voltages and currents first and then computes the
quotient. And the last estimator, the Least Square approach, computes the minimal distance
linear function between voltage and current pairs in the 2-norm.

To compute the latter, we set f(R) :=
N∑
k=1

(R · i(k) − u(k))2 and minimize it, i.e., we are

looking for a value R such that

∂f(R)

∂R
= 0.

From the definition of f(R), we obtain

∂f(R)

∂R
=

N∑
k=1

2 · (R · i(k)− u(k)) · i(k)

= 2 ·R ·
N∑
k=1

i(k)2 − 2 ·
N∑
k=1

u(k) · i(k).
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Hence, we have

R̂LS(N) =

N∑
k=1

u(k) · i(k)

N∑
k=1

i(k)2

. (1.4)

Utilizing these estimation formulas, we can compute the estimated resistances as displayed in
Figure 1.3. From this figure, we can make several observations:
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(a) Estimated resistance from group A
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(b) Estimated resistance from group B

Figure 1.4: Estimated resistances from measurement groups with R̂SA in blue, R̂EV in red and
R̂LS in green.

1. All estimators have large variations for small values of N , and – except for R̂SA from group
A – seem to converge to an asymptotic value for large values of N . This corresponds to
the intuitively expected behavior: if a large number of data points are processed, then
we should be able to eliminate the noise influence due to the averaging effect.

2. The asymptotic values of the estimators depend on the kind of averaging technique that
is used. this shows that there is a serious problem: at least two out of the three methods
converge to a wrong value. It is not even certain that any one of the estimators is
doing well. This is quite catastrophic: even an infinite amount of measurements does not
guarantee that the exact value is found.

3. The R̂SA from group A behaves very strangely. Instead of converging to a fixed value, it
jumps irregularly up and down.

These observations clearly indicate that a good theory is needed to explain and understand the
behavior of candidate estimators. This will allow us to make a sound selection out of many
possibilities and to indicate in advance if a method is prone to serious shortcomings before
running expensive experiments.

To gain more insight, we can plot approximations of the probability density functions based
on the data, cf. Figure 1.5. From this figure, we observe the following:
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(a) Observed probability density functions for group A
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(b) Observed probability density functions for group B

Figure 1.5: Observed probability density functions for groups. From left to right N = 1000,
N = 10000 and N = 100000 with R̂SA in blue, R̂EV in red and R̂LS in green.

1. For small values of N , the estimates are widely scattered. As the number of processed
measurements increases, the probability density function becomes more concentrated.

2. The estimates R̂LS are less scattered than R̂EV and R̂SA, and odd behavior for R̂SA in
group A appears again. The distribution of this estimate does not contract to a single
value for growing values of N for group A, while it does for group B.

3. It is clearly visible that the distributions are concentrated around different values.

The choice of the estimator is not yet clear. And additionally, there seems to be a major
problem with the measurements of group A, which was observed via R̂SA. In order to quantify
the scattering of the estimates, in particular of R̂SA, the standard deviation can be calculated,
cf. Figure 1.6. Here, we observe that the standard deviation decreases monotonically with N –
except for R̂SA of group A. Moreover, the decrease is proportional to 1/

√
N , which is the rule of

thumb for the uncertainty on an averaged quantity obtained from independent measurements.
Additionally, the uncertainty depends on the estimator.

Regarding the strange behavior of R̂SA of group A, we reconsider the measurement data
displayed in Figure 1.2 and compute respective histograms, cf. Figure 1.7. Due to possibly
occuring zero values for the current in group A, we obtain a drastic increase in the estimation
using the simple approach. This is due to a division by (almost) zero. In group B, such a case
does not exist.

This example shows that there is a clear need for methods, which can generate and select
between different estimators. We also like to note that although the noise on the measurements
in group A is completely different distributed, the resulting estimation, e.g. by R̂EV and R̂LS,
seem to be the same as in group B.

Before coming to a structured approach of identifying a process in Chapter 2, we first need
to introduce some notation and make us familiar with basic definitions.
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(a) Observed standard deviation for group A
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(b) Observed standard deviation for group B

Figure 1.6: Observed standard deviation for groups. From left to right N = 1000, N = 10000
and N = 100000 with R̂SA in blue, R̂EV in red and R̂LS in green.
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Figure 1.7: Comparison of histograms for the current i(·)

1.3 Basic definitions

In order to analyze estimators, we first need to classify them. As we have seen in the previous
sections, estimators are obtained as functions of a finite number of noisy measurements. Hence,
they are stochastic variables, just as the noisy measurements are. To characterize a stochastic
variable completely, we require the respective probability density function. In practice, however,
it is very hard to derive that function. Yet, the behavior of the estimates can be described by
a few numbers, i.e. the mean value and the covariance, which may be seen as the location and
dispersion of the estimate.

To formally introduce these numbers, we first require the notion of a probability space:



1.3 Basic definitions 7

Definition 1.1 (Probability space)
Consider a set Ω, a set of subsets F ⊆ 2Ω and a function P : F → [0, 1]. Then, we call the
triple (Ω,F ,P) a probability space if

• the sample space Ω is a non–empty set,

• the σ–algebra F of events satisfies

– F contains the empty set, i.e.

∅ ∈ F ,

– F is closed under complements, i.e.

A ∈ F =⇒ Ω \ A ∈ F ,

– F is closed under countable unions, i.e.

Ai ∈ F ∀i ∈ {1, 2, . . . , k}, k <∞ =⇒
⋃

i∈{1,2,...,k}

Ai ∈ F

• the probability measure P satisfies

– P is countably additive, i.e.

Ai ∈ F ∀i ∈ {1, 2, . . . , k}, k <∞ with Ai ∩ Aj = ∅ ∀i, j ∈ {1, 2, . . . , k}, i 6= j

=⇒ P

 ⋃
i∈{1,2,...,k}

Ai

 =
∑

i∈{1,2,...,k}

P (Ai) ,

– the measure of the sample space Ω is one, i.e.

P (Ω) = 1.

In short, a probability space is a measure space, but with the additional property that the
measure of the whole space is equal to one. Secondly, we require so called random variables:

Definition 1.2 (Random variable)
Consider a probability space (Ω,F ,P) and a measurable space E with σ–algebra E of E. Then
we call a function X : Ω→ E a random variable if

∀B ∈ E : X−1(B) ∈ F , where X−1(B) := {ω ∈ Ω | X(ω) ∈ B} .

Hence, a random variable is a function, which allows us to use a more comfortable description
of properties or measurements of a sample, i.e. if B is an interval [a, b] or the property “lottery
player”, then we identify the corresponding event X−1(B) in the σ–algebra F .

Now, we can introduce the expected value, sometimes also called mean, first moment or
expectation):
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Definition 1.3 (Expected value or mean)
Consider a probability space (Ω,F ,P) and a random variable X defined on that triple. Then,
the expected value E (X) or mean of X is defined as the Lebesgue integral

E (X) :=

∫
Ω

X dP =

∫
Ω

X(ω) dP (ω) (1.5)

whenever the integral exists.

Note that since the integral may not converge absolutely, not all random variables have a
finite expected value, and for some it is not defined at all (e.g., Cauchy distribution).

In order to define the second important number, the covariance, we first introduce the notion
of moments:

Definition 1.4 (Moment)
Consider a probability space (Ω,F ,P), a natural number n ∈ N and a random variable X
defined on that triple. Then, the n–th moment is given by

mn := E (Xn) . (1.6)

Hence, the mean is also the first moment. Regarding the covariance, we require the second
moment to describe, how much two random variables in one probability space change together,
i.e. what the nature of their connection and how strong this connection is:

Definition 1.5 (Covariance)
Consider a probability space (Ω,F ,P) and two random variables X and Y defined on that
triple. Then, the covariance Cov (X, Y ) is defined as

Cov (X, Y ) := E ((X − E (X)) (Y − E (Y ))) (1.7)

whenever the second moments of X and Y exist.
If X = Y , then covariance is called variance and we obtain Cov (X,X) = σ2 (X).

Higher moments describe the skewness and kurtosis of the probability function P , which can
be interpreted as a deviation measure from the normal distribution and a deviation measure
from a symmetric distribution respectively.

The following notion of a so called probability density function uses the nice property of a
random variable to be a transformation to an easily interpretable space. I.e., it describes the
relative likelihood for this random variable to take on a given value (evaluated in the image
space of the random variable):

Definition 1.6 (Probability density function)
Consider a probability space (Ω,F ,P) and a random variable X : Ω→ E defined on that triple,
where the set E equipped with measure µ and E is a σ–algebra of E. Then, any measurable
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function f : E → R+
0 , which satisfies

Pr (X ∈ B)

=

∫
X−1(B)

dP

 =

∫
B

f dµ (1.8)

for any measurable set B ∈ E is called a probability density function.

Last, we require some convergence concepts to formally describe what we observed in Figures
1.4 and 1.5. There are several several convergence concepts for different purposes: Some of these
concepts are stronger, i.e. exhibit more requirements. The advantage of a strong concept is
that, if a convergence can be shown for a method using the strong concept, then we also obtain
convergence in the weak one. A schematic illustration of the convergence concepts we consider
here is given in Figure 1.8, and their relation is shown in Figure 1.9.

a.s.lim l.i.m.

p.lim

Lim

Figure 1.8: Schematic illustration of the convergence areas for stochastic limits.

a.s.lim p.lim l.i.m.

Lim

Figure 1.9: Inclusions between stochastic limits.

Convergence in distribution is the most weak concept, but it is suffers from a major disad-
vantage: It is very hard, if not impossible, to show that the required conditions hold:

Definition 1.7 (Convergence in distribution)
Consider a probability space (Ω,F ,P), a measurement vector z ∈ RN and a sequence of random
variables X(N), N ∈ N and a random variable X, both defined on that triple. The respective
probability distribution functions are denoted by fN and f . Then, we call X(N) to converge
to X in distribution if
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• lim
N→∞

fN(z, (X(N))(ω))→ f (z,X(ω)) ∀ω ∈ Ω where f is continuous.

For short, we write Lim
N→∞

X(N) = X.

The reason for this problem lies, among other problems, in the non–uniqueness of the
probability density function, cf. Definition 1.6. Hence, we would have to find a suitable
probability density function across the sequence of random variables.

Incorporating the probability function, we obtain a more strict and more easily provable
convergence criterion:

Definition 1.8 (Convergence in probability)
Consider a probability space (Ω,F ,P) and a sequence of random variables X(N), N ∈ N and
a random variable X, both defined on that triple. Then, we call X(N) to converge to X in
probability if

• ∀ε, δ > 0 : ∃N0 ∈ N : P (|X(N)−X| ≤ ε) > 1− δ ∀N > N0.

For short, we write p.lim
N→∞

X(N) = X.

Using convergence in probability, we need to show existence of bounds N0 for all pairs ε, δ.
Although this is a tricky task, it may be solved using knowledge of the probability function P
and of the random variables, which are also functions, cf. Definition 1.2. Hence, this may also
be difficult.

Neglecting the probability function P, i.e. impose more restrictions, we can solely focus on
the random variables:

Definition 1.9 (Convergence with probability 1)
Consider a probability space (Ω,F ,P) and a sequence of random variables X(N), N ∈ N and
a random variable X, both defined on that triple. Then, we call X(N) to converge to X
with probability 1 if

• lim
N→∞

(X(N))(ω) = X(ω) for almost all ω ∈ Ω.

For short, we write a.s.lim
N→∞

X(N) = X or P
(

lim
N→∞

X(N) = X
)

= 1.

For the convergence with probability 1 concept, we still need to check the criterion for
almost all ω ∈ Ω, which can be done by exploiting properties like continuity etc. of the random
variables. Hence, this concept is appropriate for our forthcoming analyses.

Another nice concept is based on distinct properties of the random variables, i.e. of its first
and second moment:

Definition 1.10 (Mean square convergence)
Consider a probability space (Ω,F ,P) and a sequence of random variables X(N), N ∈ N and
a random variable X, both defined on that triple. Then, we call X(N) to converge to X in
mean square if
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• E (|X|2) <∞,

• E (|X(N)|2) <∞ for all N ∈ N, and

• lim
N→∞

E (|X(N)−X|2) = 0.

For short, we write l.i.m.
N→∞

X(N) = X.

Again, this a checkable concept, which we will consider within the identification process.
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Chapter 2

Structure of the identification process

Within the last chapter, we introduce the notions from stochastic analysis, which we require to
study the modeling and identification process. Within the current chapter, we will first focus
on the properties which we are looking for in an estimator. Exemplary, we will check these
properties for one of the estimators given in the circuit example from the previous Chapter
1. Based on the described properties, we then discuss the general design sequence of a system
identification.

2.1 Properties of estimators

Regarding properties, we start of with the claim that a good estimation of a system should
exhibit the same characteristics, i.e. the same probability density function. Since the proba-
bility density function completely defines the properties of a system, such an estimation would
do this as well. Unfortunately, as discussed in the context of Definition 1.7, without additional
conditions it is very hard to show the respective convergence in distribution. But we also
learned that certain properties of the expectation value are sufficient to guarantee mean square
convergence, cf. Definition 1.10, which is in turn sufficient for convergence in distribution —
the property we like to have.

Hence, our first demand for an estimator is that it reflects an identical expectation value.

Definition 2.1 (Unbiased estimator)
Suppose a probability space (Ω,F ,P), a measurable space E with σ–algebra E of E and an
estimator (random variable) θ̂ : Ω→ E for the parameter θ ∈ E to be given. If

E
(
θ̂
)

= θ ∀θ ∈ E (2.1)

holds true, then we call the estimator θ̂ unbiased. If

lim
N→∞

E
(
θ̂(N)

)
= θ ∀θ ∈ E (2.2)

holds, then we call the estimator θ̂ asymptotically unbiased. Otherwise, it is called biased.

Note that, if the estimator is unbiased, its mean converges towards the mean of the model
or model parameters. Yet, since we design the model to represent only a certain part of reality,
the model is typically not exact. Hence, the

”
ideal“ situation is not realistic and we have to

13
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think about generalizations. One possibility is to suppose that we evaluate the estimator in a
noiseless situation to obtain an approximation. Then, these reference values are compared to
results with noise. The final step is to eliminate the influence of the disturbance such that the
estimator converges to its reference.

Unfortunately, it is very difficult if not impossible to find the expected value by analytical
means. And for some probability density functions, the expected value does not exist. And
last, we may face the problem that while the expected values are identical, i.e. the estimator
is unbiased according to Definition 2.1, the probability density functions are very different and
coincide only in the expected value. If such an estimator were used, the outcome of a system
may be very different from the real one. To avoid such a problem, we introduce the concept of
consistency:

Definition 2.2 (Weak and strong consistency)
Suppose an estimator θ̂ and parameters θ to be given. If θ̂ converges in probability to θ,

p.lim
N→∞

θ̂(N) = θ, (2.3)

then the estimator θ̂ is called weakly consistent.
If θ̂ converges almost surely to θ,

a.s.lim
N→∞

θ̂(N) = θ, (2.4)

then the estimator θ̂ is called strongly consistent.

The advantage of this concept is that we can prove consistency much easier than unbiased-
ness. Since the limit operator may be interchanged with a continuous function (p.lim f(x) =
f(p.lim(x))) if both limits exist, the consistency idea also exhibits nice calculation properties.

Apart from unbiasedness and consistency, we are also interested in obtaining an estimator,
which shows minimal errors only. In particular, we want to minimize the scatter range of the
estimator around its limiting value. That gives us the concept of efficiency:

Definition 2.3 (Efficiency)
Suppose an unbiased estimator θ̂ of parameter θ to be given. If for any unbiased estimator θ̂1

of parameter θ the inequality

Cov
(
θ̂, θ̂
)
≤ Cov

(
θ̂1, θ̂1

)
, (2.5)

then the estimator θ̂ is called efficient.

Since we can rely on a finite number of noisy measurements only, it is clear that there are
limits on the accuracy and precision that can be reached by the estimator. The connection
between measurements and accuracy is given by the so called Cramer-Rao rule:

Theorem 2.4 (Cramer-Rao rule)
Consider a probability space (Ω,F ,P) and a random variable X : Ω → E defined on that
triple, where the set E equipped with measure µ and E is a σ–algebra of E. Let f (z, θ) be the
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probability density function of the measurements z ∈ RN . Assume that f (z, θ) and its first and
second derivatives w.r.t. θ exist for all θ and that the boundaries of the domain of f (z, θ) w.r.t.
z are independent of θ. Then, the Cramer–Rao lower bound on the mean square error of any
estimator Ĝ(z) of the function G(θ) ∈ Cr is

MSE
(
Ĝ(θ̂(z))

)
≥
(
∂G(θ)

∂θ
+
∂bG
∂θ

)
Fi (θ)+

(
∂G(θ)

∂θ
+
∂bG
∂θ

)H
+ bgb

H
g (2.6)

where bG denotes the expected value bias given by

bG := E
(
Ĝ(θ̂(z))

)
−G(θ)

and Fi (θ) represents the Fisher information matrix of the parameters θ

Fi (θ) := E

((
∂ ln f (z, θ)

∂θ

)>(
∂ ln f (z, θ)

∂θ

))
= −E

(
∂2 ln f (z, θ)

∂θ2

)
.

We like to stress that the Cramer–Rao rule requires knowledge of the true parameter θ,
which may not be at hand. An approximation can still be calculated by replacing θ in (2.6) by
its estimated value θ̂. Similarly, the probability density function f (z, θ) can be approximated
using available measurements z only.

The Cramer–Rao rule gives us a very simple way to check efficiency:

Corollary 2.5 (Efficiency)
If a given estimator θ̂ reaches the Cramer-Rao bound (2.6), then it is efficient.

Remark 2.6 (Special cases)
There are a few special cases we like to point out:

1. Inequality (2.6) becomes an equality if and only if there exists a matrix Γ such that

Ĝ(θ̂(z))− E
(
Ĝ(θ̂(z))

)
= Γ

(
∂ ln f (z, θ)

∂θ

)>
.

2. If G(θ) = θ, bG = 0 and Fi (θ) is regular, then we obtain the Cramer–Rao lower bound
for unbiased estimators

Cov
(
θ̂(z), θ̂(z)

)
≥ Fi (θ)−1 .

3. If G(θ) = θ, bG 6= 0 and Fi (θ) is regular, then we find the Cramer–Rao lower bound on
the mean square error of biased estimators

MSE
(
θ̂(z)

)
≥
(

Id +
∂bG
∂θ

)
Fi (θ)−1

(
Id +

∂bG
∂θ

)>
+ bGb

>
G.
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2.2 Exemplary analysis

Recall the simple resistance example from Section 1.2. There, we have already seen that the
simple approach estimator RSA does not reveal good results, cf. Figures 1.4 and 1.6. To keep
the analysis simple, we consider the following assumption:

Assumption 2.7 (Noise)
The measurements are disturbed by additive random variables, i.e.

i(k) = i0 +Xi(k) and u(k) = u0 +Xu(k) (2.7)

with the properties that

• each random variable has zero mean and variance σ2
u, σ

2
i ,

• each random variable is independently and identically distributed (iid),

• each random variable exhibits a symmetric distribution, and

• the random variables are mutually independent.

2.2.1 Unbiasedness

Analysis of θ̂EV = REV:

Using the model (2.7) within formula (1.2) we directly see

E
(
θ̂EV

)
= lim

N→∞
θ̂EV(N) = lim

N→∞

1
N

N∑
k=1

u(k)

1
N

N∑
k=1

i(k)

= lim
N→∞

1
N

N∑
k=1

u0 +Xu(k)

1
N

N∑
k=1

i0 +Xi(k)

= lim
N→∞

u0 + 1
N

N∑
k=1

Xu(k)

i0 + 1
N

N∑
k=1

Xi(k)

=

u0 + lim
N→∞

1
N

N∑
k=1

Xu(k)

i0 + lim
N→∞

1
N

N∑
k=1

Xi(k)

.

Now, we can apply the zero mean and iid property of Xu and Xi, that is

E (Xu) = lim
N→∞

1

N

N∑
k=1

Xu(k) = 0, E (Xi) = lim
N→∞

1

N

N∑
k=1

Xi(k) = 0. (2.8)

Hence, we obtain

E
(
θ̂EV

)
=

u0 +

=0︷ ︸︸ ︷
lim
N→∞

1

N

N∑
k=1

Xu(k)

i0 + lim
N→∞

1

N

N∑
k=1

Xi(k)︸ ︷︷ ︸
=0

=
u0

i0
= R0 (2.9)

which shows that the error-in-variable estimator is unbiased.
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Analysis of θ̂LS = RLS:

Again, we first compute the expectation value of the estimator. Here, we obtain

E
(
θ̂LS

)
= lim

N→∞
θ̂LS(N) = lim

N→∞

N∑
k=1

u(k) · i(k)

N∑
k=1

i(k)2

=

lim
N→∞

N∑
k=1

(u0 +Xu(k)) · (i0 +Xi(k))

lim
N→∞

N∑
k=1

(i0 +Xi(k))2

=

lim
N→∞

u0i0 + u0
N

N∑
k=1

Xi(k) + i0
N

N∑
k=1

Xu(k) + 1
N

N∑
k=1

Xu(k)Xi(k)

lim
N→∞

i20 + 2i0
N

N∑
k=1

Xi(k) + 1
N

N∑
k=1

Xi(k)2

Now, from Assumption 2.7 we use the zero mean and iid property properties (2.8) of the random
variables Xu and Xi as well as their mutually independency and the variance assumption, i.e.

∀k = 1, . . . , N : Xu(k)Xi(k) = 0, σ2 (Xi) = lim
N→∞

1

N

N∑
k=1

Xi(k)2 = σ2
i (2.10)

to obtain

E
(
θ̂LS

)
=

u0i0
i20 + σ2

i

=
R0

1 + σ2
i /i

2
0

.

Hence, the least square estimator will always underestimate the magnitude of the value it is
supposed to approximate. Note that the noise is removed from the nominator, but is always
present in the denominator. Utilizing Definition 2.1, the least square estimator is biased. The
bias depends on the signal-to-noise ration (SNR) of the measurements i0/σi.

Analysis of θ̂SA = RSA:

If we take a closer look at the simple approach estimator θ̂SA and incorporate the structural
assumptions (2.7), we obtain

E
(
θ̂SA

)
= lim

N→∞
θ̂SA(N) = lim

N→∞

1

N

N∑
k=1

u(k)

i(k)
= lim

N→∞

1

N

N∑
k=1

u0 +Xu(k)

i0 +Xi(k)

Rewriting this equation, we have

E
(
θ̂SA

)
= lim

N→∞

1

N

u0

i0

N∑
k=1

1 +Xu(k)/u0

1 +Xi(k)/i0
= lim

N→∞
R0

1

N

(
N∑
k=1

1

1 +Xi(k)/i0
+

N∑
k=1

Xu(k)/u0

1 +Xi(k)

)
Applying the Taylor series

1

1 +Xi(k)/i0
=
∞∑
j=0

(−1)j
(
Xi(k)

i0

)j



18 Chapter 2: Structure of the identification process

we obtain

E
(
θ̂SA

)
= lim

N→∞
R0

1

N

(
N∑
k=1

∞∑
j=0

(−1)j
(
Xi(k)

i0

)j
+

N∑
k=1

∞∑
j=0

(−1)j
(
Xi(k)

i0

)j
Xu(k)

)

Applying the mutually independent property (2.8), we can shorten this expression to

E
(
θ̂SA

)
= lim

N→∞
R0

1

N

(
N∑
k=1

∞∑
j=0

(−1)j
(
Xi(k)

i0

)j
+

N∑
k=1

1 ·Xu(k)

)

which can again be shortened using the zero mean property of Xu displayed in (2.8) to

E
(
θ̂SA

)
= lim

N→∞
R0

1

N

N∑
k=1

∞∑
j=0

(−1)j
(
Xi(k)

i0

)j
= lim

N→∞
R0

1

N

N∑
k=1

(
1 +

∞∑
j=1

(−1)j
(
Xi(k)

i0

)j)

= lim
N→∞

R0

(
1 +

1

N

∞∑
j=1

N∑
k=1

(−1)j
(
Xi(k)

i0

)j)
.

Since Xi is symmetric due to Assumption 2.7, we have
N∑
k=1

(−1)j (Xi(k)/i0)j = 0 for odd numbers

j. Therefore, the limiting value of the expectation value is

E
(
θ̂SA

)
= R0

(
1 + lim

N→∞

(
1

N

∞∑
j=1

N∑
k=1

(
Xi(k)

i0

)2j
))

= R0

(
1 +

∞∑
j=1

m2j
j (Xi(k))

i2j0

)

where we used the moments of Xi(k) according to Definition 1.4. For small disturbances
|Xi(k)/i0| < 1, we can neglect the moments of order 4 and higher and finally obtain

E
(
θ̂SA

)
= R0

(
1 +

σ2 (Xi)

i20

)
= R0

(
1 +

σ2
i

i20

)
.

Similar to the least square estimator θ̂LS = RLS, the analysis shows that the estimator converges
to a value larger than the desired one. Note that the problem for group A here is that the
Taylor series expansion cannot be performed.

2.2.2 Consistency

Note that we have already done these computations during the computation of the expected
values since we have been using the concept of convergence with probability 1, which is a
stronger concept than convergence in probability. In particular, for the error–in–variables
approach we have

p.lim
N→∞

θ̂EV = p.lim
N→∞

1
N

N∑
k=1

u(k)

1
N

N∑
k=1

i(k)

=

p.lim
N→∞

1
N

N∑
k=1

u0 +Xu(k)

p.lim
N→∞

1
N

N∑
k=1

i0 +Xi(k)

=
u0

i0
= R0.

Hence, θ̂EV is a weakly consistent estimator. As we can see, it is much easier to check consistency
than (asymptotic) unbiasedness.

Additionally, the concept is typically used based on a cost function interpretation of an
estimator. Hence, it reveals an insight into the anticipated errors.
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Interpretation of θ̂LS = RLS:

Consider, for example, the least square estimator θ̂LS from (1.3). The idea is to minimize the
equation errors e(k) := u(k) − Ri(k) in the model equation in a least square sence. This
gives us the cost function

VLS(N) :=
N∑
k=1

e2(k,R)

and allows us to restate the estimation problem via

θ̂LS(N) = argmin
R∈R

VLS(N,R).

Interpretation of θ̂SA = RSA:

Similarly, the simple approach estimator can be rewritten using the resistance estimates R(k) :=

u(k)/i(k) defining the cost function VSA(N,R) :=
N∑
k=1

(R(k)−R)2 and the estimation problem

θ̂SA(N) = argmin
R∈R

VSA(N,R).

The difference compared to the least square estimator θ̂LS is that here, we do not consider a
model of the problem, which is subject to disturbances. Instead, the measurement quotient
R(k) is considered as disturbed.

Interpretation of θ̂EV = REV:

Last, the error–in–variable approach assumes that each variable by itself is disturbed,
not the quotient as for the simple approach. Here, the cost function is defined via

VEV(N,R, ip, up) :=
N∑
k=1

(u(k)− up)2 +
N∑
k=1

(i(k)− ip)2 ,

which gives us the estimation problem

θ̂EV(N) = argmin
R,ip,up,N

VEV(N,R, ip, up)

subject to up = Rip.

Note that one typically considers a quadratic cost criterion, but basically one is free to choose
any other costs as well. The advantage of the quadratic cost is the simplicity in minimization.
Moreover, one can show that normally distributed disturbing noise leads to a quadratic criterion.

2.2.3 Efficiency

In order to analyze efficiency of an estimator, we need to calculate the second moment of it.
Alternatively, as we have seen in Corollary 2.5, the Cramer–Rao rule (2.5) can be evaluated.
For the present example, the probability density functions are not known exactly and may
only be approximated using respective measurements. For this reason, we focus on a manual
calculation of the variance of the estimators.
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Analysis of θ̂EV = REV:

Regarding the variance, we apply Definition 1.5, that is

σ2
(
θ̂EV

)
= E

((
θ̂EV − E

(
θ̂EV

))2
)
.

To compute this value, we reconsider θ̂EV and — since we are interested in the second moment
only — neglect all second order contributions within such as X2

i or XuXi in this term, i.e.

θ̂EV =

u0 + 1
N

N∑
k=1

Xu(k)

i0 + 1
N

N∑
k=1

Xi(k)

=

u0 + 1
N

N∑
k=1

Xu(k)

i0 + 1
N

N∑
k=1

Xi(k)

·
i0 − 1

N

N∑
k=1

Xi(k)

i0 − 1
N

N∑
k=1

Xi(k)

neglect 2nd order
≈

u0i0 + i0
N

N∑
k=1

Xu(k)− u0
N

N∑
k=1

Xi(k)

i20

=
u0

i0
+

1

i0N

N∑
k=1

Xu(k)− u0

i20N

N∑
k=1

Xi(k)

= R0

(
1 +

1

N

N∑
k=1

Xu(k)

u0

− 1

N

N∑
k=1

Xi(k)

i0

)
.

Hence, we obtain

σ2
(
θ̂EV

)
= E

((
θ̂EV −R0

)2
)

= E

(R0

(
1

N

N∑
k=1

Xu(k)

u0

− 1

N

N∑
k=1

Xi(k)

i0

))2


mutually ind.
= E

(
R2

0

N2

N∑
k=1

Xu(k)2

u2
0

+
R2

0

N2

N∑
k=1

Xi(k)2

i20

)
linearity

=
R2

0

N2

(
E

(
N∑
k=1

Xu(k)2

u2
0

)
+ E

(
N∑
k=1

Xi(k)2

i20

))

=
R2

0

N2

(
σ2 (Xu)

u2
0

+
σ2 (Xi)

i20

)
=
R2

0

N2

(
σ2
u

u2
0

+
σ2
i

i20

)

Analysis of θ̂LS = RLS:

Considering the variance, Definition 1.5 reveals

σ2
(
θ̂LS

)
= E

((
θ̂LS − E

(
θ̂LS

))2
)
.

Similar to the estimator θ̂EV, we first reconsider θ̂LS and approximate it using only zero and
first order terms:

θ̂LS ≈
u0i0 + u0

N

N∑
k=1

Xi(k) + i0
N

N∑
k=1

Xu(k)

i20 + 2i0
N

N∑
k=1

Xi(k)

·
i20 − 2i0

N

N∑
k=1

Xi(k)

i20 − 2i0
N

N∑
k=1

Xi(k)
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neglect 2nd order
=

u0i
3
0 +

u0i20
N

N∑
k=1

Xi(k) +
i30
N

N∑
k=1

Xu(k)− 2u0i20
N

N∑
k=1

Xi(k)

i40

=
u0

i0
+

1

Ni0

N∑
k=1

Xu(k)− u0

Ni20

N∑
k=1

Xi(k)

= R0

(
1 +

1

N

N∑
k=1

Xu(k)

u0

− 1

N

N∑
k=1

Xi(k)

i0

)

This expression is identical to θ̂EV, and we therefore obtain

σ2
(
θ̂LS

)
= σ2

(
θ̂EV

)
=
R2

0

N2

(
σ2
u

u2
0

+
σ2
i

i20

)
.

Analysis of θ̂SA = RSA:

Computing the variance via Definition 1.5, that is

σ2
(
θ̂SA

)
= E

((
θ̂SA − E

(
θ̂SA

))2
)
.

Similar to the estimator θ̂EV, we first reconsider θ̂SA and approximate it using only zero and
first order terms:

θ̂SA =
1

N

N∑
k=1

u0 +Xu(k)

i0 +Xi(k)
· i0 −Xi(k)

i0 −Xi(k)

neglect 2nd order
=

1

N

N∑
k=1

u0i0 + i0Xu(k)− u0Xi(k)

i20

= R0

(
1 +

1

N

N∑
k=1

Xu(k)

u0

− 1

N

N∑
k=1

Xi(k)

i0

)

This expression is identical to θ̂EV and σ2
(
θ̂EV

)
, and we therefore obtain

σ2
(
θ̂SA

)
= σ2

(
θ̂EV

)
= σ2

(
θ̂LS

)
=
R2

0

N2

(
σ2
u

u2
0

+
σ2
i

i20

)
.

2.2.4 Assessment

Unbiasedness

The simple approach estimator θ̂SA continuously overestimates the true value of the parameter,
hence it is biased. The error–in–variable estimator θ̂EV approximate the true value of the
paramter and is therefore unbiased. Last, the least square estimator θ̂LS underestimates the
true value of the parameter. Like θ̂SA, it is biased.
Hence, from a bias point of view, the error–in–variable estimator is preferable.

Consistency

Within our analysis, we found that all three estimators are converging in distribution. There-
fore, the also converge in probability and are consistent.
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Efficiency

Last, we have seen, all three estimators show the same second moment. Hence, none of them
is more efficient.

Concluding, the error–in–variable estimator is the choice at hand given the presented alter-
natives, since it performs as well as the other estimators in all three categories and gives better
results in terms of bias.

2.3 Basic design of estimators

Each identification process consists of a series of basic steps:

1. Collect information on the system

2. Select a model to represent the system

3. Choose an optimization criterion

4. Fit the model parameters to the measurements accordingly

5. Validate the computed model

Note that some of the steps may be hidden from the user or selected without being aware of a
choice, which may result in suboptimal or even poor performance.

2.3.1 Step 1: Gathering information

In order to identify a process, we first need to build a model of that part of the system, which
we are interested in. To this end, we need to gather information about the process. This step
can be done either by observing natural fluctuations, but it is by far more efficient to set up
dedicated experiments that actively excite the system via known inputs. While a good example
of the first are default fluctuations in demand for a supply chain, the latter can be interpreted
as a stress test of a supply chain by uncommon and/or extreme demands. Additionally, the
controlled second approach allows for optimization of information gathering goals, such as
minimum cost and time, measurement accuracy over a certain bandwidth or other possible
aims. Note that the quality of the total identification process may heavily depend on these
choices.

2.3.2 Step 2: Selecting the model structure

The model structure is the most variable part of the identification. It not only depends on
the problem of identification itself, but may be subject to the further use of the model. For
example, an approximation of the elasticity of a wheel via a PDE may give a good dynamical
model. Yet, if the model is to be used in a feedback loop, the required computing time to
evaluate the model is larger than the sampling time of the loop. Hence, a coarser (or worse)
model is necessary for the subsequent task. Keeping this in mind, we distinguish the following:
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Parametric vs. nonparametric models

In a parametric model, the system is described by a small number of characteristic quantities.
These quantities are called parameters of the model. Regarding our simple electrical circuit
example, the expected value is one parameter of the model, the variance the second one. An
alternative example is given by the transfer function, e.g. of a filter, which is described by its
poles and zeros.

A nonparametric model is given by measurements of a system function at a large number
of points. Reviewing the transfer function example, a description via an impulse response at a
large number of points is such a characterization.

Note that is usually simpler to create a nonparametric model than a parametric one because
the modeler needs less knowledge about the system itself in the first case. Yet, insight into
the problem and concentration of information in a few characteristics is more substantial for
parametric models and make the problem simulation faster.

White box vs. black box models

In a white box model, the internal functioning of the system is – at least to some degree –
understood. In particular, skills of the experimenter as well as connections between components
such as physical laws can be used, whose availability and applicability depend on such an insight.
Here, a loudspeaker illustrates the need for extensive understanding of mechanical, electrical
and acoustical phenomena in order to derive an appropriate model.

In contrast to the white box idea of using insight into the system, the black box approach
uses a brute force modeling. To this end, a mathematical model is proposed, which allows the
description of any observed input and output measurements, but may not even be connected
to the real system. Regarding the loudspeaker, a high order transfer function may be used as
such a model.

Again, the choice depends on the further aim. While the white box idea provides a better
insight gain into the working principles of the system, the black box model may be sufficient for
simulations/predictions. Note that it is typically a good idea to include as much knowledge as
possible during modeling, yet that may not always be easy to accomplish. Analyzing a stable
system for example, it is not simple to express this information if the polynomial coefficients
are used as parameters of the model.

Linear vs. nonlinear models

In almost all cases, real life applications are nonlinear. Unfortunately, theory of nonlinear
systems is quite involved and may be difficult to understand for a user unfamiliar with this
theory. A nonlinear approach describes the system over its complete operating range and covers
also rare and unusual phenomena.

Linear systems, on the other hand, are (almost) completely understood, nice to handle
and can be evaluated quickly. Unfortunately, as stated above, real life is typically nonlinear.
Therefore, linear systems commonly represent approximations of nonlinear systems within some
region – assuming the region can be linearized. Within such a so called operating region, the
linear part of the system can be regarded as dominant, i.e. the nonlinear part can be neglected
without changing the behavior of the system.

Similar to the other choices, the scope of the problem is relevant to make an appropriate
choice. For example, a nonlinear model is needed to describe the distortion of an amplifier,
but a linear model is sufficient to represent its transfer characteristics if the operating range is
small enough.
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Linear-in-parameter vs. nonlinear-in-parameter models

The last choice has to be made between linear and nonlinear influence of parameters of the
model. A model is called linear-in-parameter if there exists a linear relation between these
parameters and the error that is minimized. Note that linear-in-parameters does not imply a
linear model. For example, e = y−(au2+bu+c) is linear in a, b and c, but the model is nonlinear.
Likewise, e = y − (a + bjω)/(c + djω)u is a linear model, but it is nonlinear-in-parameter in c
and d.

The impact of this choice can be seem, e.g., for the least square estimator. If the model
is linear-in-parameter, then the minimization problem of the least squares can be solved ana-
lytically, and does not require an iterative optimization method. Hence, the complexity of a
linear-in-parameter model is much lower.

2.3.3 Step 3: Choose optimization criterion

After choosing a model, is must be matched to the available measurements of the process.
To this end, one typically introduces a criterion, which measures the goodness of fit, i.e. the
distance between the computed and the measured values. Note that the choice of this criterion
is important regarding the outcome of the identification process as it determines the stochastic
properties of the estimator. Regarding our simple resistance example, there are several choices
which lead to estimators with different properties, cf. Section 2.2.

The cost criterion can be chosen arbitrarily. Yet, it typically resides on ad hoc intuitive
insight. In the following Chapter 3, we provide a more systematic approach based on stochastic
arguments to obtain such a criterion.

Remark 2.8
There exist test on the cost criterion to check – even before deriving the estimator – if the
resulting estimator can be consistent. These are necessary conditions, which are outside the
scope of this lecture.

2.3.4 Step 4: Fitting model parameters

In the ensuing step of fitting the parameters, the design work is done and the computations
start. Within this step, numerical or symbolic methods are applied to solve the minimization
problem arising from the cost criterion in Step 3 subject to the model chosen in Step 2 with
respect to the measurement derived in Step 1. Although this step seems to be the essential
one, we can already see that the most of the work is the design. This is due to the fact that
nowadays, computing power is cheap and there exist a wide area of methods to solve certain
problems. The actual art is to design the problem such that it is easily solvable but satisfies
the constraints, which bound the model in its further use.

2.3.5 Step 5: Validating obtained model

In the final step, the validity of the obtained model shall be tested. Here, the following question
are essential:

• Does the model describe the available data properly?

• Are there indications that some parts of the model are not well designed or flawed?
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Note that, as mentioned before, the model with the smallest error is not always the preferred
one in practice. Instead, a simpler model may be better suited if it describes the system within
user-specified error bounds.

Within the validation process, errors should be separated into different classes such as
un-modeled linear dynamics or nonlinearity distortions. Such information shall allow further
improvements of the model if necessary. During the validation, the application should be kept
in mind, i.e. conditions similar to reality are to be used. Note that extrapolation should be
avoided as the errors of extrapolation increase drastically if many measurements are used, which
is the typical case for estimator design.
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Chapter 3

Least square estimation

Within this chapter, we pursue a systematic approach to the parameter estimation problem.
In particular, we ask what criterion should be used to match the model to the data. To answer
this question, we use a statistical approach to select a criterion to measure the quality of the
resulting fit. After defining the problem at hand, we discuss two estimators here, the least
square and the weighted least square estimator. Note that it is also possible to use other
estimator types such as the least absolute values.

3.1 Problem definition

Let a input-output model be given by

y0(k, θ) = g (u0(k), θ) (3.1)

where k ∈ N0 represents the measurement index, y0(k) ∈ Y = Rny the output, u(k) ∈ U = Rnu

the input and θ ∈ Θ = Rnθ the true parameter vector.
The aim is to estimate the parameters from noisy observations at the output of the systems.

To this end, we assume that the output is separated into a deterministic and a probabilistic
part y0(·) and Xy(·):

Assumption 3.1
Given an input output model, noise disturbances only occur within the output observations

y(k,Xy) = y0(k) +Xy(k) (3.2)

where y(k,Xy) and y0(k) represent the modeled and nominal output and Xy(k) denotes the
random output variable.

To achieve the described goal, we minimize the errors

e(k, θ) = zk − y0(k, θ) (3.3)

between the measured and the estimated/modeled values zk and y0(k, θ) respectively.
The quality of a fit can then be expressed via a cost criterion. One such criterion is given by
the so called nonlinear least squares (NLS), which is derived from the minimization of the sum
of squared values:

27
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Definition 3.2 (Least Square estimator)
The least square estimator θ̂NLS(N) is given by

θ̂NLS(N) = argmin
θ

VNLS(N, θ), with VNLS(N, θ) :=
1

2

N∑
k=1

e2(k, θ). (3.4)

Alternatively, one may also use the sum of absolute values

θ̂NLA(N) = argmin
θ

VNLA(N, θ), with VNLA(N, θ) :=
1

2

N∑
k=1

|e(k, θ)| (3.5)

The least square estimator (3.4) is the most popular one. Yet, by choosing the cost function
arbitrarily as we have done it here, it is not at all clear that the result is not necessarily
optimal. Least squares, however, are strongly motivated by numerical aspects. This is due to
the fact that minimizing a least squares cost function is usually less involved than alternative
cost functions. Here, the quadratic nature can be exploited which reveal that the necessary first
order conditions for an optimal are also sufficient. Still, we like to mention that the nonlinear
least absolute values (3.5) are less sensitive to outliers in the data and may for this reason be
interesting in certain applications as well.

As we have seen in Section 2.2, even within the class of least squares different estimators can
be designed which lead to results with different properties. In context of an optimal outcome
with respect to the properties presented in Chapter 2, it is important to see where the noise
enters into the raw data. Thereafter, a cost function should be selected that explicitly accounts
for these errors.

3.2 Linear least square

If the model is chosen to be linear-in-parameter θ, equations (3.1) and (3.3) simplify to

y0(θ) = K (u0) θ (3.6)

with input/output matrix K (u) ∈ RN×nθ , input vector u0 ∈ RN and output vector y0 ∈ RN .
Hence, the error can be rewritten as

e(θ) = z −K (u0) θ (3.7)

where z ∈ RN represents the vector of measurements. The quality criterion VNLS(N, θ) reduces
to a linear one given by

VLS(N, θ) :=
1

2
e(θ)>e(θ) =

1

2
(z −K (u0) θ)> (z −K (u0) θ)

=
1

2

N∑
k=1

(zk −K (u0(k)) θ)2 . (3.8)

Hence, we obtain the following:
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Definition 3.3 (Linear least square estimation problem)
The linear least square estimate θ̂LS(N) is given by

θ̂LS(N) = argmin
θ

VLS(N, θ) (3.9)

with VLS(N, θ) according to (3.8).

Since VLS is quadratic, we can compute the minimizer of this loss function explicitly via

∂VLS(N, θ)

∂θ
= 0.

This gives us

0 =
∂VLS(N, θ)

∂θ
= e(θ)>

∂e(θ)

θ
= e(θ)>(−K (u0)) = −K (u0)> e(θ).

Hence, we have to solve the equation

−K (u0)> (z −K (u0) θ) = 0

for θ which reveals the solution

θ̂LS(N) = θ =
(
K (u0)>K (u0)

)−1

K (u0)> z.

Concluding, we have shown the following:

Theorem 3.4 (Solution of θ̂LS)
The solution to the linear least square estimation problem (3.9), (3.8)

θ̂LS(N) = argmin
θ

VLS(N, θ) with VLS(N, θ) =
1

2
(z −K (u0) θ)> (z −K (u0) θ)

is given by

θ̂LS(N) =
(
K (u0)>K (u0)

)−1

K (u0)> z. (3.10)

Here, we like to note that one typically does not compute the least square estimator via
formula (3.10), but instead solves the linear equation(

K (u0)>K (u0)
)
θ̂LS(N) = K (u0)> z

and avoids inverting the matrix K (u0)>K (u0). Unfortunately, the matrix K (u0)>K (u0)
causes numerical instability since eigenvalues are raised by the power of two. There are, however,
ways to compute the solution of the linear least square estimation problem (3.9), (3.8) by other,
more stable algorithms such as the QR decomposition.

In order to generate the matrix K, one has to reformulate the model of the problem (3.6)
combined for the available inputs and outputs u(k) and y(k), k = 1, . . . , N . Let us consider
two examples:
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Example 3.5
The simplest model is given by

y0 = θ,

which is independent from the input. Combining all available outputs y(k), k = 1, . . . , N this
reads

y0(1) = θ

...

y0(N) = θ

and reveals the matrix

K =

1
...
1

 .

Using formula (3.10) we obtain the estimator

θ̂LS(N) =
(
K>K

)−1
K>z

=

(1, . . . , 1)

1
...
1



−1

(1, . . . , 1) z

= (N)−1 (1, . . . , 1) z =
1

N

N∑
k=1

z(k).

To illustrate the result, we chose measurements of the form

z = θ with θ = 1 + 0.2Xy,

where Xy is normally independently distributed with mean 0 and standard deviation 1, i.e.
Xy ∈ N (0, 1) and θ ∈ N (1, 0.2). Considering 100 such measurements, we obtain the result
display in Figure 3.1. The respective program is displayed in Program A.3.

Example 3.6
Given the model

y = u1θ1 + u2
2θ2

we can combine inputs and outputs to obtain

y(1) = u1(1)θ1 + u2
2(1)θ2

...

y(N) = u1(N)θ1 + u2
2(N)θ2.
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Figure 3.1: Sample measurements and estimation for Example 3.5

Hence, we have (3.6), i.e.

y0 = K (u0) θ

with

y0 =

 y(1)
...

y(N)

 , u0 =


u1(1)
u2(1)

...
u1(N)
u2(N)

 , and K (u0) =

 u1(1) u2
2(1)

...
...

u1(N) u2
2(N)

 .

Now, we can apply formula (3.10) to obtain the estimator

θ̂LS(N) =
(
K (u0)>K (u0)

)−1

K (u0)> z

=


 u1(1) u2

2(1)
...

...
u1(N) u2

2(N)


> u1(1) u2

2(1)
...

...
u1(N) u2

2(N)



−1 u1(1) u2

2(1)
...

...
u1(N) u2

2(N)


>

z

=

(u1(1) . . . u1(N)
u2

2(1) . . . u2
2(N)

) u1(1) u2
2(1)

...
...

u1(N) u2
2(N)



−1(

u1(1) . . . u1(N)
u2

2(1) . . . u2
2(N)

)
z

=


N∑
k=1

u2
1(k)

N∑
k=1

u1(k)u2
2(k)

N∑
k=1

u1(k)u2
2(k)

N∑
k=1

u4
2(k)


−1

N∑
k=1

u1(k)zk

N∑
k=1

u2
2(k)zk

 .

The estimator can be computed by solving the two–dimensional linear equation Aθ̂LS(N) = b
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with

A =


N∑
k=1

u2
1(k)

N∑
k=1

u1(k)u2
2(k)

N∑
k=1

u1(k)u2
2(k)

N∑
k=1

u4
2(k)

 and b =


N∑
k=1

u1(k)zk

N∑
k=1

u2
2(k)zk

 .

To illustrate the result, we chose N inputs

u1(k) = 1 +
k

N − 1
,

u2(k) = 2 +
10k

N − 1
,

which gives us u0 and K (u0). Then, we generated measurements of the form

z = K (u0) θ

with

θ1 = 1 + 2Xy,1

θ2 = 2 + 1Xy,2

where Xy,1, Xy,2 are normally independently distributed with mean 0 and standard deviation 1,
i.e. θ1 ∈ N (1, 2) and θ2 ∈ N (2, 1). Considering 100 such measurements, we obtain the result
display in Figure 3.2. The respective program is displayed in Program A.4.
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Figure 3.2: Sample measurements and estimation for Example 3.6

3.2.1 Properties of the linear least square estimator

Note that we did not formulate any assumptions on the behavior of the noise Xy to compute
formula (3.10), but instead calculated it directly from the measurements and the model without
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bothering about the noise behavior. However, in order to make statements about the properties
of the estimator, it is necessary to give some specifications on the noise behavior.

The expected value of the estimator θ̂LS regarding model outputs, i.e. by considering z =
y(Xy), can be computed via

E
(
θ̂LS

)
(3.10)

= E

((
K (u0)>K (u0)

)−1
K (u0)> y(Xy)

)
(3.2)
=
(
K (u0)>K (u0)

)−1
K (u0)> E (y0 +Xy)

=
(
K (u0)>K (u0)

)−1
K (u0)> y0 +

(
K (u0)>K (u0)

)−1
K (u0)> E (Xy)

(3.6)
=
(
K (u0)>K (u0)

)−1
K (u0)>K (u0) θ +

(
K (u0)>K (u0)

)−1
K (u0)> E (Xy)

= θ +
(
K (u0)>K (u0)

)−1
K (u0)> E (Xy) .

Now, in order for θ̂LS to be unbiased, we require E (Xy) = 0.

Corollary 3.7 (Unbiasedness of θ̂LS)
If the model is linear-in-parameter and the probabilistic part of the output satisfies E (Xy) = 0,

then the least square estimator θ̂LS is unbiased.

The second interesting characteristic is the covariance matrix of the estimator θ̂LS. Here,
we see the following:

Cov
(
θ̂LS, θ̂LS

)
= E

((
θ̂LS − E

(
θ̂LS

))(
θ̂LS − E

(
θ̂LS

))>)
= E

(((
K (u0)>K (u0)

)−1
K (u0)> E (Xy)

)((
K (u0)>K (u0)

)−1
K (u0)> E (Xy)

)>)

=

((
K (u0)>K (u0)

)−1
K (u0)>

)
E
(
XyX

>
y

)((
K (u0)>K (u0)

)−1
K (u0)>

)>
=

((
K (u0)>K (u0)

)−1
K (u0)>

)
Cov (Xy, Xy)

((
K (u0)>K (u0)

)−1
K (u0)>

)>
Similar to Corollary 3.7, we can make the following conclusion regarding the covariance matrix
of the estimator θ̂LS.

Corollary 3.8 (Covariance of θ̂LS)
Consider a linear-in-parameter model. If the disturbing noise Xy is white and uncorrelated, i.e.

Cov (Xy, Xy) = σ2 (Xy) Idnθ , then the covariance matrix of the estimator θ̂LS is given by

Cov
(
θ̂LS, θ̂LS

)
= σ2 (Xy)

(
K (u0)>K (u0)

)−1
(3.11)

Else, the covariance matrix can be computed via

Cov
(
θ̂LS, θ̂LS

)
= LCov (Xy, Xy)L

>. (3.12)

where L :=
(
K (u0)>K (u0)

)−1

K (u0)>.
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To illustrate this, let us reconsider Examples 3.5 and 3.6.

Example 3.9
Given Assumption 3.1, consider the model

y0 = θ

and suppose the noise Xy to be white and uncorrelated. Using K = (1, . . . , 1)>, we can evaluate
(3.11) and obtain

Cov
(
θ̂LS, θ̂LS

)
=

1

N
σ2 (Xy) .

Example 3.10
Consider the model

y = u1θ1 + u2
2θ2

and again assume Assumption 3.1 to hold and the noise Xy to be white and uncorrelated, i.e.
Cov (Xy, Xy) = σ2 (Xy) Idnθ . Then, we obtain

Cov
(
θ̂LS, θ̂LS

)
= σ2 (Xy)

(
K (u0)>K (u0)

)−1

Example 3.6
= σ2 (Xy)


N∑
k=1

u2
1(k)

N∑
k=1

u1(k)u2
2(k)

N∑
k=1

u1(k)u2
2(k)

N∑
k=1

u4
2(k)


−1

.

Here, we like to note that within the least square estimator (3.10)(
K (u0)>K (u0)

)
θ̂LS(N) = K (u0)> z

the multiplication K (u0)> z includes an N × nθ and a nθ × 1 matrix. To this sum, we can
apply the central limit theorem we gives us that the estimator θ̂LS asymptotically converges to
a Gaussian distribution even if Xy is not Gaussian distributed, that is

lim
N→∞

θ̂y = N
(

E
(
θ̂LS

)
,Cov

(
θ̂LS, θ̂LS

))
.

3.3 Weighted least square

So far, we have only been looking at equally weighted measurements in (3.4) (and (3.5)).
However, it may be desirable to change this property, e.g. to suppress measurements with
high uncertainty and to emphasize those with low uncertainty. To design such a weighting, the
covariance matrix can be used.

In practice, it is not always clear what weighting should be used. Yet certain indicators can
be used to improve the estimator. For example, if it is known that the model exhibits errors,
then utilizing the covariance matrix may not be a good idea. Instead, the user may prefer to
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put a dedicated wighting in order to keep the model errors small in some specific operation
regions.

Definition 3.11 (Weighted Least Square estimator)
The weighted least square estimator θ̂WLS(N) is given by

θ̂WLS(N) = argmin
θ

VWLS(N, θ), with VWLS(N, θ) :=
1

2
e(θ)>We(θ) (3.13)

where W ∈ RN×N is symmetric and positive definite.

Again we can utilize the quadratic nature of VWLS to compute the minimizer of this loss
function explicitely via

∂VWLS(N, θ)

∂θ
= 0.

This gives us

0 =
∂VWLS(N, θ)

∂θ
= e(θ)>W>∂e(θ)

θ
= e(θ)>W>(−K (u0)) = −K (u0)>We(θ).

Solve the equation

−K (u0)>W (z −K (u0) θ) = 0

for θ reveals

θ̂WLS(N) =
(
K (u0)>WK (u0)

)−1

K (u0)>Wz.

Hence, we have shown the following:

Theorem 3.12 (Solution of θ̂WLS)
The solution to the weighted linear least square estimation problem (3.13) is given by

θ̂WLS(N) =
(
K (u0)>WK (u0)

)−1

K (u0)>Wz. (3.14)

Let us reconsider the more elaborate Example 3.6 for the weighted linear least square
estimator:

Example 3.13
Recall the model

y = u1θ1 + u2
2θ2.

Combining inputs and outputs

y(1) = u1(1)θ1 + u2
2(1)θ2

...

y(N) = u1(N)θ1 + u2
2(N)θ2.
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we have (3.6)

y0 = K (u0) θ

with

y0 =

 y(1)
...

y(N)

 , u0 =


u1(1)
u2(1)

...
u1(N)
u2(N)

 , and K (u0) =

 u1(1) u2
2(1)

...
...

u1(N) u2
2(N)

 .

Now, we choose

W = diag(0,
1

N − 1
,

2

N − 1
, . . . , 1) ∈ RN×N ,

i.e., measurements with larger index k are associated with higher weights.
To illustrate the difference between the θ̂LS and θ̂WLS, we again chose N inputs

u1(k) = 1 +
k

N − 1
,

u2(k) = 2 +
10k

N − 1
,

which gives us u0 and K (u0). Then, we generated measurements of the form

z = K (u0) θ

with

θ1 = 1 + 2Xy,1

θ2 = 2 + 1Xy,2

where Xy,1, Xy,2 are normally independently distributed with mean 0 and standard deviation 1,
i.e. θ1 ∈ N (1, 2) and θ2 ∈ N (2, 1). Considering 100 such measurements, we obtain the result
display in Figure 3.3. The respective program is displayed in Program A.5. Here, we see that
the estimated curve deviates for measurements with small index k. This is to be expected since
the respective weights are very small.

3.3.1 Properties of the weighted linear least square estimator

Turn toward the bias of the weighted linear least square estimator, we can utilize z = y(Xy) to
compute

E
(
θ̂WLS

)
(3.14)

= E

((
K (u0)>WK (u0)

)−1
K (u0)>Wy(Xy)

)
(3.2)
=
(
K (u0)>WK (u0)

)−1
K (u0)>WE (y0 +Xy)

=
(
K (u0)>WK (u0)

)−1
K (u0)>Wy0 +

(
K (u0)>WK (u0)

)−1
K (u0)>WE (Xy)
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Figure 3.3: Sample measurements and estimation for Example 3.13

(3.6)
=
(
K (u0)>WK (u0)

)−1
K (u0)>WK (u0) θ +

(
K (u0)>WK (u0)

)−1
K (u0)>WE (Xy)

= θ +
(
K (u0)>WK (u0)

)−1
K (u0)>WE (Xy) .

Now, in order for θ̂WLS to be unbiased, we require E (Xy) = 0.

Corollary 3.14 (Unbiasedness of θ̂WLS)
If the model is linear-in-parameter and the probabilistic part of the output satisfies E (Xy) = 0,

then the least square estimator θ̂WLS is unbiased.

Similarly, we can compute the covariance matrix of the estimator θ̂WLS using the arguments
from the unweighted case. Here, we use the abbreviation K := K (u0).

Cov
(
θ̂WLS, θ̂WLS

)
= E

((
θ̂WLS − E (θ)

)(
θ̂WLS − E (θ)

)>)
(3.14)

= E

(((
K>WK

)−1
K>WXy

)((
K>WK

)−1
K>WXy

)>)

=

((
K>WK

)−1
K>W

)
E
(
XyX

>
y

)((
K>WK

)−1
K>W

)>
=

((
K>WK

)−1
K>W

)
Cov (Xy, Xy)

((
K>WK

)−1
K>W

)>
Hence, we can conclude the following about the covariance of θ̂WLS:

Corollary 3.15 (Covariance of θ̂WLS)

Consider a linear-in-parameter model. Then the covariance matrix of the estimator θ̂WLS is
given by

Cov
(
θ̂WLS, θ̂WLS

)
= LCov (Xy, Xy)L

> (3.15)

where L :=
(
K (u0)>WK (u0)

)−1

K (u0)>W .
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This result allows for a very interesting conclusion shown in [?], namely that the covariance
matrix can be minimized if the weight is chosen as the inverse of the covariance matrix of the
random variable Xy, that is W = Cov (Xy, Xy)

−1.

Corollary 3.16 (Minimal covariance of θ̂WLS)
Consider a linear-in-parameter model. If the weighting matrix of the weighted linear least
square estimator θ̂WLS is chosen as W = Cov (Xy, Xy)

−1, then the covariance matrix of θ̂WLS

is minimal and given by

Cov
(
θ̂WLS, θ̂WLS

)
=
(
K (u0)>WK (u0)

)−1

. (3.16)



Chapter 4

Maximum likelihood and Bayes
estimator

As we have seen in the previous Section 3.3, the covariance matrix of the noise may be used
as weighting matrix to incorporate prior knowledge about the noise of the measurements.
Yet, a full stochastic characterization requires the probability density function of the noise
distortions. Given such a knowledge, it may be possible to obtain results, which are even better
than those of the weighted linear least square estimator. The maximum likelihood estimator
offers a theoretical framework to incorporate the knowledge about the distribution of the noise
distortions in the estimator.

The Bayes estimator extends the maximum likelihood estimator by incorporating knowledge
on the probability distribution function of the parameter itself. Hence, if such information is
at hand, the Bayes estimator supersedes the maximum likelihood estimator. Unfortunately, in
practical applications the probability density function of the parameter is hardly ever known,
which renders the estimator to be impractical.

4.1 Maximum likelihood estimator

The probability density function fXy of the noise determines the conditional probability density
function f(y0 | θ) of the model of the measurements stated in the previous Chapter 3

y0(k) = g (u0(k), θ) (3.1)

describing the system and the inputs that excite the system. Similarly, Assumption 3.1 shall
hold, i.e. the noise enters the model additively

y(k,Xy) = y0(k) +Xy(k) (3.2)

where y(k,Xy) and y0(k) represent the modeled and nominal output and Xy(k) denotes the
random output variable. Then, the likelihood function becomes

f(y(k,Xy) | u0, θ) := fXy (y(k,Xy)− g (u0(k), θ)) . (4.1)

The maximum likelihood procedure now consists of two steps:

Algorithm 4.1 (Maximum likelihood procedure)
Input: Probability density function fXy and measurements z

39
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• Plug actual measurements z into (4.1) for variable y(k,Xy).

• Consider θ as the free variable and maximize the conditional probability density function

Output: Maximum likelihood estimate

θ̂ML(N) = argmax
θ

f(z | u0, θ) (4.2)

At first sight, this algorithm may appear simple, and indeed its applications is easy:

Example 4.2
Consider again the simplest model displayed in Example 3.5

y0 = g (u0, θ) = θ,

which is independent of the input. Assume that fXy is normal with zero mean and variance
σ2 (Xy), i.e.

fXy(x) =
1√

2πσ2 (Xy)
e
− x2

2σ2(Xy) .

Then, for each measurement z we obtain the conditional probability density function

f(z | u0, θ) = fXy (z − g (u0(k), θ)) = fXy (z − θ)

=
1√

2πσ2 (Xy)
e
− (z−θ)2

2σ2(Xy) .

To maximize this expression, we have to minimize the exponent (z−θ)2
2σ2(Xy)

. Since σ2 (Xy) is con-

stant, this results in θ̂ML = z.

Only one measurement is a very small batch, but we can see that the maximum likelihood
estimator correctly identifies the measurement value. Next, we incorporate a whole series of
measurements:

Example 4.3
Again we consider the model

y0 = g (u0, θ) = θ,

which is independent of the input and assume that fXy is normal with zero mean and variance
σ2 (Xy). Incorporating multiple independent measurements z1, . . . , zN , the likelihood function is

f(z | u0, θ) = f(z1 | u0, θ) · . . . · f(zN | u0, θ)

= fXy (z1 − g (u0(1), θ)) · . . . · fXy (zN − g (u0(N), θ))

= fXy (z1 − θ) · . . . · fXy (zN − θ) .
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Hence, we obtain

f(z | u0, θ) =

(
1√

2πσ2 (Xy)

)N

e
− 1

2σ2(Xy)

N∑
k=1

(zk−θ)2

and the minimizer becomes

θ̂ML(N) =
1

N

N∑
k=1

zk

Note that in the previous example, the maximum likelihood estimator and the (weighted)
least square estimator coincide. This is only the case for normally distributed errors.

Corollary 4.4
If fXy ∈ N (0, σ2 (Xy)), then the θ̂ML(N) = θ̂LS(N).

In general, we have the following:

Corollary 4.5
If fXy is normal and measurements zk are iid, then the Maximum likelihood estimator problem
is a linear least square problem.

4.1.1 Properties for normally independent distributions

Now that we have seen how the maximum likelihood estimator can be computed, let us consider
some of its properties such as expected values of the estimated mean and the estimated variance.
Here, we will focus on normally independent distributions. The computations, however, can
also be performed for other distributions. In the upcoming Section 4.1.2, we provide some
general statements on the maximum likelihood estimator.

Consider N samples zk, k = 1, . . . , N , which are normally independently distributed with
mean µ and standard deviation σ. Then the likelihood function becomes

f(z | u0, θ) = f(z1 | u0, θ) · . . . · f(zN | u0, θ) =
1√

2πσ2
y

e
− 1

2σ2y

N∑
k=1

(zk−µ)2

and the loglikelihood function is

ln f(z | u0, θ) = −N
2

ln
(
2πσ2

y

)
− 1

2σ2
y

N∑
k=1

(zk − µ)2 .

Then, we can compute the derivatives with respect to µ and σ2, which gives us the necessary
first order optimality conditions

∂

∂µ
ln f(z | u0, θ) =

1

σ2
y

N∑
k=1

(zk − µ)
!

= 0
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∂

∂σ2
y

ln f(z | u0, θ) = − N

2σ2
y

+
1

2σ4
y

N∑
k=1

(zk − µ)2 !
= 0.

Solving these equations reveals

µ
(
θ̂ML

)
=

1

N

N∑
k=1

zk (4.3)

σ2
y

(
θ̂ML

)
=

1

N

N∑
k=1

(
zk − µ

(
θ̂ML

))2

. (4.4)

From (4.3), we directly obtain

E
(
µ
(
θ̂ML

))
=

1

N

N∑
k=1

E (zk) = µ,

which shows that the mean of the maximum likelihood estimator is unbiased.

Corollary 4.6 (Unbiasedness of θ̂ML)
If the output of a system is normally independently distributed, then the maximum likelihood
estimator θ̂ML given by

E
(
θ̂ML

)
= µ

(
θ̂ML

)
=

1

N

N∑
k=1

zk (4.3)

is unbiased.

Moreover, we can utilize (4.4) to see

E
(
σ2
y

(
θ̂ML

))
=

1

N

N∑
k=1

E

((
zk − µ

(
θ̂ML

))2
)

=
1

N

N∑
k=1

E

((
(zk − µ)−

(
µ
(
θ̂ML

)
− µ

))2
)

=
1

N

N∑
k=1

E

(
(zk − µ)2 − 2 (zk − µ)

(
µ
(
θ̂ML

)
− µ

)
+
(
µ
(
θ̂ML

)
− µ

)2
)

=
1

N

N∑
k=1

(
E
(
(zk − µ)2)− 2E

(
(zk − µ)

(
µ
(
θ̂ML

)
− µ

))
+ E

((
µ
(
θ̂ML

)
− µ

)2
))

=
1

N

N∑
k=1

σ2
y − 2E

(
(zk − µ)

(
1

N

N∑
k=1

zk − µ

))
+ E

( 1

N

N∑
k=1

zk − µ

)2


=
1

N

N∑
k=1

(
σ2
y − 2

1

N
E
(
(zk − µ)2)+

1

N2

N∑
i=1

N∑
j=1

E ((zi − µ) (zj − µ))

)
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=
1

N

N∑
k=1

(
σ2
y − 2

1

N
σ2
y +

1

N2

N∑
i=1

E
(
(zj − µ)2))

=
1

N

N∑
k=1

(
σ2
y − 2

1

N
σ2
y +

1

N
σ2
y

)

=
σ2
y

N

N∑
k=1

(
1− 2

N
+

1

N

)
= σ2

y

(
1− 1

N

)
.

Hence, the variance of the maximum likelihood estimator is biased.

Corollary 4.7 (Covariance of θ̂ML)
If the output of a system is normally independently distributed, then the covariance matrix of
the estimator θ̂ML given by

Cov
(
θ̂ML, θ̂ML

)
=

1

N

N∑
k=1

(
zk − µ

(
θ̂ML

))2

(4.4)

is biased by a factor 1− 1/k.

As we can directly see, limk→∞ 1 − 1/k = 1 holds which gives us the following efficiency
results:

Corollary 4.8 (Efficiency)
If the output of a system is normally independently distributed, then the covariance matrix of
the estimator θ̂ML reaches the Cramer-Rao lower bound for k →∞.

From this analysis of the restricted normally independently distributed case, we now show
some more general results.

4.1.2 General properties of the maximum likelihood estimator

In the literature, a series of important properties is tabled assuming well-defined experimental
conditions. If these conditions are met, then the user knows in advance what properties the
estimator will have without going through the complete development process. The results here
are only stated. Full proofs can be found in, e.g., [?].

The following invariance principle is a very powerful tool. In particular, this principle
allows us to condense the measurements, i.e. to lower the dimension of the measurement
vector, without compromising the maximum likelihood property of the estimator. Additionally,
transformations of estimators given by g can be analyzed easily.

Theorem 4.9 (Principle of invariance)
If θ̂ML is a maximum likelihood estimator of θ and g : Rn

θ → Rng is a function with ng ≤ nθ <∞,

then θ̂g = g(θ̂ML) is a maximum likelihood estimator of g(θ).

Regarding the properties we discussed in Chapter 2, one can show the consistency and
efficiency of the maximum likelihood estimator.
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Theorem 4.10 (Consistency)
If θ̂ML is a maximum likelihood estimator based on N iid random variables with nθ independent
of N , then θ̂ML(N) converges to y0 almost surely, i.e.

a.s.lim
N→∞

θ̂ML(N) = θ.

Theorem 4.11 (Asymptotic efficiency)
If θ̂ML(N) is a maximum likelihood estimator based on N iid random variables with nθ indepen-

dent of N , then θ̂ML(N) is asymptotically efficient, i.e. Cov
(
θ̂ML(N), θ̂ML(N)

)
asymptotically

reaches the Cramer–Rao lower bound.

A last property, which we see here, is the so called asymptotic normality. The importance
of this property is not only that it allows one to calculate uncertainty bounds on the estimates,
but that it also guarantees that most of the probability mass gets more and more unimodally
concentrated around its limiting value.

Theorem 4.12 (Asymptotic normality)
If θ̂ML(N) is a maximum likelihood estimator based on N iid random variables with nθ inde-
pendent of N , then θ̂ML(N) converges in law to a normal random variable.

4.2 Bayes estimator

In contrast to the maximum likelihood estimator, the Bayes estimator requires knowledge on
the probability density function of both the noise on the measurements and the unknown
parameters. The kernel of the Bayes estimator is the conditional probability density function
of the unknown parameters θ with respect to the measurements z denoted by fθ(θ | u0, z). This
probability density function contains complete information about the parameters θ, given a set
of inputs u0 and respective measurements z. This makes it possible for the experimenter to
determine the best estimate of θ for the given situation. To select this best value, it is necessary
to lay down an objective criterion, i.e. the minimization of a risk function C (θ | θ0). The risk
function then describes the cost of selecting the parameter θ if θ0 is the true but unknown
parameter. The estimated parameter θ̂ is found as the minimizer of the risk function weighted
with the probability density function fθ(θ | u, z) over the range D of the parameter θ, i.e.

θ̂(N) = argmin
θ0

∫
θ∈D

C (θ | θ0) fθ(θ | u, z) dθ. (4.5)

If the cost criterion is chosen in the form

• C (θ | θ0) = |θ − θ0|2 (which leads to the mean value) or

• C (θ | θ0) = |θ − θ0| (results in the median, which is less sensitive to outliers since these
contribute less to the second criterion compared to the first one),



4.2 Bayes estimator 45

then a closed solution of (4.5) is known. In contrast to this
”
minimum risk“ estimators, one

may also choose the criterion

θ̂BA(N) = argmax
θ

fθ(θ | u, z), (4.6)

which reveals the Bayes estimator. In practice, it is very difficult to select the best out of these
variants.

Here, we study the Bayes estimator in more detail. To search for the maximizer of (4.6),
the Bayes rule

fθ(θ | u, z) =
f(z | θ, u)fθ(θ)

f(z)

is applied. In order to maximize the right hand side of this equation, it is sufficient to maximize
its numerator as the denominator is independent of θ. Hence, the solution is given by looking
for the maximum of

f(z | θ, u)fθ(θ).

As we can already see, a lot of a priori information is required to use the Bayes estimator, i.e.
f(z | θ, u), which is also used in the maximum likelihood estimator in (4.1), and fθ(θ). Note
that in many problems the probability density function fθ(θ) is unavailable, which renders the
Bayes estimator to be barely used in practice.

Example 4.13
Let us reconsider Example 3.5 with modifications from Example 4.2, i.e. the model is given by

y0 = g (u0, θ) = θ,

which is independent of the input and fXy is normal with zero mean and variance σ2 (Xy), i.e.

fXy(x) =
1√

2πσ2 (Xy)
e
− x2

2σ2(Xy) .

Additionally, the probability density function of θ is given by its mean w and standard deviation
σw, that is

fθ(x) =
1√

2πσ2
w

e
− (x−w)2

2σ2w .

Since we have

f(z | θ, u) = f(z | θ) = fXy(Xy) = fXy(z − θ),

the Bayes estimator is found by maximizing the expression

f(z | θ, u)fθ(θ) =
1√

2πσ2 (Xy)
e
− (z−θ)2

2σ2(Xy)
1√

2πσ2
w

e
− (θ−w)2

2σ2w

with respect to θ and the estimate becomes

θ̂BA =
z/σ2 (Xy) + w/σ2

w

1/σ2 (Xy) + 1/σ2
w

.
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The example shows two things: For one, if the quality of the a priori information w is high
compared with the quality of the measurements, that is σ2

w � σ2 (Xy), then the estimate is
determined mainly by the a priori information. Conversely, if σ2

w � σ2 (Xy), then the estimate
is dominated by the information gained by measurements.

Example 4.14
Example 4.13 can be extended in a manner similar to Example 4.3 by considering N independent
measurements z1, . . . , zN . Then, the Bayes estimator becomes

θ̂BA(N) =

N∑
k=1

zN/σ
2 (Xy) + w/σ2

w

N/σ2 (Xy) + 1/σ2
w

.

From this last example, we can make the following conclusion:

Corollary 4.15
If fXy and fθ are normal and measurements zk are iid, then the Bayes estimator problem is a
linear least square problem.



Chapter 5

Dynamic system models

Within this chapter, we will shift our focus from static to dynamic models. Again, these model
are subject to parameters, which we aim to estimate. There are different types of dynamic
models, that is discrete and continuous time one. Here, we start off with the discrete time
variant, which is characterized by the fact that inputs, outputs and measurements of the system
are available at discrete time instances only. In contrast to that, continuous time models exhibit
continuous data streams. In general, a dynamic system can be seen as a blackbox, which assigns
an output sequence to a given input sequence, cf. Figure 5.1.

Dynamic system
u(1), u(2), . . . y(1), y(2), . . .

Figure 5.1: General structure of a dynamic system

We will particularly focus on so called LTI systems, that is linear time invariant systems.
Moreover, we will give some basic fact on dynamic systems and show how the estimators
discussed in the previous Chapters 3 and 4 can be applied.

5.1 Discrete time models

For the discrete time setting, the time as a variable is chosen to be an element of the integer
number Z = {. . . ,−2,−1, 0, 1, 2, . . .}. Hence, inputs and outputs of the model are functions
u : Z → U, y : Z → Y. A respective model is then given by the following definition, which is
closely connected to Figure 5.1.

Definition 5.1 (Discrete time Auto Regressive model with eXogenous input (ARX))
Consider sequences (u(k))k=n−N,...,n−1 ∈ UN and (y(k))k=n−N,...,n−1 ∈ YN and the parameters
θ = (θu, θy) ∈ Θ to be given. Then we call

y(n) = g (u(n− 1), . . . , u(n−N), y(n− 1), . . . , y(n−N), θ) (5.1)

an auto regressive model with exogenous input or ARX model.

Note that in contrast to the static model we considered in the previous chapters, the pa-
rameters are now split over time. More compact, the system depends on its own past inputs
and outputs.

47
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Similar to Chapters 3 and 4, we focus on the linear case. In the context of dynamic system
models, this leads to so called linear time invariant (LTI) systems.

Definition 5.2 (Discrete time Linear Time Invariant model)
Consider sequences (u(k))k=n−N,...,n−1 ∈ UN and (y(k))k=n−N,...,n−1 ∈ YN and parameters θ =
(θu, θy) ∈ Θ to be given. Then we call

y(n) = θu(1)u(n− 1) + . . .+ θu(N)u(n−N) + θy(1)y(n− 1) + . . .+ θy(N)y(n−N) (5.2)

a linear time invariant or LTI system.

Example 5.3
A very simple example of an LTI system is given by the model

y(n+ 1) = θy(n) + u(n)

For such a system, it is clear that if θ > 1, then the system is unstable, i.e. y(n) → ±∞ as
n → ∞. One possibility to circumvent this instability is to define the input as a feedforard
control via

u(n) :=

(
1

2
− a
)

1

2n
y(0)

or via a feedback of the form

u(n) :=

(
1

2
− a
)
y(n).

The difference is that the feedback (or closed loop control) can compensate for unmodeled equa-
tion errors, the feedforward control however cannot.

Finding the parameters of dynamical systems is a crucial issue in engineering areas such
as simulation or model based control. In particular, if the parameters θ = (θu, θy) ∈ Θ are
known, and if additionally future inputs (u(k))k=n,...,n+k ∈ Uk are at hand, then the system
can be simulated into the future. Given that the parameters are correct, the prediction will be
correct as well. If the parameters are biased, then the prediction may diverge by the factor of
ekLmax{θ̂−θ}, where L denotes the Lipschitz constant of g, i.e. L = ‖θ‖∞ in the LTI case.

5.2 Continuous time models

In continuous time, the corresponding time variable is an element of the real numbers t ∈ R.
Similarly, inputs and outputs are function u : R → U and y : R → Y. In contrast to discrete
time models, we do not consider a whole history of past data, but instead dig deeper regarding
derivatives of g. To write the following definition of a continuous time ARX model more

compactly, we abbreviate yk := ∂ky
∂tk

and uk := ∂ku
∂tk

.



5.3 Basic facts about dynamic systems 49

Definition 5.4 (Continuous time Auto Regressive model with eXogenous input (ARX))
Consider the derivative sequences

(
uk
)
k=0,...N−1

and
(
yk
)
k=0,...,N−1

and the parameters θ =

(θu, θy) ∈ Θ to be given. Then the differential equation

yN(t) = g
(
u0(t), . . . , uN−1(t), y0(t), . . . , yN−1(t), θ

)
(5.3)

is called continuous time auto regressive model with exogenous input or ARX model.

A simple example of an ARX system is given by the following differential equation:

Example 5.5 (Logistic differential equation)
Consider the differential equation with initial conditions

y1(t) = θy(1)

(
1− y0(t)

θy(2)

)
y0(t), y0(t1) = yt1

with constants θy(1), θy(2) > 0 on the interval t ∈ [t1, t2]. This so called logistic differential

equation describes the growth of a population. The growth rate 1− y0(t)
θy(2)

depends on the current

size of the population y0(t). The parameters θy(1) and θy(2) describe the birth rate and the
saturation level of the population.

Similar to the discrete time case, we can define a linear time invariant model as follows:

Definition 5.6 (Continuous time Linear Time Invariant model)
Consider the derivative sequences

(
uk
)
k=0,...N−1

and
(
yk
)
k=0,...,N−1

and the parameters θ =

(θu, θy) ∈ Θ to be given. Then the differential equation

yN(t) = θu(1)u0(t) + θu(N)uN−1(t) + θy(1)y0(t) + θy(N)yN−1(t) (5.4)

is called continuous time linear time invariant or LTI model.

We like to note that it is also possible to include a whole history of derivative data into
the parametrization. The simulation of such a delayed differential equation model, however, is
computationally much more involved than in the ordinary differential equation case we discuss
here. Additionally, it is worth mentioning that also spatial derivatives can be included, which
leads us to a partial differential equation formulation.

5.3 Basic facts about dynamic systems

Dynamic systems are categorized using different properties, which are displayed in Table 5.1
below. Note that the given division lines are not the only ones in existence. There is a lot of
characteristics, which allow for improved treatment of dynamic systems. Here, we only focus
on the main research lines.
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Simple type Complex type

Linear
The system is linear in the input and out-
put variable u, y.
Example:

ÿ(t) = −θ1y(t) + θ2u(t)

Nonlinear
The system may not be linear in either the
input or the output variable u, y.
Example:

ÿ(t) = −θ1 sin(y(t)) + θ2u(t)

Time invariant
All parameters are constants, i.e.

”
Today

is tomorrow.“
Example: both linear and nonlinear sys-
tems displayed above

Time varying
At least one parameter is time dependent.
Example:

ÿ(t) = −θ1(t)y(t) + θ2u(t)

Discrete time
Time is given by sampling instants in Z.
Example:

y(n+ 1) = θ1y(n) + θ2u(n)

Continuous time
Time is given by a real valued variable.
Example: all examples displayed above

Input output model
Input is directly mapped to output.
Example: all exampled displayed above

State space model
Input triggers changes of an internal state,
output is a linear combination of these in-
ternal states.
Example:

x(n+ 1) = Ax(n) +Bu(n)

y(n) = Cx(n)

Table 5.1: Division lines for dynamic systems

Within our analysis, we will mainly focus on the most simple case of a discrete time LTI
input-output model. In fact, these properties are easily seen as shown in the following example:
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Example 5.7

(c1, c2)

p1

p2

L+ δL

Figure 5.2: Pendulum with
a spring at the rope

Consider a pendulum with a spring at the rope shown in Figure
5.2. Here, we have

p =

(
p1

p2

)
, v =

(
v1

v2

)
=

(
ṗ1

ṗ2

)
where p denotes the position and v the velocity of the pendulum
and (c1, c2) represents the anker position. From Newtons Law we
know

F = mp̈

F = mv̇

where

F =
c− p
‖c− p‖2

(‖c− p‖2 − L)K +

(
0
−mg

)
v̇ =

F

m
= (c− p)

(
1− L

‖c− p‖2

)
K

m
+

(
0
−g

)
and K denotes the hook constant. Hence, we obtain ẋ = f(x) with x = [p1, p2, v1, v2]> and

f(x) =


v1

v2

(c1 − p1)
(

1− L
‖c1−p1‖2

)
K
m

(c2 − p2)
(

1− L
‖c2−p2‖2

)
K
m
− g


Now, we can conclude that the dynamic system is a

• nonlinear

• time invariant

• continuous time

• state space model.

5.4 Estimators in the dynamic setting

Here, we focus on the discrete time LTI case where the dynamic model is given by

y(n) = θu(1)u(n− 1) + . . .+ θu(N)u(n−N) + θy(1)y(n− 1) + . . .+ θy(N)y(n−N) (5.2)

as defined in Definition 5.2. Then, we obtain our standard model equation

y0(k) = g (u0(k), θ) (3.1)

by considering

u0(k) = (u(n− 1), . . . , u(n−N), y(n− 1), . . . , y(n−N))
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and θ = (θu, θy) as in Definition 5.2. Then, we similarly introduce the additive error, which is
called equation error in the dynamic model case, and again obtain

y(k,Xx) = y0(k) +Xx(k) (3.2)

where y(k,Xx) and y0(k) represent the modeled and nominal output and Xx(k) denotes the
random equation error variable.

Different from our approach in Chapter 4, the inputs and the outputs are typically not
known exactly, i.e.

ym(k) = y(k) +Xy(N)

um(k) = u(k) +Xu(N),

where Xy(k) and Xu(k) denote the random output and input error variables.

5.4.1 Maximum likelihood estimator

In the previous Section 4.1, we introduced the general approach for the Maximum likelihood
estimator in Algorithm 4.1 and provided a simple static example. The approach, however, is
not restricted to the static setting but may also be applied for dynamic system models.

Defining the input variable as

u0 := (um(n− 1), . . . , um(n−N), ym(n− 1), . . . , ym(n−N))

and the parameter vector via

θ := (θu, θy, u(n− 1), . . . , u(n−N), y(n− 1), . . . , y(n−N))

we can apply Algorithm 4.1 and evaluate formula

θ̂ML(N) = argmax
θ

f(z | u0, θ) (4.2)

= argmax
θ

fXu (um(k)− u(k)) · fXy (ym(k)− y(k)) · fXx (zk − g (u0(k), θ)) . (5.5)

Even for LTI systems, this typically leads to a nonlinear optimization problem, which can be
solved using standard techniques, see, e.g., [?]. However, if the probability density functions fXu ,
fXy and fXg are normal with zero mean and respective variance, that is fXu ∈ N (0, σ2 (Xu)),
fXy ∈ N (0, σ2 (Xy)) and fXg ∈ N (0, σ2 (Xf )), then we can utilize the approach from Example
4.3 and obtain the loglikelihood function

ln f(z | u0, θ) =− 1

2

N∑
k=1

[(
um(k)− u(k)

σ2 (Xu)

)2

+

(
ym(k)− y(k)

σ2 (Xy)

)2

(5.6)

+

(
zk − g (u(k − 1), . . . , u(k −N), y(k − 1), . . . , y(k −N), θ)

σ2 (Xg)

)2
]
.

If the model is LTI, then the last part of the loglikelihood function becomes are linear square
function, and the entire loglikelihood function is a linear least square function by itself.
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Corollary 5.8
If the dynamic g represents an LTI model, fXu ∈ N (0, σ2 (Xu)), fXy ∈ N (0, σ2 (Xy)) and

fXg ∈ N (0, σ2 (Xf )), then the θ̂ML(N) = θ̂LS(N).

Hence, the LTI problem can be solved using techniques we discussed in Chapter 3.

5.4.2 Bayes estimator

Similar to the Maximum likelihood estimator, we also introduced the Bayes estimator

θ̂BA(N) = argmax
θ

fθ(θ | u, z) (4.6)

in a very general way. In the dynamic case, we require identical knowledge, i.e. the proba-
bility density function of the parameters fθ must be at hand. Additionally, as displayed in
the Maximum likelihood estimator case, we require the probability density functions of the

”
measurements“, which in the dynamic case corresponds to the input pdf fXu , the output pdf
fXy and the equation error pdf fXg .

If this data is given, then the approach of Section 4.2 can be directly transfered. To this
end, we apply the Bayes rule

fθ(θ | u, z) =
f(z | θ, u)fθ(θ)

f(z)
,

where again f(z | θ, u) is given the likelihood function

f(z | u0, θ) = fXu (um(k)− u(k)) · fXy (ym(k)− y(k)) · fXx (zk − g (u0(k), θ)) . (5.5)

Hence, we again obtain the following result:

Corollary 5.9
If fXu, fXy , fXx and fθ are normal and measurements zk are iid, then the Bayes estimator
problem is a linear least square problem.
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Chapter 6

Kalman filtering

The famous Kalman filter belongs to the class of so called recursive identification methods.
The idea of such methods is to iteratively update the estimate utilizing new measurements at
hand. Following this approach, an online processing of the results is possible. Additionally, one
could generalize the approach by introducing a

”
forgetting factor“ to the cost function, which

renders the method to be adaptive by design.
In contrast to our previous analysis of input–output models, the Kalman filter is designed

for a state space systems of the form

x(n+ 1) = Ax(n) +Bu(n) (6.1)

y(n) = Cx(n),

which is subject to equation and measurement noise. Hence, we have a systematic distinction
between the internal state x and the externally viewable measurements y. Here, we discuss
basic properties of the Kalman filter and construct a respective algorithm. Since the Kalman
filter idea is quite involved, we start of by a simple introduction into recursive identification
based on the mean value calculation.

6.1 Recursive identification

There exist two systematically different ways to compute an estimator like those we discussed
in Chapters 3 and 4: In the first case, the optimization is postponed till all measurements are
available. The second case, on the other hand, evaluates the estimate each time a new sample
is available. So far, we have seen the postponement approach, but now we focus on the second
recursive case.

A straightforward solution to generate such a procedure is to redo all the calculations after
each sample. Such an approach is numerically robust and requires no further insight, yet it
may be computationally expensive depending on the number of samples and the complexity
of the computation process. For example, it is simple to recompute the mean value, but it
is a complex task to solve a nonlinear optimization problem for a dynamical ARX model.
Hence, reformulating the problem such that only the newly required calculations are made,
recuperating all the previous results, may allow us to generate a more efficient solution method.

Before coming to a more elaborate variant of this approach, we consider the simple example
of the mean value computation

θ̂(N) =
1

N

N∑
k=1

zk.

55
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Using this formula, we can recompute the mean value once a new measurement is available via

θ̂(N + 1) =
1

N + 1

N+1∑
k=1

zk.

To recuperate the previous sum, we can equivalently evaluate

θ̂(N + 1) =
1

N + 1

N∑
k=1

zk +
1

N + 1
zN+1

=
N

N + 1
θ̂(N) +

1

N + 1
zN+1.

Although this form already meets our requirements of reusing previous computations, it is
possible to rearrange it to a more suitable expression:

θ̂(N + 1) = θ̂(N) +
1

N + 1

(
zN+1 − θ̂(N)

)
Although this expression is very simple, it is very informative because almost every recursive
algorithm ca be reduced to a similar form. The following observations can be made:

• The new estimate θ̂(N + 1) equals the old estimate θ̂(N) plus a correction term, that is
1

N+1

(
zN+1 − θ̂(N)

)
.

• The correction term consists of two terms by itself: a gain factor 1
N+1

and an error term.

• The gain factor decreases towards zero as more measurements are already accumulated
in the previous estimate. This means that in the beginning of the experiment, less impor-
tance is given to the old estimate θ̂(N), and more attention is paid to the new incoming
measurements. When N starts to grow, the error term becomes small compared to the
old estimate. The algorithm relies more and more on the accumulated information in the
old estimate θ̂(N) and it does not vary it that much for accidental variations of the new
measurements. The additional bit of information in the new measurement becomes small
compared with the information that is accumulated in the old estimate.

• The second term zN+1 − θ̂(N) is an error term. it makes the difference between the
predicted value of the next measurement on the basis of the model and the actual mea-
surement zk+1.

• When properly initiated, i.e. θ̂(1) = z1, this recursive result is exactly equal to the non
recursive implementation. However, from a numerical point of view, it is a very robust
procedure as calculation errors etc. are compensated in each step.

6.2 Construction of the Kalman filter

As stated earlier, the Kalman filter we discuss here deals with state space models of the form
(6.1), which are excited by the known input signal u and disturbed by the equation noise source
Xx. Additionally, the output quantities y are disturbed by a measurement noise source Xy.
The aim of the Kalman filter is to estimate the state x of the system from the measurements
z. As we will see in this chapter, the Kalman filter operates by propagating the mean and
covariance of the state through time. Our approach to deriving the Kalman filter will involve
the following steps:



6.2 Construction of the Kalman filter 57

1. First, we discuss a mathematical description of the model dynamics whose states we want
to estimate. Here, we focus on LTI state space models of the form (6.1).

2. Next, we implement equations that describe the propagation of the mean and the co-
variance of the state with time respectively. These equations form a dynamic system by
themselves.

3. These equations are used to implement a recursive algorithm and form the basis for the
derivation of the Kalman filter because:

(a) The mean of the state is the Kalman filter estimate of the state.

(b) The covariance of the state is the covariance of the Kalman filter state estimate.

4. Every time we receive a new measurement, we update the mean and covariance of the
state similar to the simple example displayed in Section 6.1.

In order to classify the Kalman filter problem, we first require a formal distinction of problems
regarding information and time dependency:

• x(n− k): an interpolation problem,

• x(n): a filtering problem,

• x(n+ k): an prediction (or extrapolation) problem.

The Kalman filter is no only a classical filtering problem, i.e. the data is not computed based
on current information. Instead, an internal dynamic for the mean value is constructed and
propagated, such that new information can be integrated recursively. To this end, we have to
distinguish between an a priori and an a posteriori estimate of the expected value.

6.2.1 Model dynamics and assumptions

The Kalman filter system can be stated in both continuous and discrete time. Within this
work, we focus on the discrete time version given by

x(n+ 1) = Ax(n) +Bu(n) +Xx(n) (6.2)

y(n) = Cx(n) +Xy(n),

where x, u, Xx, y and Xy are vectors and A, B and C are matrices, see also Figure 6.1 for a
corresponding block diagram. Here, we suppose the following to hold:

Assumption 6.1
Regarding system (6.2) we have that

• the matrices A, B and C are known,

• the matrix B satisfies B = 0,

• the random variables Xx and Xy are independent variables,

• the probability density functions fXx and fXy are normal distributions,

• the expected values satisfy E (Xx(k)) = 0 and E (Xy(k)) = 0 and

• the covariance matrices are given by

Cov (Xx(k), Xx(j)) = Rxδkj and Cov (Xy(k), Xy(j)) = Ryδkj.
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u(n)
B

Xx(n)

+
x(n+ 1)

delay
x(n)

C

Xy(n)

+
y(n)

A

Figure 6.1: Block diagram of the state space system (6.2)

To shorten the notation, we introduce the vector

Y (n) := {y(1), . . . , y(n)}

and denote

P (n) := Cov(x(n) | Y (n)) = E
(

[x(n)− E (x(n) | Y (n))] [x(n)− E (x(n) | Y (n))]>
)

Q(n) := AP (n)A> +Rx(n).

Given this problem setting, we can now start to derive internal dynamic of the Kalman filter,
i.e. the dynamic of the mean value and the covariance.

6.2.2 Propagation of mean and covariance

To write down the Kalman filter dynamics, we first need to construct the propagation of the
mean value and the covariance regarding past information. Casually speaking, we need to know
how these properties evolve regarding past information without new measurements.

Lemma 6.2
Given a system (6.2) such that Assumption 6.1 holds. Then we have

E (x(n+ 1) | Y (n)) = AE (x(n) | Y (n)) . (6.3)

Proof. Since we have

E (x(n+ 1) | Y (n)) = E (Ax(n) +Xx(n) | Y (n))

= AE (x(n) | Y (n)) + E (Xx(n) | Y (n))

= AE (x(n) | Y (n)) .

the assertion follows directly.

Lemma 6.3
Given a system (6.2) such that Assumption 6.1 holds. Then we have

Cov(x(n+ 1) | Y (n)) = AP (n)A> +Rx = Q(n). (6.4)
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Proof. Incorporating the definition of the notation, we see

Cov(x(n+ 1) | Y (n)) = Cov(Ax(n) +Xx(n) | Y (n))

= E
((
Ax(n) +Xx(n)− E (Ax(n) +Xx(n) | Y (n))

)(
Ax(n) +Xx(n)− E (Ax(n) +Xx(n) | Y (n))

)>)
= E

(
(Ax(n) +Xx(n)− AE (x(n) | Y (n))) (Ax(n) +Xx(n)− AE (x(n) | Y (n)))>

)
= E

(
A (x(n)− E (x(n) | Y (n))) (x(n)− E (x(n) | Y (n)))>A>

)
+ E

(
Xx(n)x(n)> | Y (n)

)
A> + AE

(
x(n)Xx(n)> | Y (n)

)
− E

(
Xx(n)E (x(n) | Y (n))> | Y (n)

)
A> + AE

(
E (x(n) | Y (n))Xx(n)> | Y (n)

)
+ E

(
E (x(n) | Y (n)) E (x(n) | Y (n))> | Y (n)

)
= AE

(
(x(n)− E (x(n) | Y (n))) (x(n)− E (x(n) | Y (n)))>

)
A> +Rx

= AP (n)A> +Rx = Q(n).

which concludes the proof.

Now that we know the estimate of the mean value and the covariance under the system
dynamics, we can move forward to integrate a new measurement.

6.2.3 Derivation of the Kalman dynamics

To derive an update formula of the estimate of the mean value and the covariance computed
in the previous section, we need to construct the probability density function of x(n + 1).
The idea here is to compute an estimate of x(n + 1) such that the probability of a respective
realization after the measurement of y(n+ 1) is maximal. This probability density function, in
turn, requires an extension of Bayes’ rule, which can be derived from the conditional probability
density functions

f(a, b, c) = f(a | b, c)f(b, c) = f(a | b, c)f(b | c)f(c)

f(a, b, c) = f(a, b | c)f(c).

Combining these two equations, we obtain

f(a | b, c) =
f(a, b, c)

f(b | c)f(c)
=
f(a, b | c)f(c)

f(b | c)f(c)
=
f(a, b | c)
f(b | c)

.

Substituting a = x(n+ 1), b = y(n+ 1) and c = Y (n) reveals

f(x(n+ 1) | y(n+ 1), Y (n)) =
f(x(n+ 1), y(n+ 1) | Y (n))

f(y(n+ 1) | Y (n))

=
f(y(n+ 1) | x(n+ 1), Y (n))f(x(n+ 1) | Y (n))

f(y(n+ 1) | Y (n))

=
fXy(y(n+ 1)− CAx(n))f(x(n+ 1) | Y (n))

f(y(n+ 1) | Y (n))
(6.5)

where we have used that given Y (n), we obtain x(n + 1) = Ax(n). Expression (6.5) is very
informative. On the left hand side, we find the socalled

”
a posteriori“ probability density
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function of x(n + 1), which includes the knowledge obtained from the measurement y(n + 1).
The a posteriori pdf is calculated form the

”
a priori“ pdf by taking the latest measurement

y(n+ 1) into account.
In the following part, we are going to determine x(n + 1) such that the probability of

realizing x(n + 1) after the measurement y(n + 1) is maximal. Note that we imposed the
limitation that the probability density function of the noise Xx and Xy are normal distributions,
cf. Assumption 6.1. Since the covariance matrix Cov(x(n + 1) | Y (n)) is given by Lemma 6.3
and Rx, Ry are given by Assumption 6.1, the probability density functions fXx and fXy are
determined completely. The denominator of (6.5) is independent of x(n+ 1) and can therefore
be considered as constant when finding the maximum. Hence, we have

max
x(n+1)

f(x(n+ 1) | y(n+ 1), Y (n)) =

= max
x(n+1)

e−
1
2

(y(n+1)−CAE(x(n)|Y (n)))>R−1
y (y(n+1)−CAE(x(n)|Y (n)))

· e−
1
2

(x(n+1)−AE(x(n)|Y (n)))>Q−1(n+1)(x(n+1)−AE(x(n)|Y (n)))

= max
x(n+1)

e−
1
2

(x(n+1)−AE(x(n)|Y (n)))>(Q−1(n+1)+C>R−1
y C)(x(n+1)−AE(x(n)|Y (n)))

From this equation, we directly obtain

Cov (x(n+ 1) | Y (n+ 1)) = P (n+ 1) = Q(n+ 1)−1 + C>R−1
y C. (6.6)

In order to compute the maximizer of f(x(n+1) | y(n+1), Y (n)), it is sufficient to minimize the
exponent of the above expression. Considering the necessary first order condition, we obtain(

Q−1(n+ 1) + C>R−1
y C

)
(x(n+ 1)− AE (x(n) | Y (n))) = 0

In order to obtain stationarity of the evolution, we require x(n+ 1) = E (x(n+ 1) | Y (n+ 1)).
Inserting this into the necessary condition reveals(

Q−1(n+ 1) + C>R−1
y C

)
E (x(n+ 1) | Y (n+ 1))

= Q−1(n+ 1)AE (x(n) | Y (n)) + C>R−1
y CAE (x(n) | Y (n))

Now, we can use the matrix inverse lemma

P =
(
Q−1 + C>RyC

)−1
= Q−QC>

(
CQC> +Ry

)−1
CQ

and the relation (
Q+ C>R−1

y C
)−1

C>R−1
y = QC>

(
CQC> +Ry

)−1

to obtain

E (x(n+ 1) | Y (n+ 1)) = (6.7)

= AE (x(n) | Y (n)) +Q(n+ 1)C>
(
CQ(n+ 1)C> +Ry

)−1
(y(n+ 1)− CAE (x(n) | Y (n)))

6.2.4 Integration of mean and covariance into a recursive algorithm

To shorten notation, we introduce the abbreviation

X(n) := E (x(n) | Y (n)) ,

we can formulate the following recursive algorithm:



6.2 Construction of the Kalman filter 61

Algorithm 6.4 (Kalman filter for LTI systems without external input)
Given a given LTI model with initial conditions Rx, Ry and X(1), set P (1) = Rx.
For n = 1, . . . do

Q(n+ 1) = AP (n)A> +Rx (6.8)

K(n+ 1) = Q(n+ 1)C>
(
CQ(n+ 1)C> +Ry

)−1
(6.9)

P (n+ 1) = (Id−K(n+ 1)C)Q(n+ 1) (6.10)

X(n+ 1) = AX(n) +K(n+ 1) (y(n+ 1)− CAX(n+ 1)) (6.11)

The algorithm contains several factors, which exhibit a good interpretation regarding the
computations made earlier in this chapter. Here, the time component plays an important role.

• The matrix Q(n+1) = P (n+1 | n) represents the a priori covariance matrix of X(n+1) =
E (x(n+ 1) | Y (n+ 1)) using n measurements only.

• Similarly, the matrix P (n+1) corresponds to the a posteriori covariance matrix of X(n+
1) = E (x(n+ 1) | Y (n+ 1)) using n+ 1 measurements.

• Considering the dynamic of the system, the vector AX(n) reveals the extrapolated state
variable based on the model dynamics A and n measurements.

• Projecting on the output, the vector CAE (n) represents the expected output given the
extrapolated state of the system.

We like to note that, within the algorithm, the matrices Q, P and K are independent of the
measurements. For this reason, they can be computed beforehand which lowers the computa-
tional complexity of the filter. Additionally, the method remains usable when the noise is not
normally distributed. In that case, however, the solution found by the filter is no longer an
optimal one.

Similar to the case defined by Assumption 6.1, we can consider the more general LTI case
with external inputs, i.e. B 6= 0. Recall, that the remaining assumptions are still in place, that
is

Assumption 6.5
Regarding system (6.2) we have that

• the matrices A, B and C are known,

• the random variables Xx and Xy are independent variables,

• the probability density functions fXx and fXy are normal distributions,

• the expected values satisfy E (Xx(k)) = 0 and E (Xy(k)) = 0 and

• the covariance matrices are given by

Cov (Xx(k), Xx(j)) = Rxδkj and Cov (Xy(k), Xy(j)) = Ryδkj.
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Given these assumptions, the computations displayed before in this chapter can be modified
and the following algorithm can be derived:

Algorithm 6.6 (Kalman filter for LTI systems with external input)
Given a given LTI model with initial conditions Rx, Ry and X(1), set P (1) = Rx.
For n = 1, . . . do

Q(n+ 1) = AP (n)A> +Rx (6.12)

K(n+ 1) = Q(n+ 1)C>
(
CQ(n+ 1)C> +Ry

)−1
(6.13)

P (n+ 1) = (Id−K(n+ 1)C)Q(n+ 1) (6.14)

X(n+ 1) = AX(n) +Bu(n) +K(n+ 1) (y(n+ 1)− CAX(n+ 1)− CBu(n)) (6.15)

6.3 Example

Figure 6.2: Inertial measurement unit (IMU)

Consider an inertial measure-
ment unit (IMU) to be given,
which is capable of measur-
ing all three angular veloci-
ties around the body fixed co-
ordinate (BFC) axis of the unit
as well as the three acceler-
ation forces in the directions
of the BFC axis. The mea-
surements are obtained from
gyros and accelerometers re-
spectively. IMUs are typically
used to maneuver aircraft, in-
cluding unmanned aerial ve-
hicles (UAVs), among many
others, and spacecraft, includ-
ing satellites and landers. This
data can then be used by a computer to continually calculate the vehicle’s current position.
One way to do this is to integrate over time the sensed acceleration, together with an estimate
of gravity, to calculate the current velocity for each of the six degrees of freedom. In a second
step, one can integrate the velocity to calculate the current position, which leads to a typical
double integrator system.

Unfortunately, such a method suffers from accumulated error. The reason for this error
lies in the construction of the method: The sensors detect accelerations and velocity only once
within a sampling interval. Hence, these states may change within the interval and the method
cannot recognize that change. Instead, the integration accumulates the error, which may grow
exponentially over time. Note that reducing the length of the sampling intervals will not solve
the problem as the error is systemic.

A sample of such measurements are displayed in Figures 6.3 and 6.4. Figure 6.3 shows
details for common results in car experiments for bumpy roads, where we can see high vertical
accelerations. The data set was recorded for a 1:8 model car running an off road track. From
the data, we can see that the vertical forces are extremely large, up to 5g in upwards and −4g
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downwards. The angular velocity rates, on the other hand, are rather small. Note that the
high values for pitch and roll are due to a singularity in the sensors, which provide data from
a [0, 360] degree interval.
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(b) IMU velocity data in BFC

Figure 6.3: IMU measurement data from gyros and accelerometers for sudden strikes

The second measurement data was obtained during quadcopter flights, where curvy maneu-
vers in all three axis occurred. From the data, one can see that the maneuvers were rather
extreme and the copter crashed twice at the end. Here, the data changes are much smaller
compared to the first case, at least until the crash occurred.
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(b) IMU velocity data in BFC

Figure 6.4: IMU measurement data from gyros and accelerometers for continuous changes

In both cases, we were interested in the current state of the system. For the sake of simplicity,
we focus on the pitch angle. Here, we like to note that the accelerometer data typically jitters
and is not that accurate. The gyros on the other hand give us quite good data, but as we have
discussed before, a simple integration may result in exponential errors illustrated in Figure 6.5.
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Figure 6.5: IMU angular results for using sensor families separately

Within Figure 6.5, we displayed the results of two different computations: For one, we used
the accelerometer data to evaluate

θ̂1 =
180◦

π
· arctan 2(ẍ3,BFC, ẍ2,BFC). (6.16)

Since this estimate is based on accelerometer data only, there is no drift in the result. Secondly,
we used a simple integration of the timestamped angular velocity data

θ̂1(n+ 1) = θ̂pitch(n) + (tn+1 − tn) ẋ1,BFC. (6.17)

We observe that in both cases the angle computed by (6.17) diverges from the result of (6.16).
Now, we apply the Kalman filter to this problem to fuse the advantages of the gyro (no

jitter) and the accelerometer (no drift). To this end, we define the model dynamics (6.1) by

x(n) =

(
x1,BFC(n)
ẋ1,BFC(n)

)
, u(n) =

π

180◦
· ẋ1,BFC(n)

A(n) =

(
1 − (tn+1 − tn)
0 1

)
, B(n) =

(
(tn+1 − tn)

0

)
, C =

(
1 0

)
which gives us the system

x(n+ 1) =

(
1 − (tn+1 − tn)
0 1

)
x(n) +

(
(tn+1 − tn)

0

)
u(n) (6.18)

y(n) =
(
1 0

)
x(n) (6.19)

The Kalman filter is initialized using the accelerometer data to generate an initial value of the
estimator

x(0) =

(
180◦

π
· arctan 2(ẍ3,BFC, ẍ2,BFC)

0

)
,

and the approximated covariance matrices of the disturbances

Rx =

(
E
(

π
180◦
· 0.0257 · (tn+1 − tn)2) 0

0 10−8

)
, Ry =

π

180◦
· 15,
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which are based on physical properties of the sensors and a freely chosen bias correction value
for Rx2,2.

The resulting estimates of the Kalman filter based on the above are shown in Figure 6.6.
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(a) Results for Kalman filter using data from Figure 6.3
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(b) Results for Kalman filter using data from Figure 6.4

Figure 6.6: IMU Kalman filter fusion results in comparison to single sensor family results

Within this figure, we can clearly see the improvement of the Kalman filter sensor fusion.
Note only is the jitter of the accelerometer reduced drastically, but also the drift of the gyros
is eliminated after a certain startup phase. Within the startup, the Kalman filter estimate
resembles the gyro results. Then, the filter reaches a point where it recognizes the growing
error and compensates for it. Within Figure 6.6, we can identify this point by the starting
divergence of the filter result from the integration one. From that point forward, the Kalman
filter estimate converges towards the accelerometer result, yet without it strong pulses.
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Appendix A

Programs

Here, we display the programs used throughout the script. The programs may be used for a
better personal understanding of the estimation process and the involved notions.

A.1 Motivating example of the electric circuit

1 clear all ;
2 close all ;
3

4 N = 100 ;
5

6 % Generating the measurements

7 % Group A

8 rng (1 ) ;
9 vo l tage = 1+0.2∗randn (1 ,N) ;

10 rng (1 ) ;
11 cur rent = 1+0.3∗randn (1 ,N) ;
12

13 % % Group B

14 % rng(1);

15 % voltage = 1+0.2*randn(1,N);

16 % rng(1);

17 % current = 1+0.3*(rand(1,N)-0.5);

18

19 % Plotting measured voltages

20 figure (1 ) ;
21 hold on ;
22 plot ( 1 :N, vo l tage ) ;
23 axis on ;
24 axis ( [ 1 N 0 2 ] ) ;
25 xlabel (’Measurement number’ , ’Fontsize’ , 14) ;
26 ylabel (’Measured voltage (V)’ , ’Fontsize’ , 14) ;
27 grid on ;
28 hold o f f ;
29

30 % Plotting measured currents

31 figure (2 ) ;
32 hold on ;
33 plot ( 1 :N, cur rent ) ;
34 axis on ;
35 axis ( [ 1 N 0 2 ] ) ;
36 xlabel (’Measurement number’ , ’Fontsize’ , 14) ;

69
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37 ylabel (’Measured current (I)’ , ’Fontsize’ , 14) ;
38 grid on ;
39 hold o f f ;
40

41 % Computing and plotting the resistance

42 for i =1:size ( vo l tage , 2 )
43 r e s i s t a n c e ( i ) = vo l tage (1 , i ) / cur rent (1 , i ) ;
44 end

45 figure (3 ) ;
46 hold on ;
47 plot ( 1 :N, r e s i s t a n c e ) ;
48 axis on ;
49 axis ( [ 1 100 0 5 ] ) ;
50 xlabel (’Measurement number’ , ’Fontsize’ , 14) ;
51 ylabel (’Measured value (R)’ , ’Fontsize’ , 14) ;
52 grid on ;
53 hold o f f ;

Program A.1: Matlab program for generating measurements for the electric circuit shown in
Figure 1.1.

1 clear all ;
2 close all ;
3

4 Nmax = 100000;
5

6 % Group A

7 rng (1 ) ;
8 vo l tage = 1+0.2∗randn (1 ,Nmax) ;
9 rng (1 ) ;

10 cur rent = 1+0.3∗randn (1 ,Nmax) ;
11

12 % % Group B

13 % rng(1);

14 % voltage = 1+0.2*randn(1,Nmax);

15 % rng(1);

16 % current = 1+0.3*(rand(1,Nmax)-0.5);

17

18 % Compute different estimators

19 for i =1:Nmax
20 R SA( i ) = 1/ i ∗ sum ( vo l t age ( 1 , 1 : i ) . / cur rent ( 1 , 1 : i ) ) ;
21 R EV( i ) = sum ( vo l t age ( 1 , 1 : i ) ) /sum ( cur r ent ( 1 , 1 : i ) ) ;
22 R LS( i ) = (1/ i ∗ sum ( vo l t age ( 1 , 1 : i ) .∗ cur rent ( 1 , 1 : i ) ) ) /(1/ i ∗ sum ( cur r ent

( 1 , 1 : i ) .∗ cur rent ( 1 , 1 : i ) ) ) ;
23 end

24

25 % Plot estimated resistances

26 figure (1 ) ;
27 semilogx ( 1 :Nmax, R SA , ’-b’ , . . .
28 1 :Nmax, R EV, ’-r’ , . . .
29 1 :Nmax, R LS , ’-g’ ) ;
30 xlabel (’Number of measurements’ , ’Fontsize’ , 14) ;
31 ylabel (’Estimated resistance’ , ’Fontsize’ , 14) ;
32 grid on ;
33 legend (’R_{SA}’ ,’R_{EV}’ ,’R_{LS}’ ) ;
34

35 % Compute frequencies of estimation results
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36 R SA min = min (R SA) ;
37 R SA max = max (R SA) ;
38 R SA pdf x = linspace ( R SA min , R SA max , 1 00 ) ;
39 %histc(R_SA,R_SA_pdf_x);

40 R SA pdf y=h i s t c (R SA , R SA pdf x ) ;
41

42 R EV min = min (R EV) ;
43 R EV max = max (R EV) ;
44 R EV pdf x = linspace (R EV min , R EV max , 1 0 0 ) ;
45 %hist(R_EV,R_EV_pdf_x);

46 R EV pdf y=h i s t c (R EV, R EV pdf x ) ;
47

48 R LS min = min (R LS) ;
49 R LS max = max (R LS) ;
50 R LS pdf x = linspace ( R LS min , R LS max , 1 00 ) ;
51 %hist(R_LS,R_LS_pdf_x);

52 R LS pdf y=h i s t c (R LS , R LS pdf x ) ;
53

54 % Plot frequencies of estimation results

55 figure (2 ) ;
56 plot ( R SA pdf x , R SA pdf y , ’-b’ , . . .
57 R EV pdf x , R EV pdf y , ’-r’ , . . .
58 R LS pdf x , R LS pdf y , ’-g’ ) ;
59 xlabel (’Estimated resistance’ , ’Fontsize’ , 14) ;
60 ylabel (’frequency’ , ’Fontsize’ , 14) ;
61 grid on ;
62 axis on ;
63 axis ( [ 0 . 9 1 .1 0 90000 ] ) ;
64 legend (’R_{SA}’ ,’R_{EV}’ ,’R_{LS}’ ) ;
65

66 % Comparing frequency development of estimation results

67 for i =3:4
68 R SA min = min (R SA(1 :10ˆ i ) ) ;
69 R SA max = max (R SA(1 :10ˆ i ) ) ;
70 R SA pdf x = linspace ( R SA min , R SA max , 1 00 ) ;
71 R SA pdf y = h i s t c (R SA(1 :10ˆ i ) , R SA pdf x ) ;
72

73 R EV min = min (R EV(1 :10ˆ i ) ) ;
74 R EV max = max (R EV(1 :10ˆ i ) ) ;
75 R EV pdf x = linspace (R EV min , R EV max , 1 00 ) ;
76 R EV pdf y = h i s t c (R EV(1 :10ˆ i ) , R EV pdf x ) ;
77

78 R LS min = min (R LS (1 : 10ˆ i ) ) ;
79 R LS max = max (R LS (1 : 10ˆ i ) ) ;
80 R LS pdf x = linspace ( R LS min , R LS max , 1 0 0 ) ;
81 R LS pdf y = h i s t c (R LS (1 : 10ˆ i ) , R LS pdf x ) ;
82

83 figure ( i ) ;
84 plot ( R SA pdf x , R SA pdf y , ’-b’ , . . .
85 R EV pdf x , R EV pdf y , ’-r’ , . . .
86 R LS pdf x , R LS pdf y , ’-g’ ) ;
87 xlabel (’Estimated resistance’ , ’Fontsize’ , 14) ;
88 ylabel (’frequency’ , ’Fontsize’ , 14) ;
89 grid on ;
90 axis on ;
91 axis ( [ 0 . 9 1 .1 0 90000 ] ) ;
92 legend (’R_{SA}’ ,’R_{EV}’ ,’R_{LS}’ ) ;
93 end

94
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95 %%%%%%%%%%%%

96

97 % Computing standard deviation

98 for i =1:Nmax
99 R SA var ( i )=var (R SA ( 1 : i ) ) ;

100 R EV var ( i )=var (R EV( 1 : i ) ) ;
101 R LS var ( i )=var (R LS ( 1 : i ) ) ;
102 end

103

104 % Plotting standard deviation

105 figure (5 ) ;
106 loglog ( 1 :Nmax, R SA var , ’-b’ , . . .
107 1 :Nmax, R EV var , ’-r’ , . . .
108 1 :Nmax, R LS var , ’-g’ ) ;
109 xlabel (’Number of measurements’ , ’Fontsize’ , 14) ;
110 ylabel (’Standard deviation’ , ’Fontsize’ , 14) ;
111 grid on ;
112 legend (’R_{SA}’ ,’R_{EV}’ ,’R_{LS}’ ) ;
113

114 % Plotting analysis of realizations

115 figure (6 ) ;
116 current min = min ( cur r ent ) ;
117 current max = max ( cur r ent ) ;
118 cu r r en t x = linspace ( current min , current max , 1 0 0 ) ;
119 hist ( current , cu r r en t x ) ;
120 xlabel (’Current’ , ’Fontsize’ , 14) ;
121 ylabel (’# Realization’ , ’Fontsize’ , 14) ;
122 grid on ;

Program A.2: Matlab program for analyzing the outcome of the electric circuit estimation
problem

A.2 Linear least square

1 clear all ;
2 close all ;
3

4 % Set sample size

5 N = 100 ;
6

7 % Generate inputs (here: no inputs)

8

9 % Get measurements (in case of real measurements delete random parameters

10 % and replace measurement data)

11 % Generate random parameters

12 rng (1 ) ;
13 parameter ( : , 1 ) = 1 + 0 .2 ∗ randn (N, 1 ) ;
14 % Generate measurements

15 rng (1 ) ;
16 measurement = parameter ( : , 1 ) ;
17

18 % Define model

19 K = ones (N, 1 ) ;
20 % Evaluate linear least square formula

21 es t imate = inv ( t ranspose (K) ∗K) ∗ t ranspose (K) ∗measurement ;
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22

23 % Plot results

24 figure (1 ) ;
25 hold on ;
26 plot ( 1 :N, measurement , ’xb’ ) ;
27 plot ( 1 :N,K∗ est imate , ’-r’ ,’LineWidth’ , 2 ) ;
28 axis on ;
29 axis t i g h t ;
30 xlabel (’Measurement number’ , ’Fontsize’ , 14) ;
31 ylabel (’Measured output’ , ’Fontsize’ , 14) ;
32 grid on ;
33 hold o f f ;

Program A.3: Matlab program for computing the linear least square estimator for Example 3.5

1 clear all ;
2 close all ;
3

4 % Set sample size

5 N = 100 ;
6

7 % Generate inputs

8 rng (1 ) ;
9 input ( : , 1 ) = linspace (1 , 2 ,N) ’ ;

10 input ( : , 2 ) = linspace (1 ,10 ,N) ’ ;
11

12 % Get measurements (in case of real measurements delete random parameters

13 % and replace measurement data)

14 % Generate random parameters

15 rng (1 ) ;
16 parameter ( : , 1 ) = 1 + 2 .0 ∗ randn (N, 1 ) ;
17 parameter ( : , 2 ) = 2 + 1 .0 ∗ randn (N, 1 ) ;
18 % Generate measurements

19 rng (1 ) ;
20 measurement = input ( : , 1 ) .∗ parameter ( : , 1 ) + input ( : , 2 ) . ˆ2 .∗ parameter ( : , 2 ) ;
21

22 % Define model

23 K = [ input ( : , 1 ) , input ( : , 2 ) . ˆ 2 ] ;
24 % Evaluate linear least square formula

25 es t imate = inv ( t ranspose (K) ∗K) ∗ t ranspose (K) ∗measurement ;
26

27 % Plot results

28 figure (1 ) ;
29 hold on ;
30 plot ( 1 :N, measurement , ’xb’ ) ;
31 plot ( 1 :N,K ∗ est imate , ’-r’ ,’LineWidth’ , 2 ) ;
32 axis on ;
33 axis t i g h t ;
34 xlabel (’Measurement number’ , ’Fontsize’ , 14) ;
35 ylabel (’Measured output’ , ’Fontsize’ , 14) ;
36 grid on ;
37 hold o f f ;

Program A.4: Matlab program for computing the linear least square estimator for Example 3.6

1 clear all ;
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2 close all ;
3

4 % Set sample size

5 N = 100 ;
6

7 % Generate inputs

8 rng (1 ) ;
9 input ( : , 1 ) = linspace (1 , 2 ,N) ’ ;

10 input ( : , 2 ) = linspace (1 ,10 ,N) ’ ;
11

12 % Get measurements (in case of real measurements delete random parameters

13 % and replace measurement data)

14 % Generate random parameters

15 rng (1 ) ;
16 parameter ( : , 1 ) = 1 + 2 .0 ∗ randn (N, 1 ) ;
17 parameter ( : , 2 ) = 2 + 1 .0 ∗ randn (N, 1 ) ;
18 % Generate measurements

19 rng (1 ) ;
20 measurement = input ( : , 1 ) .∗ parameter ( : , 1 ) + input ( : , 2 ) . ˆ2 .∗ parameter ( : , 2 ) ;
21

22 % Define model

23 K = [ input ( : , 1 ) , input ( : , 2 ) . ˆ 2 ] ;
24 % Define weighting matrix

25 W = diag ( linspace (0 , 1 ,N) ) ;
26 % Evaluate linear least square formula

27 es t imate = inv ( t ranspose (K) ∗W∗K) ∗ t ranspose (K) ∗W∗measurement ;
28

29 % Plot results

30 figure (1 ) ;
31 hold on ;
32 plot ( 1 :N, measurement , ’xb’ ) ;
33 plot ( 1 :N,K ∗ est imate , ’-r’ ,’LineWidth’ , 2 ) ;
34 axis on ;
35 axis t i g h t ;
36 xlabel (’Measurement number’ , ’Fontsize’ , 14) ;
37 ylabel (’Measured output’ , ’Fontsize’ , 14) ;
38 grid on ;
39 hold o f f ;

Program A.5: Matlab program for computing the linear least square estimator for Example
3.13

A.3 Kalman filtering

1 clear all ;
2 close all ;
3

4 % Read data

5 %data = load(’kalman_data/data-zero’);

6 %data = load(’kalman_data/data -360x’);

7 %data = load(’kalman_data/data-x’);

8 %data = load(’kalman_data/data-x2’);

9 data = load (’kalman_data/data-smallhits’ ) ;
10

11 % Reassign data to arrays
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12 discreteTime = data ( : , 1 ) ; % in s

13 a c c e l e r a t i o n x = data ( : , 2 ) ; % in G = 9.81 m/s^2

14 a c c e l e r a t i o n y = data ( : , 3 ) ; % in G = 9.81 m/s^2

15 a c c e l e r a t i o n z = data ( : , 4 ) ; % in G = 9.81 m/s^2

16 a n g u l a r v e l o c i t y x = data ( : , 5 ) ; % in degree/s

17 a n g u l a r v e l o c i t y y = data ( : , 6 ) ; % in degree/s

18 a n g u l a r v e l o c i t y z = data ( : , 7 ) ; % in degree/s

19 numberOfSamples = length ( d i sc re teTime ) ;
20

21 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

22 % Compute angle by integration of velocity data from gyros

23 a n g l e x v e r s i o n 1 = zeros ( numberOfSamples , 1 ) ;
24 for n=1:numberOfSamples−1
25 t imestep = discreteTime (n+1) − discreteTime (n) ;
26 a n g l e x v e r s i o n 1 (n+1) = a n g l e x v e r s i o n 1 (n) + t imestep ∗ a n g u l a r v e l o c i t y x (

n) ;
27 end

28

29

30 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

31 % Compute angle via accelerometer data

32 a n g l e x v e r s i o n 2 = 180/pi ∗ atan2 ( a c c e l e r a t i o n y , a c c e l e r a t i o n z ) ;
33

34

35 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

36 % Kalman Filter

37

38 % Set measurement noise of output

39 Ry z = 15∗pi /180 ; % standard deviation of measurement noise

40

41

42 % Initial state vector ( phi_x, bias_x )

43 x = [ atan2 ( a c c e l e r a t i o n y (1 ) , a c c e l e r a t i o n z (1 ) ) ; 0 ] ;
44 % Set filter output for initial state

45 a n g l e x v e r s i o n 3 = zeros ( numberOfSamples , 1 ) ;
46 a n g l e x v e r s i o n 3 (1 ) = 180/pi ∗ x (1 ) ;
47

48 % Set equation error (process noise)

49 hApprox = 0 . 0 0 8 ;
50 varW1 = hApproxˆ2 ∗ 0.0257∗ pi /180 ;
51 varW2 = 1e−8; % critical parameter for bias correction

52 Rx z = [ varW1 0 ; 0 varW2 ] ;
53

54 % Initial covariance

55 P = Rx z ;
56

57 for n=1:numberOfSamples−1
58 % System matrices

59 t imestep = discreteTime (n+1) − discreteTime (n) ;
60 A = [ 1 −t imestep ; 0 1 ] ;
61 B = [ t imestep ; 0 ] ;
62 C = [ 1 0 ] ;
63

64 % measurement in rad

65 u = a n g u l a r v e l o c i t y x (n) / 180 ∗ pi ;
66 y = atan2 ( a c c e l e r a t i o n y (n+1) , a c c e l e r a t i o n z (n+1) ) ;
67

68 Q = A ∗ P ∗ A’ + Rx z ;
69 K = Q ∗ C’ ∗ inv ( C ∗ Q ∗ C’ + Ry z ) ;
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70 P = ( eye (2 ) − K ∗ C) ∗ Q;
71 x = A ∗ x + B ∗ u + K ∗ ( y − C ∗ A ∗ x − C ∗ B ∗ u) ;
72

73 a n g l e x v e r s i o n 3 (n+1) = 180/pi ∗ x (1 ) ;
74 end

75

76

77 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5

78 % Plots

79 % Data plot

80 figure (1 ) ;
81 hold on ;
82 plot ( d iscreteTime , a c c e l e r a t i o n x , ’r-’ ) ;
83 plot ( d iscreteTime , a c c e l e r a t i o n y , ’g-’ ) ;
84 plot ( d iscreteTime , a c c e l e r a t i o n z , ’k-’ ) ;
85 title (’Acceleration data’ ) ;
86 xlabel (’Time’ ) ;
87 ylabel (’g’ ) ;
88 legend (’x acceleration’ , ’y acceleration’ , ’z acceleration’ ) ;
89 axis t i g h t ;
90 grid on ;
91

92 figure (2 ) ;
93 hold on ;
94 plot ( d iscreteTime , a n g u l a r v e l o c i t y x , ’r-’ ) ;
95 plot ( d iscreteTime , a n g u l a r v e l o c i t y y , ’g-’ ) ;
96 plot ( d iscreteTime , a n g u l a r v e l o c i t y z , ’k-’ ) ;
97 title (’Angular velocity data’ ) ;
98 xlabel (’Time’ ) ;
99 ylabel (’Degree/s’ ) ;

100 legend (’pitch ’ , ’roll’ , ’yaw’ ) ;
101 axis t i g h t ;
102 grid on ;
103

104 % Results plot

105 figure (3 ) ;
106 hold on ;
107 plot ( d iscreteTime , ang l e x ve r s i on1 , ’r-’ ) ;
108 plot ( d iscreteTime , ang l e x ve r s i on2 , ’g-’ ) ;
109 plot ( d iscreteTime , ang l e x ve r s i on3 , ’k-’ ) ;
110 title (’Angle in x direction’ ) ;
111 xlabel (’Time’ ) ;
112 ylabel (’Degree’ ) ;
113 legend (’Integrated gyro data’ , ’Calculated by acceleration’ , ’Kalman filtered’ ) ;
114 axis t i g h t ;
115 grid on ;

Program A.6: Matlab program for evaluating the Kalman filter for Example ??
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