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Chapter 1

Context and Motivation

In the following we will use the notation:

x State variable time variant, unknown

θ Parameter constant, unknown (unlike other system parameters)

d Distrubance time variant, unknown (responsible for “strange behaviour”

of the system)

The reconstructed variables will be denoted by x̂, θ̂, d̂ and will in general be used for feedback

within the observer system as well as within the real system. The context of these systems

and variables is shown in figure 1.1.
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Figure 1.1: Context and relevance of designing observers
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Problem and Solution

The overall problem here is to get internal information on a system from external mea-

surements, specifically on can say in general that these measurements are not identical to

all signals/components contained within the state variable. To acceive this goal a model–

and measurement–based closed–loop information reconstructor (Observer) is used. Hereby

model–based means that the general structure of the system is known whereas measurement–

based makes clear that current as well as past values of inputs and outputs can be used.

Finally a closed–loop reconstructor is used so that one can represent the input as a function

of the output which is usually called feedback. The purpose of using a closed–loop recon-

structor is to gain the state on–line.

In general one uses the term model by means of state–space representation. Therefore dis-

trubances and constant parameters are not included. Here we will assume the state to

contain all the variables to be reconstructed. By doing this the parameter identification

problem is included within the problem formulation but will not be mentioned explictely.

Therefore the system can be based on equations that are

continuous–time or discrete–time,

deterministic or stochastic,

finite or infinite,

smooth or “with singularities”.



Chapter 2

Problem Formulation

2.1 Problem

The considered model is of the form

ẋ(t) = f(x(t), u(t)) (2.1)

y(t) = h(x(t)) (2.2)

where the state x ∈ X with a C∞ connected manifold is assumed to admit some system of

coordinate in Rn. The control u takes values in some open set U ⊂ Rm whereas the output

y ∈ Y ⊂ Rp with Y being an open set as well.

Additionally we assume u(t) to be measurable and bounded, by terms

u(t) ∈ L∞(R+,U). (2.3)

Moreover the functions f : Rn×Rm → Rn and h : Rn → Rp are C∞ with respect to all their

arguments and the system is complete, meaning the solution of x exists at any time t.

We will denote the solution of x at time t eminating from x0 at time t0 under u(t) over the

interval [t0, t] by Xu(t, x0)(
namely

d
dt
Xu(t, x0) = f(Xu(t, x0), u(t))

Xu(t0, x0) = x0)

)
.

More generally one can consider time–variant systems of the form

ẋ(t) = f(x(t), u(t), t) (2.4)

y(t) = h(x(t), u(t), t). (2.5)

Some particular cases are:

• Control affine systems

f(x, u) = f0(x) + g0(x)u

h(x)
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• State affine systems

f(x, u) = A(u)x+B(u)

h(x) = Cx

• Bilinear systems

f(x, u) = Ax+
∑
i

uiBix+Bu

h(x) = Cx

• Linear time–invariant systems

f(x, u) = Ax+Bu

h(x) = Cx

• Linear time–variant systems

f(x, u) = A(t)x+B(t)u

h(x) = C(t)x

Therefore the problem under consideration can be stated as follows:

Find some estimate x̂(t) of x(t) from the structural knowledge of the system f ,

h and the inputs/outputs u(τ), y(τ) with τ ∈ [t0, t].

Remark 2.1. In general one has to face the problem that h is not invertible. This is often

the case due to limitations on the number of sensors, for cost reasons or due to technologically

reasons (meaning some states can not be measured).

2.2 Method for generating a solution

We have to design

Ẋ(t) = F (X(t), u(t), y(t)) (2.6)

x̂(t) = H(X(t), u(t), y(t)) (2.7)

meaning we have to find the necessary functions F and H such that

(i) x̂(0) = x(0) ⇒ x̂(t) = x(t) ∀ t ≥ 0

(ii) x̂(t)− x(t)→ 0, t→∞ if x̂(0) 6= x(0)
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If the properties (i) and (ii) are satisfied then the system (2.6), (2.7) is called an observer.

Remark 2.2. Ideally property (ii) is fulfilled for all x̂(0), x(0). Then the observer is said

to be global but this can not be met in general.

Remark 2.3. Property (ii) can also be decaying exponentially in some cases. We are talking

about an exponential observer in this case.

If in addition the following property

(iii) with a tunable rate of convergence.

is satisfied, then the system (2.6), (2.7) is called observer with tunable rate of convergence.

Remark 2.4. Property (iii) can not be satisfied in all cases.

In practice the following case occurs very often

˙̂x(t) = f(x̂(t), u(t)) + k(y(t)− h(x̂(t)), t) (2.8)

with k(0, t) = 0 for all t ≥ 0. Note that by definition this particular case satisfies property

(i). Within this notation the correction term k is in general taken to be in the form

k(y(t)− h(x̂(t)), t) = k(t) · [y(t)− h(x̂(t))] (2.9)

so that k is proportional to the error.

⇒ The observer problem turns out to be the problem of finding k such that property (ii)

is satisfied.

Remark 2.5. Alternatively one can solve (or try to solve) the optimization problem

min
z
‖h(Xu(t, z))− y(t)‖2. (2.10)

This has to be valid for all t within the interval and for simplicity reasons one can then take

a look at the problem

min
z

T∫
t−T

‖h(Xu(τ, z))− y(τ)‖2dτ (2.11)

and consider a window of size T in which the error within the output is minimized.

Since this is a nonlinear optimization problem one faces the usual problems such as

• computational burden

• locally optimal solutions

• etc.
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2.3 Conditions for a solution

As a general condition we expect the measured output y to bear the information on x (≡
“observability condition”).

Remark 2.6. Note the when we are restricting the observer definition to the properties (i)

and (ii), then “observability” is not even necessary.

Example 2.7. Consider the system

ẋ(t) = −x(t) + u(t) (2.12)

y(t) = 0 (2.13)

Then y does not contain any information on x, and yet

˙̂x(t) = −x̂(t) + u (2.14)

is an observer in the sense of (i) and (ii). Indeed, one gets

( ˙̂x− ẋ)(t) = −(x̂(t)− x(t)) (2.15)

and therefore the error x̂− x→ 0 as t→∞.

This is an observer, but it is not tunable.

When considering observers in the sense of (i), (ii) and (iii), “observability” becomes neces-

sary.

2.3.1 About necessary conditions (except detectability)

Here we will distinguish between

• Formulation and

• Characterization.

Thereby “y should bear the information on x” means that one should be able to distinguish

between 2 different initial conditions from the knowledge of y(τ), 0 ≤ τ ≤ t.

Definition 2.8 (Indistinguishability).

A pair x0 6= x
′
0 is indistinguishable if for all u and for all t ≥ 0

h(Xu(t, x0)) ≡ h(Xu(t, x
′

0)). (2.16)

Then we can say that x is indistinguishable from x0 if (x, x0) is indistinguishable.
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Definition 2.9 (Observability).

The system (2.1), (2.2) is observable (O) if it does not admit indistinguishable pairs, respec-

tively if there is no x that is indistinguishable.

This defintion is quite strong (too “global”) to be useful in practice.

Example 2.10. Consider the system

ẋ(t) = u(t)

y(t) = sin(x(t))

Obviously this system is not observable since x0 and x0 + 2kπ are not distinguishable for any

k ∈ Z \ 0, and yet any pair of states can be distinguished on ]− π, π[.

Definition 2.11 (Weak Observability).

The system (2.1), (2.2) is weakly observable (WO) if for all x0 there exists a neighbourhood

U of x0 such that there is no state x ∈ U which is indistinguishable from x0.

This definition is way better but one can still have to travel for a long time or a long distance

to distinguish between two states. Therefore we will cope with a more local definition:

Definition 2.12 (Local Weak Observability).

The system (2.1), (2.2) is locally weakly observable (LWO) if for all x0 there exists a neigh-

bourhood U of x0 such that for all neighbourhoods V of x0, V ⊂ U , there is no state x which

is indistinguishable from x0 in V as long as trajectories lie in V .

Remark 2.13. This roughly means that one can distinguish any state from its neighbours

“without going too far”.

Remark 2.14. Additionally the following conclusions are valid:

(1) LWO ⇒ WO

(2) O ⇒ WO

To see that (1) can not be taken the other way round, take the counterexample

h(x) =

{
a , x ≤ 0

a+ x , x > 0

which is illustrated in figure 2.1. Here not for all open neighbourhoods V of x01, x02 the tra-

jectories eminating from these initial values are distinguishable, still the system is observable

if one waits long enough so that x > 0 is fulfilled.

LWO is “characterizable” which will here be presented as kind of rank condition based on

the observation space. Therfore we define



10 Chapter 2: Problem Formulation

h(x)

x x01 02

V

indistinguishable

Figure 2.1: Counterexample to WO ⇒ LWO

Definition 2.15 (Observation Space).

The smallest real vector space of C∞ functions ϕ : Rn → Rp containing the output function

h which is invariant under Lie derivation along f for any fixed u ∈ Rm is called observation

space of a system of the form (2.1), (2.2). We will denote this space by Θ(h). In particular

this means that

∀ϕ ∈ Θ(h) : Lfuϕ ∈ Θ(h)

with Lfuϕ = ∂ϕ
∂x
f(x, u).

Definition 2.16 (Observability Rank Condition).

The observation space of a system (2.1), (2.2) can be characterized by the following:

∀ x ∈ Rn : dim
(
dΘ(h)

∣∣∣
x

)
= n (2.17)

where dΘ(h) := {dϕ | ϕ ∈ Θ(h)} and d denotes the differential operator.

Theorem 2.17 (Pointwise Equivalence).

If and only if the observability rank condition is satisfied at x0 for a system (2.1), (2.2), then

this system is LWO at x0.

Proof. We will roughly sketch this theorem.

“⇐”: By noting that if x0 6= x
′
0 are indistinguishable on some open set V , then ∀ ϕ ∈ Θ(h):

ϕ(x0) = ϕ(x
′
0 since the output function for x0, x

′
0 are the same:

∀ s1, . . . , sk
∀ u1, . . . , lk

}
: h(X sk

uk
◦ . . . ◦ X s1

u1
(x0)) = h(X sk

uk
◦ . . . ◦ X s1

u1
(x
′

0))

with X s
u(x) = Xu(s, x) and

d

ds
X s
u = f(X : us(x), u), X 0

u (x) = x.
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By derivating by sk, . . . s1 one gets

Lfu1 . . . Lfukh(x0) = Lfu1 . . . Lfukh(x
′

0)

and by finally evaluating at sk = sk−1 = . . . s1 = 0 one can see that any ϕ ∈ Θ(h) is of

the form given above.

“⇒”: From the observability rank condition it follows that ∃ ϕ1, . . . , ϕn such that

Φ :=

 ϕ1
...

ϕn


is a diffeomorphism on some neighbourhood U of x0. This is due to the fact that the

Jacobian matrix consists of derivatives that are independent according to the definition.

Hence for any indistinguishable pair x0 6= x
′
0 on V ⊂ U we have ϕi(x0) = Φi(x

′
0 for all

i = 1, . . . , n, i.e. Φ(x0) = Φ(x
′
0) and thus x0 = x

′
0 which contradicts our assumption

that x0 6= x
′
0 and the result holds.

Theorem 2.18 (Uniform Equivalence).

When one is talking about uniform equivalence in x the following statements are valid:

(1) If the observability rank condition is valid for all x, then the system is LWO for all x.

(2) If the system is LWO for all x, then the observability rank condition is generically

satisfied, i.e. only at some isolated points the condition is not met.

Example 2.19. Consider the system

ẋ(t) = u(t)

y(t) = sin(x(t))

Therefore Lfuh(x(t)) = u cos(x(t)). Hence it follows that the observation space is given by

dΘ(h)
∣∣∣
x

= span {cos(x)ẋ, sin(x)ẋ}

and the dimension of this space is dim
(
dΘ(h)

∣∣∣
x

)
= 1 for all x. From the definition one can

see that the observability rank condition is satisfied and hence the system is LWO.

Example 2.20. For higher dimension the same example is not necessarily true. Consider

the system

ẋ1(t) = u(t)

ẋ2(t) = u(t)

y(t) = sin(x1(t))
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Here the observation space is given by dΘ(h)
∣∣∣
x

= span {cos(x1)ẋ1, sin(x1)ẋ1}, so its dimen-

sion is dim(dΘ(h)) = 1 < 2 and hence the system is not LWO.

Example 2.21. Consider the linear n–dimensional system

ẋ(t) = Ax(t)

y(t) = Cx(t)

Then the following equivalences are valid:

(1) Observability rank condition ⇔ (rank)(Θ(h)) = n.

(2) Observability rank condition ⇔ LWO

Note that in this case

Θ(h) =


C

CA
...

CAn−1


is the known observability matrix for linear systems.

This can be proven by considering that h(x(t)) = Cx(t).

(1): It follows that

Lfh(x(t)) = CAx(t)
...

Lkfh(x(t)) = CAkx(t)

Making use of ẋ(t) = Ax(t) this can be represented in a derivative notation since

CAx(t) = Cẋ(t)
...

CAkx(t) = CAk−1x(t)

Therefore:

dim (dΘ(h)) = n ⇔ rank


C

CA
...

CAn−1

 = n
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(2) “⇒”: If the pair (x0, x
′
0) is indistinguishable then

CeAtx0 = CeAtx
′

0 ∀t ≥ 0

and by derivation it follows for all k ∈ N

CAkeAtx0 = CAkeAtx
′

0 ∀t ≥ 0.

Hence we can conclude

ΘeAtx0 = ΘeAtx
′

0.

From the observability rank condition it follows that

eAtx0 = eAtx
′

0 ⇒ x0 = x
′

0

(2) “⇐”: From LWO it follows that there is no indistinguishable pair (x0, x
′
0).

⇒ Kern(ΘeAt) = {0}

and thus if x0 ∈ Kern(Θ), i.e. e−Atx0 ∈ Kern(ΘeAt), then by LWO it follows that

e−Atx0 = 0 and hence x0 = 0. Therefore we get rank(Θ) = n.

Remark 2.22.

In the linear case we can say the following:

(1) Observability and the observability rank condition are equivalent for linear systems.

This is also true for system of the form

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)

since

y(t) = CeAtx0 + C

t∫
0

eA(t−τBu(τ)dτ

and therefore the indistinguishability depends only on x0 because for identically used

inputs u the integral part is identical as well and independent of x0. Hence the integral

part is cancelling out itself when one is taking a look at the error.

(2) We say that if the observability rank condition is satisfied then (A,C) is called observ-

able.

(3) The rank condition for the system

ẋ(t) = Ax(t)

y(t) = Cx(t)

is also sufficient for observer design.
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Remark 2.23. In general this is not true for the nonlinear case since observability does not

exclude the possible existence of inputs for which observability is lost.

Example 2.24. Consider the system

ẋ(t) =

[
0 u(t)

0 0

]
x(t)

y(t) =
[

1 0
]
x(t)

Clearly for constant u 6≡ 0 it follows that

rank(Θ) = rank

[
1 0

0 u

]
= 2

i.e. the system is observable. But when u ≡ 0 then observability is lost.

We conclude that observability in the sense of LWO is not enough for a possible observer

design and that we will have to take a closer look at the inputs u.

2.3.2 About sufficient conditions (up to effective designs)

Here we will take a closer look to sufficient conditions which are related to inputs. As we

have seen before there exist cases with “bad inputs” but conversely there can exst inputs

which are “always good”.

Definition 2.25 (Universal Input).

An input u will be called universal input if

∀ x0 6= x
′

0 ∃ t ≥ 0 : h(Xu(t, x0)) 6= h(Xu(t, x
′

0)). (2.18)

Remark 2.26. An input u is called local universal input on an interval [0, τ ] if condition

(2.18) is valid for t ∈ [0, τ ].

Definition 2.27 (Singular Input).

An input u is called singular input if it is a non universal input.

Example 2.28. For the system

ẋ =

[
0 u(t)

0 0

]
x(t)

y(t) =
[

1 0
]
x(t)

u(t) ≡ 0 is a singular input. For any other input u(t) the trajectories will differ at some

time t. Therefore u(t) ≡ 0 is the only singular input and all u 6≡ 0 are universal inputs.
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Remark 2.29. About singular and universal inputs we can state the following:

(1) For Cω systems the set of Cω universal inputs is dense in the set of Cω functions.

(2) Characterizing singular inputs is in general not an easy task.

(3) There exist systems without singular inputs, see for instants linear time–variant sys-

tems.

Definition 2.30 (Uniformly Observable System).

A system (2.1), (2.2) is uniformly observable if it does not admit any singular input, i.e.

any input u is universal.

Remark 2.31. A local statement can be done here by denoting a system (2.1), (2.2) locally

uniformly observable if any input is universal on the interval [0, t] for t > 0.

Example 2.32. The following systems are uniformly observable:

(1) Consider the system

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)

with (A,C) observable.

(2) And consider the system

ẋ(t) =


0 1 · · · 0
...

. . . . . .
...

...
. . . 1

0 · · · · · · 0

x(t) +


ϕ1(x1(t))

ϕ2(x1(t), x2(t))
...

ϕn(x(t))

u(t)

y(t) =
[

1 · · · 0
]
x(t)

with x(t) = (x1(t), · · · , xn(t))T .

To see (2) one can choose x(t) 6= x
′
(t) such that xk(t) = x

′

k(t), 1 ≤ k ≤ i < n and

xi+1(t) 6= x
′
i+1(t). Then

ẋi(t)−ẋ
′

i(t) = xi+1(t)−x′i+1(t)+
[
ϕi(x1(t), . . . , xi(t))− ϕi(x

′

1(t), . . . , x
′

i(t))
]
u(t) = xi+1(t)−x′i+1(t) 6= 0

Therefore a time t0 exists such that xi(t) 6= xi(t) for all t ∈]0, t0[. Continuing this it follows

that

∃ t1 ∈]0, t0[: xi−1(t) 6= x
′

i−1(t) ∀t ∈]0, t1[.
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Therefore by iterating this it can be concluded that

∃ ti−1 : x1(t) 6= x
′

1(t) ∀t ∈]0, ti−1[,

i.e. y(t) 6= y
′
(t) for all u.

Conversely if

ẋ(t) = A0x(t) + ϕ(x(t))u(t)

y(t) = C0x(t)

with

A0 :=


0 1 · · · 0
...

. . . . . .
...

...
. . . 1

0 · · · · · · 0

 and C0 :=
[

1 · · · 0
]

is uniformly observable then ϕi(x(t)) = ϕi(x1(t), . . . , xi(t)). This is true since if we consider

x(t), x
′
(t): xk(t) = x

′

k(t), 0 ≤ k ≤ i < n and ϕi(x(t)) 6= ϕi(x
′
(t)) then there exists

u(t) = −
xi+1(t)− x′i+1(t)

ϕi(x(t))− ϕi(x′(t))
(2.19)

in some time interval for which the outputs y(t) and y
′
(t) are identical and thou there exists

a singular input u(t).

Remark 2.33. For such a system one can hope to design an observer independently of the

input u. For non uniformly observable systems one will need some additional conditions on

the inputs.

Remark 2.34. This leads to the question if only universal inputs should be allowed, therefore

the admissable set of inputs to be made smaller. In case of disturbances this is not enough

since e.g. the system

ẋ(t) =

[
0 u(t)

0 0

]
x(t)

y(t) =
[

1 0
]
x(t)

with input

u(t) =

{
1 , t ∈ [0, t1]

0 , t > t1

is universal but if some disturbance comes into play at time t > t1, observability is lost.
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Note that disturbances can only transform a universal input into a singular input if they

are related to the state x. Otherwise they cancel out within the error equation and so the

observer remains uniform even in the presence of a disturbance.

Because of the case described in this last remark one needs some kind of persistency within

the universality property of the input.

Proposition 2.35.

The input u is universal if and only if the inequality

t∫
0

‖h(Xu(τ, x0))− h(Xu(τ, x0))‖2dτ > 0. (2.20)

holds for all x0 6= x
′
0.

Definition 2.36 (Persistency).

The input u is persistent if

∃ T : ∀ xt 6= x
′

t :

t+T∫
t

‖h(Xu(τ, xt))− h(Xu(τ, xt))‖2dτ > 0 ∀ t ≥ 0. (2.21)

Still this persistency definition within the universal observability is not enough as the fol-

lowing example illustrates:

Example 2.37. Consider the system

ẋ(t) = u(t)

y(t) =
1

(1 + t)2
x(t)

Then the error in the output is given by

h(Xu(τ, xt), τ)− h(Xu(τ, x
′

t), τ) = (xt − x
′

t)
1

(1 + τ)2

where (xt − x
′
t) is independent of τ .

⇒
t+T∫
t

‖h− h′‖dτ = ‖xt − x
′

t‖
t+T∫
t

dτ

(1 + τ)2
=

T · ‖xt − x
′
t‖

(1 + t+ T )(1 + t)
> 0

Note that using the norm instead of the squared norm is consistent with our definition of

persistency. From the above inequality it follows that

T

(1 + t+ T )(1 + t)
→ 0, t→∞.
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In particular this means that observability will decay to zero as t tends to infinity and by

this disturbances that occur for large t are less observable. To avoid this we need to assure

some “regularity” of the persistency:

Definition 2.38 (Regularly Persistent Inputs).

An input u is called regularly persistent if

∃ t0 ≥ 0, T, α > 0 :

t+T∫
t

‖h(Xu(τ, xt), τ)− h(Xu(τ, x
′

t), τ)‖2dτ ≥ α‖xt − x
′

t‖2. (2.22)

for all xt 6= x
′
t.

Proposition 2.39.

For state affine systems

ẋ(t) = A(u(t))x(t) +B(u(t))

y(t) = Cx(t)

regularly persisten inputs are such that

∃ t0 ≥ 0, T, α > 0 :

t+T∫
t

Φu(τ, t)
TCTCΦu(τ, t)dτ ≥ αId (2.23)

where Φu(τ, t) is such that

d

dτ
Φu(τ, t) = A(u(t))x(t)

Φu(t, t) = Id.

Proof. Consider the error

t+T∫
t

‖h− h′‖dτ =

t+T∫
t

(xt − x
′

t)
TΦu(τ, t)

TCTCΦu(τ, t)(xt − x
′

t)dτ

where h(xt) = Φu(τ, t)xt. Denoting

Γ =

t+T∫
t

Φu(τ, t)
TCTCΦu(τ, t)dτ

we can conclude

t+T∫
t

‖h− h′‖dτ = (xt − x
′

t)
T · Γ · (xt − x

′

t) ≥ α‖xt − x
′

t‖2
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if Γ ≥ αId. Conversely we can conclude if

t+T∫
t

‖h− h′‖dτ ≥ α‖xt − x
′

t‖2

for all xt 6= x
′
t then Γ ≥ αId.

Remark 2.40. Regular persistency is difficult to be checked in general. As one can see from

the previous proposition the regular persistency property becomes independent of the state in

the case of state affine systems. To give an idea of the difficulty to check regular persistency

consider the system

ẋ(t) =

[
0 u(t)

0 0

]
x(t)

y(t) =
[

1 0
]
x(t)

Then the input

u(t) =

{
1 , t ∈ [2kT, (2k + 1)T ]

0 , else

2T 4TT 3T

with k ∈ N0 is regularly persistent. But if one uses the input

u(t) =

{
1 , t ∈ [2kT, (2k + 1

k+1
)T ]

0 , else

2T 4TT 3T

with k ∈ N0 then the input is clearly not regularly persistent.

Remark 2.41. Regular persistency for state affine systems reduces to uniform complete

observability (Kalman Condition) in the case of linear time–variant systems.

Remark 2.42. So far we introduced the following general framework:
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"Observability" uniform

not uniform possible non uniform observer

for specific u

for all u

possible uniform observer

Regular Persistency

(

( )

( )

)(singular inputs u

E

E

singular inputs u )

Additionally one has to admit that in special cases one can find a uniformly observer for a

system that is not uniform in the input u and vice versa.

Remark 2.43. Also the following statements are valid:

(1) If for systems that do not satisfy the observability rank condition there exists a repre-

sentation

ζ̇1(t) = f1(ζ1(t), ζ2(t)) + g1(ζ1(t), ζ2(t))u(t) (2.24)

ζ̇2(t) = f2(ζ2(t)) + g2(ζ2(t))u(t) (2.25)

y(t) = h2(ζ2(t)) (2.26)

where the (ζ̇2, y)–subsystem satisfies the observability rank condition, then for the ζ2–

subsystem an observer can be designed.

(2) For systems that are not observable and if

∀ u : (x0, x
′

0) is indistinguishable with u : Xu(t, x0)−Xu(t, x
′

0)→ 0, t→∞

then one might find some possible observer.

In this case one has to take into account that

- this is an observer without correction term,

- the observer is not tunable,

- the observer depends on an internal convergence property of the system itself.



Chapter 3

“Basic” Designs

Given a system

ẋ(t) = f(x(t), u(t)) (3.1)

y(t) = h(x(t)) (3.2)

one wants to find

Ẋ(t) = F (X(t), u(t), y(t)) (3.3)

x̂(t) = H(X(t), u(t), y(t)) (3.4)

such that the error e(t) := x̂(t)−x(t) made by this observer tends to zero as t→∞. In this

chapter we will take a closer look at two specific types of function f and h in the linear as

well as the nonlinear case.

3.1 Linear Systems

3.1.1 Luenberger Observer

Within this section we will only consider the case of linear time–invariant systems. For this

kind of systems a very early result has been presented by Luenberger in the 1960s:

Theorem 3.1 (Luenberger Observer).

Consider a system of the form

ẋ(t) = Ax(t) +Bu(t) (3.5)

y(t) = Cx(t) (3.6)

If (A,C) is observable then there exists an observer of the form

˙̂x(t) = Ax̂(t) +Bu(t)−K (Cx̂(t)− y(t)) (3.7)



22 Chapter 3: “Basic” Designs

where the matrix K is such that the matrix (A−KC) is stable and therefore

Re(EVal(A−KC)) < 0. (3.8)

Proof. To proof this theorem we will first consider a transformation of the system matrizes

into a special form and secondly prove that the eigenvalues of (A−KC) can be chosen to lie

within the left half of the complex space. We will then conclude the proof by stating that

the development of the error tends to zero.

(1) Since (A,C) is observable that there exists a transformation matrix T such that

T−1AT =



∗ 1 · · · · · · 0
... 0

. . .
...

...
...

. . . . . .
...

...
. . . . . . 1

∗ 0 · · · · · · 0

 , CT =
[

1 0 · · · 0
]

(3.9)

This can be obtained by taking

T1 =
[
H AH · · · An−1H

]
where

H = Θ−1


0
...
...

1

 , and the observability matrix Θ =


C

CA
...

CAn−1

 .
Then for x(t) = T1z(t) it follows

ẋ(t) =
n∑
i=1

Ai−1Hżi(t)

and

ẋ(t) = Ax+Bu =
n∑
i=1

AiHżi(t) +
n∑
i=1

Ai−1Hbiu(t)

where An = −an−1A
n−1 − . . .− a1A− a0Id. Then from

n∑
i=1

Ai−1Hżi(t) = (b1u(t)− a0zn(t))H + (b2u(t)− a1zn(t) + z1(t))AH +

+ . . .+ (bnu(t)− an−1zn(t) + zn−1(t))An−1H
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we obtain

żi(t) = biu(t)− ai−1zn(t) + zi−1(t),

i.e. ż(t) =



0 · · · · · · 0 −a0

1
. . . . . .

...

0
. . . . . .

...
...

. . . . . .
...

0 · · · · · · 1 −an−1

 z +



b1
...
...
...

bn

u

Additionally if we look at

(CT1)T =


CH

CAH
...

CAn−1H

 = ΘH =


0
...
...

1


we see that y =

[
0 · · · 1

]
and by reordering the components of z we obtain the

canonical form stated above.

(2) For all Λ ∈ Rn there exists a matrix K0 such that

EVal(A0 −K0C0) = Λ

with A0 = T−1AT , C0 = CT . From this we can set the eigenvalues of (A0 −K0C0) to

any wanted eigenvalues. The einevalues of A0 are given by the first row of A0 due to

An = −an−1A
n−1 − . . . − a0Id which can be transformed into the usual characteristic

polynomial of A0. Therefore

EVal(T−1AT −K0CT ) = EVal(A− TK0C),

i.e. K = TK0 and hence EVal(A−KC) = Λ.

(3) Since the error is given by e(t) = x̂(t)− x(t) it follows

ė(t) = (A−KC)e(t)

and because of this

⇒ e(t)→ 0, t→∞

if Λ ∈ (C−)
n
.

Remark 3.2. ere we obtain global exponential stability and the observer is tunable via the

choice of Λ.
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3.1.2 Kalman Observer

We will now consider the larger class of linear time–variant systems. For this kind of systems

the following theorem was obtained by Kalman, also in the 1960’s, but here we will give a

proof via Lyapunov functions that was developed in the 1980’s when one was trying to

construct an observer for state–affine systems.

Theorem 3.3 (Kalman Observer).

Consider a system of the form

ẋ(t) = A(t)x(t) +B(t)u(t) (3.10)

y(t) = C(t)x(t). (3.11)

If (A(t), C(t)) is uniformly completely observalbe and uniformly bounded for all t, then there

exists an observer of the form

˙̂x(t) = A(t)x(t) +B(t)u(t)−K(t) [C(t)x̂(t)− y(t)] (3.12)

where K(t) = M(t)C(t)TW−1 with M(t) coming from the Riccati equation

Ṁ(t) = M(t)A(t)T + A(t)M(t)−M(t)C(t)TW−1C(t)M(t) + V (t) + δM(t), (3.13)

where M(0) and W are positive definite symmetric matrizes and either V is a positive definite

symmetric matrix or δ > 2 max ‖A(t)‖.

Proof. Set S(t) := M(t)−1. Then by derivating this equation we obtain

Ṡ(t) = −A(t)TS(t)− S(t)A(t) + C(t)TW−1C(t)− S(t)V S(t)− δS(t)

and we have:

(1) There exist t0, α1 and α2 such that

α1Id ≤ S(t) ≤ α2Id

.

(2) Given the error e(t) := x̂(t)− x(t) then

V (t, e) = e(t)TS(t)e(t)

is a Lyapunov function for the error system.

To show (1) we will first consider the bf case δ > 2a with a := max ‖A(t)‖ and V = 0. Then

the solution of S(t) is given by

S(t) = e−δtΦ(0, t)TC(t)TW−1C(t)Φ(0, t) +

t∫
0

e−δ(t−τ)Φ(τ, t)TC(t)TW−1C(t)Φ(τ, t)dτ
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with Φ as solution of the matrix differential equation

d

dt
Φ(τ, t) = A(τ)Φ(τ, t)

using the initial values Φ(t, t) = Id.

Lower bound: Since the non–integral part is larger than 0 due to S(0) being positiv semidefinit

we get

S(t) ≥
t∫

0

e−δ(t−τ)Φ(τ, t)TC(t)TW−1C(t)Φ(τ, t)dτ

≥
t∫

t−T

e−δ(t−τ)Φ(τ, t)TC(t)TW−1C(t)Φ(τ, t)dτ, t ≥ T.

Then using uniform complete observability, i.e.

t+T∫
t

e−δ(t−τ)Φ(τ, t)TC(t)TC(t)Φ(τ, t)dτ ≥ αId,

it follows that
t+T∫
t

e−δ(t−τ)Φ(τ, t)TC(t)TW−1C(t)Φ(τ, t)dτ ≥ αId,

where α and α are related by the eigenvalues of W−1. Using Φ(τ, t) = Φ(τ, t− T )Φ(t− T, t)
we obtain

S(t) ≥
t∫

t−T

e−δTΦ(t− T, t)T
[
Φ(τ, t)TC(t)TW−1C(t)Φ(τ, t)

]
Φ(t− T, t)dτ

≥ eδTΦ(t− T, t)TΦ(t− T, t)α.

Since Φ(t, t− T ) = Id +
T∫

t−T
A(τ)Φ(τ, t− T )dτ it follows that

‖Φ(t, t− T )‖ ≥ 1 +

t∫
t−T

a‖Φ(τ, t− T )‖dτ.

Using the Gronwall–Lemma this reveals ‖Φ(t, t− T )‖ ≤ eaT .

⇒ ΦT (t, t− T )Φ(t, t− T ) ≤ e2aT
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Using Φ(t− T, t) = Φ(t, t− T )−1 we obtain

Φ−T (t, t− T )Φ(t, t− T )TΦ(t, t− T )Φ(t, t− T )−1 ≤ e2aTΦ(t, t− T )−TΦ(t, t− T )−1.

⇒ Φ(t, t− T )−TΦ(t, t− T )−1 ≥ e−2aT Id

and therefore

S(t) ≥ αe−δT e−2aT Id.

Upper bound:

S(t) ≤ e−δte2at‖S(0)‖+

t∫
0

e−(δ−2a)(t−τ)‖C(t)TW−1C(t)‖dτ

≤ α2Id if δ > 2a.

To show (2) consider the Lyapunov function candidate

V (t, e(t)) = e(t)TS(t)e(t).

Then by derivation we obtain

V̇ (t, e(t)) = ė(t)TS(t)e(t) + e(t)T Ṡ(t)e(t) + e(t)TS(t)ė(t)

with

ė(t) =
(
A(t)− S(t)−1C(t)TW−1

)
e(t)

where S(·) is the solution of the Riccati equation

Ṡ(t) = −A(t)TS(t)− S(t)A(t) + C(t)TW−1C(t)− δS(t).

Hence we can simplify to

V̇ (t, e(t)) = e(t)T (A(t)− S(t)−1C(t)TW−1)TS(t)e(t)

+e(t)T (−A(t)TS(t)− S(t)A(t) + C(t)TW−1C(t)− δS(t))e(t)

+e(t)TS(A(t)− S(t)−1C(t)TW−1)e(t) =

= −e(t)TC(t)TW−1C(t)e(t)− δe(t)TS(t)e(t) ≤ −δV (t, e(t)).

To show (1) in the case δ = 0 and V is a positiv definite symmetric matrix one in-

stead has to consider

Ṡ(t) = −A(t)TS(t)− S(t)A(t) + C(t)TW−1C(t)− S(t)V S(t).
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Lower bound: It can be shown that for all δ > 0

S(t) = e−δtΦ(0, t)TS(0)Φ(0, t) +

t∫
0

e−δ(t−τ)Φ(τ, t)TC(t)TW−1C(t)Φ(τ, t)dτ

+δ

t∫
0

e−δ(t−τ)Φ(τ, t)T
[
S(t)− S(t)V S(t)

δ

]
Φ(τ, t)dτ.

As before S(t) ≤ α2Id and S(t) ≥ α1Id. Moreover

S(t)− S(t)V S(t)

δ
=
√
S(t)

(
Id−

√
S(t)V

√
S(t)

δ

)√
S(t)

with
√
S(t)V

√
S(t) ≤ ‖V ‖ ‖S(t)‖ ≤ α2‖V ‖. From this it follows that

Id−
√
S(t)V

√
S(t)

δ
≥ Id− α2‖V ‖

δ
> 0

if δ > α2‖V ‖. Therefore S(t) ≥ 0 and hence the previously shown bound applies here as

well.

To show (2) in this case consider again the Lyapunov candidate

V (t, e(t)) = e(t)TS(t)e(t).

By derivation we get

V̇ (t, e(t)) = −e(t)TC(t)TW−1C(t)e(t)− e(t)TS(t)V S(t)e(t)

≤ −e(t)TS(t)V S(t)e(t) = −e(t)T
√
S(t)S

√
S(t)e(t)

≤ −vα1e(t)
TS(t)e(t) = −vα1V (t, e(t))

where v denotes the minimum eigenvalue of V .

Remark 3.4. Properties of the Kalman observer:

(1) From Lypunov stability theory we obtain global exponential stability. Moreover the

observer is tunable via either the parameter δ or the matrix V .

(2) If δ = 0 and V 6= 0 we get the classical Kalman observer. Additionally in considering

the dual system we get that the usual condition of uniform complete controllability is

satisfied by V = V T > 0.

(3) The Kalman observer is optimal in the sense of minimizing the expression

t∫
0

[
(y(τ)−C(τ)z(τ))TW−1(y(τ)−C(τ)z(τ))+(ż(τ)−A(τ)z(τ))TV −1(ż(τ)−A(τ)z(τ))

]
dτ

(3.14)

where one is also free to add the initial values ‖z(0)− x̂0‖2
M(0).
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(4) The Kalman observer is also optimal with respect to minimization of

E
[
(x̂(t)− x(t))T (x̂(t)− x(t))

]
(3.15)

when

ẋ(t) = Ax(t) +Bu(t) + v(t)

y(t) = Cx(t) + w(t)

with

E
[
v(τ)v(t)T

]
= V δ(t− τ)

E
[
w(τ)w(t)T

]
= Wδ(t− τ)

E
[
w(τ)v(t)T

]
= 0.

In this case one an notice, for e(t) = x̂(t)− x(t), that

ė(t) = (A−KC)e(t)− v(t) +Kw(t)

ST ẋ(t) = Ax(t) +Bu(t) + v(t)

y(t) = Cx(t) + w(t)

˙̂x(t) = Ax̂(t) +Bu(t)−K(Cx̂− y)

If we extend this design to the nonlinear case we get

ẋ(t) = f(x(t), u(t))

y(t) = h(x(t))

and ˙̂x(t) = f(x̂(t), u(t)) + k(h(x̂(t)− y(t)))

and for the error e(t) = x̂(t)− x(t) it follows

ė(t) =
[
f(x̂(t), u(t))− f(x(t), u(t))

]
−K

[
h(x̂(t))− h(x(t))

]
and we have to find a k such that e(t)→ 0 as t→∞. Using Taylor expansion we get

ė(t) =
∂f

∂x

∣∣∣
x̂(t)
· (x̂(t)− x(t)) +O(‖x̂(t)− x(t)‖)

−K(t)

[
∂h

∂x

∣∣∣
x̂(t)
· (x̂(t)− x(t)) +O(‖x̂(t)− x(t)‖)

]
=

[
∂f

∂x

∣∣∣
x̂(t)
−K(t)

∂h

∂x

∣∣∣
x̂(t)

]
e(t) +O(‖x̂(t)− x(t)‖) +K(t)O(‖x̂(t)− x(t)‖).

Using the shorthand notation A(t) ≈ ∂f
∂x

∣∣∣
x̂(t)

, C(t) ≈ ∂h
∂x

∣∣∣
x̂(t)

, v(t) = O(‖x̂(t) − x(t)‖) and

w(t) = O(‖x̂(t)− x(t)‖) it follows

ė(t) =
(
A(t)−K(t)C(t)

)
e(t) + v(t) +K(t)w(t)
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Now take K(t) = M(t)CTW−1 where M(t) is given by the matrix Riccati differential equa-

tion

Ṁ(t) = M(t)A(t)T + A(t)M(t)−M(t)C(t)TW−1C(t)M(t) + V + δM(t)

and A(t) and C(t) are given as before. This is also called “Extended Kalman Filter”.

Here v and w are not uncorrelated and not white noise. Therefore the conditions for the

Kalman observer to be optimal are not satisfied. In general there is no guarantee that

e(t)→ 0, t→∞ as it can be seen from the following example.

Example 3.5. Consider the system

ẋ1(t) = x2(t)

ẋ2(t) = x2
1(t)

y(t) = x1(t)

˙̂x1(t) = x̂2(t)− k1(t)e1(t)

˙̂x2(t) = x̂2
1(t)− k2(t)e1(t)

with e1(t) = x̂1(t)− x1(t) and K(t) = [k1(t), k2(t)]T . Then the error is given by

ė(t) =

[
−k1(t) 0

−k2(t) + 2x̂1(t) 0

]
−
[

0

e2
1(t)

]
.

Hence the usual Lyapunov candidate V (t, e(t)) = eT (t)S(t)e(t) yields

V̇ (t, e(t)) ≤ λV (t, e(t))− 2eT (t)S(t)

[
0

e2
1(t)

]
.

If e1 is too large the e(t) might grow since the last term might become dominant.

3.2 Nonlinear Systems

Here we will focus on and restrict us to specific structures of f and h and extend the

previously mentioned linear structures.

3.2.1 Luenberger–like Observer

Here we handle uniformly observable systems.

Output Additive Nonlinearities

Example 3.6. In the previous example 3.5 the only nonlinearity is x2
1 and the output is

measuring x1. Therefore we will use this in the observer.

˙̂x1(t) = x̂2(t)− k1e1(t)

˙̂x2(t) = y2(t)− k2e1(t)
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with e(t) := x̂1(t)− x1(t). Then we obtain

ė1(t) = e2(t)− k1e1(t)

ė2(t) = −k2e2(t),

which can be written as

ė(t) =

[
−k1 1

−k2 0

]
e(t)

which is an exact linear observer since e(t) → 0, t → ∞ globally, exponentially an exactly

for appropriate k1, k2 and the oberserver is tunalbe by choice of k1 and k2.

Theorem 3.7.

For any system of the form

ẋ(t) = Ax(t) + ϕ(Cx(t), u(t)) (3.16)

y(t) = Cx(t) (3.17)

where the pair (A,C) is observable, there exists a ˙̂x satisfying

˙̂x(t) = Ax̂(t)−K
(
Cx̂(t)− y(t)

)
+ ϕ(y(t), u(t)) (3.18)

with (A−KC) stabil such that x̂ is an globally exponential and exact observer.

Triangular Additive Nonlinearities

Example 3.8. Consider the system

ẋ1(t) = x2(t)

ẋ2(t) =
1

5
sin(x2(t))

y(t) = x1.

Note that ẋ2(t) = 1
5

sin(x2(t)) 6= ϕ(x1(t)). The observer is then given by

˙̂x1(t) = x̂2(t)− k1e1(t)

˙̂x2(t) =
1

5
sin(x̂2(t))− k2e1(t).

Take for instance k1 = 2, k2 = 1.

⇒ A−KC =

[
−2 1

−1 0

]
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which is stable. Then take P such that

P (A−KC) + (A−KC)TP = −Id

⇒ P =

[
1 −1

−1 3

]
= P T > 0.

So choosing for e(t) = x̂(t)−x(t) an Lyapunov function V (e(t)) = e(t)TPe(t) it follows that

V̇ (e(t)) = −e(t)T e(t) + 2e(t)TP

[
0

sin(x̂2(t))−sin(x2(t))
5

]
.

Since sin is Lipschitz we have

| sin(x̂2(t))− sin(x2(t))| ≤ |x̂2(t)− x2(t)| = ‖e(t)‖

and the eigenvalues of P are given by λ1,2 = 2±
√

(2). Therefore

V̇ (e(t)) = −e(t)T e(t) + 2e(t)TP

[
0

sin(x̂2(t))−sin(x2(t))
5

]
with P ≤ 2

≤ −‖e(t)‖2 +
4

5
‖e(t)‖2 = −1

5
‖e(t)‖2

and hence e(t)→ 0 as t→∞.

Theorem 3.9.

Consider a system

ẋ(t) = Ax(t) + ϕ(Cx(t), u(t)) (3.19)

y(t) = Cx(t) (3.20)

and the pair (A,C) shall be observable. Then there exists an ˙̂x satisfying

˙̂x(t) = Ax̂(t)−K
(
Cx̂(t)− y(t)

)
+ ϕ(y(t), u(t)) (3.21)

with (A−KC) stable such that x̂ is a globally exponential and exact observer.

In general it is difficult to get
λmin(Q)

2λmax(P )
> γ (3.22)

to be satisfied. A systematic solution is obtained for uniformly observable systems by the

following:
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Theorem 3.10 (High–Gain Observer Design).

Consider a system

ẋ(t) = A0x(t) + ϕ(x(t), u(t)) (3.23)

y(t) = C0x(t) (3.24)

with

A0 =


0 1 0 . . . 0
...

. . . . . .
...

...
. . . . . . 1

0 . . . . . . . . . 0

 and C0 =
[

1 0 . . . 0
]
.

If ∂ϕi
∂xj

= 0, n ≥ j > i ≥ 1 and ϕ is globally Lipschitz in x with Lipschitz constant γ and

uniformly in u then

˙̂x(t) = A0x̂(t)− Λ(λ)K0(C0x̂(t)− y(t)) + ϕ(x̂(t), u(t)) (3.25)

where K0 := (A0 −K0C0) is stable and

Λ(λ) =


λ 0

λ2

. . .

0 λn

 (3.26)

is an observer for the system for λ being sufficiently large.

Proof. Define the error e(t) := x̂(t)− x(t). Then the derivative is given by

ė(t) = (A0 − ΛK0C0)e(t) + ϕ(x̂(t), u(t))− ϕ(x(t), u(t)).

(1) By inspecting the matrices one can check that

Λ−1(A0 − ΛK0C0)Λ = λ(A0 −K0C0)

(2) It also follows for λ large enough, λ > 1, that

‖Λ−1
(
ϕ(x̂(t), u(t))− ϕ(x(t), u(t))

)
‖ ≤ γ‖Λ−1(x̂(t)− x(t))‖ = γ‖Λ−1e(t)‖

since

1

λi
‖(ϕi(x̂(t), u(t))− ϕi(x(t), u(t)))‖ ≤ 1

λi

∥∥∥∥∥∥∥
 x̂1(t)

...

x̂i(t)

−
 x1(t)

...

xi(t)


∥∥∥∥∥∥∥

≤

∥∥∥∥∥∥∥


1
λ

0
. . .

0 1
λi



 x̂1(t)

...

x̂i(t)

−
 x1(t)

...

xi(t)



∥∥∥∥∥∥∥

≤ ‖Λ−1(x̂(t)− x(t))‖
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Then we use the Lyapunov candidate V (e(t)) = e(t)TΛ−1PΛ−1e(t) with

P (A0 −K0C0) + (A0 −K0C0)TP = −Id, P = P T > 0.

Then it follows from the derivative

V̇ (e(t)) = 2e(t)TΛ−1PΛ−1(A0 − ΛK0C0)e(t)

+2e(t)TΛ−1PΛ−1(ϕ(x̂(t), u(t))− ϕ(x(t), u(t)))

≤ −λ‖Λ−1e(t)‖2 + 2‖Λ−1e(t)‖λmax(P )γ‖Λ−1e(t)‖
≤ −‖Λ−1e(t)‖2(λ− 2λmax(P )γ)

≤ −δ‖Λ−1e(t)‖2

for λ > 2λmax(P )γ + δ that the error e(t)→ 0 exponentially by Lyapunov arguments.

Remark 3.11. The choice of λ is crucial:

(1) The rate of convergence is tunable by λ. So not only convergene by itself is guaranteed

by it.

(2) Notice the ’‘peaking phenomenon’‘. The faster the convergence is, the larger the over-

shoot within the transient behavior may be.

λ growing

t

Figure 3.1: Peaking phenomenon for growing λ

(3) The larger a disturbance is then for large λ its effects will be larger.
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(4) This result can be extended to systems of the form

ẋ1(t) = f1(x1(t), x2(t), u(t))

ẋ2(t) = f2(x1(t), x2(t), x3(t), u(t))
...

ẋn−1(t) = fn−1(x1(t), . . . , xn(t), u(t))

ẋn(t) = fn(x(t), u(t))

y(t) = x1(t)

where ∂fi
∂xi+1

≥ αi > 0 ∀x, u and f is Lipschitz with Lipschitz constant γ globally in x,

uniformly in u.

3.2.2 Kalman–like Observer

Here we will only consider the case of state–affine systems. For this special kind of systems

an observer can be constructed as follows.

Theorem 3.12.

Consider a system of the form

ẋ(t) = A(u(t))x(t) +B(u(t)) (3.27)

y(t) = Cx(t). (3.28)

If the input u(t) is regularly persistent and such that A(u(t)) is bounded, then the Kalman

observer stated in Theorem 3.3 is an observer for the system.

Remark 3.13. This result can be extended to systems that are affine in the unmeasured

states

ẋ(t) = A(u(t), y(t))x(t) +B(u(t), y(t))

y(t) = Cx(t)

if u(t) makes

v(t) :=

(
u(t)

CXu(t, x0)

)
regularly persistent for the system

ẋ(t) = A(v)x(t)

y(t) = Cx(t)

for all x0.
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Combining

ẋ(t) = A0x(t) + ϕ(x(t), u(t))

y(t) = C0x(t)

and

ẋ(t) = A(u(t), y(t))x(t) +B(u(t), y(t))

y(t) = Cx(t)

to

ẋ(t) = A0(u(t), y(t))x(t) + ϕ(x(t), u(t)) (3.29)

y(t) = C0x(t) (3.30)

where A0, ϕ and C0 satisfy the properties of Theorem 3.10, then some kind of High–Gain

Kalman–like Observer can be derived under appropriate observability properties which can

be characterized as regular observability for arbitrarily short times.
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Chapter 4

“Advanced” Designs

In this chapter we will treat the case when a system does not exhibit the form of one of the

previously mentioned systems.

4.1 Interconnection

The basic scheme of interconnected systems can be shown graphically as follows:

Σ
1

Σ

Σ

2

3

u(t) y(t)

Σ

Figure 4.1: System of interconnected subsystems

For this kind of system Σ we are not only looking for (sub-)observers Θi for each of the sub-

systems Σi as shown in 4.2, but for an observer Θ for the interconnection of the subsystems,

see 4.3.

Therefore we would like to obtain conditions on the subobservers itself as well as on the

interconnection term that will allow us to construct such an observer for the overall system.

We will see that up till now this is only possible for special kind of systems, meaning the

subsystems have to fulfill certain structural criteria.
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Σ
1

Σ

Σ

2

3

u(t) y(t)

Σ

Θ

Θ

Θ
1

3

2

Figure 4.2: Observer for every single sys-

tem within a system of interconnected sys-

tems

Σ
1

Σ

Σ

2

3

u(t) y(t)

Σ

1

3

2
Θ

Θ

Θ

Θ ?

Figure 4.3: Observer for a system of inter-

connected systems

Example 4.1. Consider the system

ẋ1(t) = x2(t)

ẋ2(t) = u1(t)

ẋ3(t) = x4(t) + ϕ(x2(t))

ẋ4(t) = u2(t)

y(t) =

(
x1(t)

x3(t)

)
This system can be divided into two subsystems Σ1, Σ2 and one can construct observers Θ1

and Θ2(x̂2(t)) for each of these subsystems.

Σ1


ẋ1(t) = x2(t)

ẋ2(t) = u1(t)

y1(t) = x1(t)

←− Θ1

Σ2


ẋ3(t) = x4(t) + ϕ(x2(t))

ẋ4(t) = u2(t)

y2(t) = x3(t)

←− Θ2(x̂2(t))

The obvious question is if

Θ1 + Θ2(x̂2(t))
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is an observer for the system Σ, which can actually be shown if ϕ is Lipschitz.

If instead

Σ2


ẋ3(t) = ϕ(x2(t))x4(t)

ẋ4(t) = u2(t)

y(t) = x3(t)

we need x2(t) to be regularly persistent for Σ1 and ϕ needs to be Lipschitz to get a solution.

One can give conditions on subobservers (exponential convergence) and interconnection

terms (Lipschitz, observability) to make it possible to get an observer by interconnecting

subobservers either for

ẋ1(t) = f1(x1(t), u(t))

y1(t) = h1(x1(t))

ẋ2(t) = f2(x1(t), x2(t), u(t))

y2(t) = h2(x1(t), x2(t))
...

or for

ẋ1(t) = f1(x1(t), x2(t), u(t))

ẋ2(t) = f2(x2(t), x1(t), u(t))

y(t) = h(x)

where in the second case (x2(t), u(t)) is considered as the input of the first differential equa-

tion f1 and (x1(t), u(t)) the input of the second differential equation f2.

4.2 Transformation

If we consider a system of the form

ẋ(t) = f(x(t), u(t))

y(t) = h(x(t))

the idea is to use a transformation

z(t) = Φ(x(t)) such that x(t) = Ψ(z(t)) (4.1)

to get a system of the form

ż(t) = F (z(t), u(t)) (4.2)

y(t) = H(z(t)) (4.3)
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for which one knows how to design an observer, i.e.

˙̂z = F (ẑ(t), u(t)) +K(H(ẑ(t))− y(t)) (4.4)

and hence we can take

x̂(t) = Ψ(ẑ(t)) (4.5)

as an observer of the untransformed system.

The problem here is to find appropriate transformations Φ and Ψ.

There exist conditions to transform a system into one of the following forms:

Σ1

{
ż(t) = Az(t) + ϕ(y(t), u(t))

y(t) = Cz(t)
(4.6)

Σ2

{
ż(t) = A(u(t), y(t))z(t) + ϕ(y(t), u(t))

y(t) = Cz(t)
(4.7)

Σ3

{
ż(t) = A(u(t))z(t) + ϕ(y(t), u(t))

y(t) = Cz(t)
(4.8)

Σ4

{
ż(t) = A0z(t) + ϕ(z(t), u(t))

y(t) = C0z(t)
(4.9)

Σ5

{
ż(t) = A0(u(t), y(t))z(t) + ϕ(z(t), u(t))

y(t) = C0z(t)
(4.10)
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From Theory to Practice

5.1 Infinitessimal Observability

Here we will be dealing with systems of the form

Σ

{
ẋ(t) = f(x(t), u(t))

y(t) = h(x(t), u(t))
(5.1)

where again x is the state, y is the observation and u is the control. Furthermore we will

suppose that f is a smooth vectorfield and h a smooth function. Here x ∈ X ⊂ Rn is a

connected manifold, y ∈ Rp and u ∈ L∞(U) where U ⊂ Rm.

Definition 5.1 (Input/Output Function).

The input/output function is given by

P : L∞(U) × X → L(Rp)((
ut
)

0≤t≤tu
, x0

)
 

(
yt
)

0≤t≤e(u,x0)

(5.2)

where e(u, x0) is the minimum of tu and the escape time if any exists. The system is observ-

able if the set {
t | Pt(u, x0) 6= Pt(u, x

′

0)
}

(5.3)

has positive Lebesque measure.

Remark 5.2. This is observability for any input u.

We will define the first variation of the system Σ denoted by TΣ as follows:

Definition 5.3 (First Variation).

Consider a system Σ according to (5.1) with

f : X × U → TX (5.4)

Txf : TX × U → TTX (5.5)

h : X × U → Rp (5.6)

dxh : TX × U → Rp. (5.7)
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Then the first variation is given by

TΣ

{
dξ
dt

= Txf(ξ(t), u(t))

η(t) = dxh(ξ(t), u(t))
(5.8)

which is the well known linearization of Σ along a state trajectory.

Additionally the input/output function of TΣ between 0 and e(u, x0) is defined by

dPt(u, ξ0) = ηt, 0 ≤ t < e(u, x0). (5.9)

Remark 5.4. dPt is also the Frechet derivative of the input/output function P of Σ.

Definition 5.5 (Infinitesimal Observability).

A system σ is infinitesimally observable at u if dPu,x0(.) is injective (where dPu,x0(.)ξ0  (
dPu,x0(ξ0)

)
0≤t≤e(u,x0

). Σ is uniformly infinitesimally observable if it is infinitesimally ob-

servable for any input u and any x0.

This definition splits the classes of systems Σ into two cases:

(1) If p ≤ m, then infinitesimal observability is a very strong property. Only a few systems

verify this hypothesis. So systems that are uniformly infinitesimally observable are

“very special”.

(2) If p > m, then uniform infinitesimal observability is a generic property, that is to say

it is verified by almost all systems.

5.1.1 Uniformly infinitessimally observable systems if p ≤ m

For the first case we will suppose that U = Ip ⊂ Rm and also that p = 1. There is an

analytic set M in X of codimension at least 1 such that Σ/X×M̄ can (locally) be put in the

form

ẋ1(t) = f1(x1(t), x2(t), u(t)) (5.10)

ẋ2(t) = f1(x1(t), x2(t), x3(t), u(t)) (5.11)
...

ẋn(t) = fn(x(t), u(t)) (5.12)

y(t) = h(x1(t), u(t)) (5.13)

where
∂f1

∂x2

6= 0,
∂f2

∂x3

6= 0, . . .
∂h

∂x1

6= 0. (5.14)
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Let us verify that this system is infinitesimally observable:

ξ̇1(t) =
∂f1

∂y1

(x1(t), x2(t), u(t))ξ1(t) +
∂f1

∂x2

(x1(t), x2(t), u(t))ξ2(t) (5.15)

ξ̇1(t) =
∂f2

∂y1

(x1(t), x2(t), x3(t), u(t))ξ1(t) +
∂f2

∂x2

(x1(t), x2(t), x3(t), u(t))ξ2(t) (5.16)

+
∂f2

∂x3

(x1(t), x2(t), x3(t), u(t))ξ3(t) (5.17)

...

η(t) =
∂h

∂x1

(x1(t), u(t))ξ1(t) (5.18)

There is a special result for control affine systems

ẋ(t) = f(x(t)) + g(x(t))u(t)

y(t) = h(x(t))

with u ∈ Rm, y ∈ R. If this system is uniformly infinitesimally observable, then it can locally

be written as

ẋ1(t) = x2(t) + g1(x1(t))u(t) (5.19)

ẋ2(t) = x3(t) + g2(x1(t), x2(t))u(t) (5.20)
...

ẋn−1(t) = xn(t) + gn−1(x1(t), . . . , xn−1(t))u(t) (5.21)

ẋn(t) = ϕ(x(t)) + gn(x(t))u(t) (5.22)

y(t) = x1(t) (5.23)

up to change of coordinates.

Remark 5.6. If g1 was a function of x1(t) and x2(t)

ξ̇1(t) = ξ2(t) + u

[
∂g1

∂x1

(x1(t), x2(t))ξ1(t) +
∂g1

∂x2

(x1(t), x2(t))ξ2(t)

]
=

[
1 + u

∂g1

∂x2

(x1(t), x2(t))

]
ξ2(t) + u

∂g1

∂x1

(x1(t), x2(t))

⇒ u =
−1

∂g1
∂x2

(x1(t), x2(t))

This would give us no information on x2(t) and hence the system is not observable.

Continuing, this is equivalent to a system of the form

ẋ(t) = A0x(t) + g(x(t))u(t) + ϕ̃(x(t)) (5.24)

y(t) = C0x(t) (5.25)
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where the linear components are given by the matrices

A0 =


0 1 0 . . . 0
...

. . . . . .
...

...
. . . . . . 1

0 . . . . . . . . . 0

 and C0 =
[

1 0 . . . 0
]
.

and the nonlinear components are of the form

g(x(t)) =


g1(x1(t))

g2(x1(t), x2(t))
...

gn(x(t))

 , ϕ̃(x(t)) =


0
...

0

ϕ(x(t))


Here the set

M =
{
x ∈ X | dxh(x(t)) = 0, dxLfh(x(t)) = 0, . . . , dxL

n−1
f h(x(t)) = 0

}
(5.26)

and the change of coordinates

Φ(x) =


h(x(t))

Lfh(x(t))
...

Ln−1
f h(x(t))

 (5.27)

are given explicitly.

5.1.2 Uniformly infinitessimally observable systems if p > m

Definition 5.7 (k-jet input/k-jet output function).

A function

ΦΣ
k : X × U × Rm·(k−1) → Rp·k (5.28)(

x0, u(t), u̇(t), ü(t), . . . , u(k−1)(t)
)
 

(
y(t), ẏ(t), ÿ(t), . . . , y(k−1)(t)

)
(5.29)

is called k-jet input/k-jet output function for k ∈ N.

Remark 5.8. At time t = 0 we got the following:

y(t) = h(x1(t), u(t))

ẏ(t) =
∂h

∂x
(x0, u(t))f(x0, u(t)) +

∂h

∂u
(x0, u(t))u̇(t)

...

yk−1(t) = a function of x0, u(t), u̇(t), . . . , u(k−1)(t)
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Definition 5.9 (Differentially Observable).

The system Σ is differentially observable of order k if the function

SΦΣ
k : X × U × Rm·(k−1) → Rk·p × U × R(k−1)m (5.30)(

x0, u(t), u̇(t), . . . , u(k−1)(t)
)
 

(
y(t), ẏ(t), . . . , y(k−1)(t), u(t), u̇(t), . . . , u(k−1)(t)

)
(5.31)

is injective. The system Σ is strongly differentially observable of order k if SΦΣ
k is an injective

immersion (i.e. an embedding).

Theorem 5.10.

The set of systems Σ such that SΦΣ
k is an immersion contains an open dense subset of

Ω = {(f, h) | f, h ∈ C∞} (5.32)

for the topology of uniform convergence for k ≥ 2n.

Theorem 5.11.

The set of systems Σ which are strongly differentially observable is a residual set of Ω, where

a residual set is a countable intersection of open dense sets.

Theorem 5.12.

If X is analytic then the set of analytic systems Σ such that SΦΣ
k is an injective immersion

is dense in Ω.

Remark 5.13. These theorems are true for systems of the form

ẋ(t) = f(x(t), u(t))

y(t) = h(x(t), u(t))

as well as for systems

ẋ(t) = f(x(t), u(t))

y(t) = h(x(t))

Lemma 5.14.

Let Σ be an analytical system. Then Σ is observable for all L∞–inputs u if and only if Σ is

observable for all Cω–inputs.

Therefore if a L∞(U)–input is a “bad” input in the sense that it makes the system unob-

servable, then there exists an analytic “bad” input.
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5.2 Observer Construction

We will consider systems that are in the canonical form of observability for a nonlinear

system that is uniformly infinitesimally observable:

ẋ1(t) = f(x1(t), x2(t), u(t)) (5.33)

ẋ1(t) = f(x1(t), x2(t), x3(t), u(t)) (5.34)
... (5.35)

ẋ1(t) = f(x(t), u(t)) (5.36)

y(t) = h(x(t), u(t)) (5.37)

Let us suppose that

0 < α1 ≤
∂h

∂x1

≤ β1 (5.38)

0 < αi+1 ≤
∂f

∂xi+1

≤ βi+1 (5.39)

(5.40)

Additionally we assume that h and fi, i ∈ {1, . . . , n} are globally Lipschitz in x and uniformly

in u.

5.2.1 Luenberger Observer
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Identification

6.1 Theoretical part

We will consider systems of the form

Σ :

{
ẋ(t) = f (x(t), u(t), ϕ ◦ π(x(t)))

y(t) = h (x(t), u(t), ϕ ◦ π(x(t)))
(6.1)

where

ϕ ◦ π : X → Z → I ⊂ R
x → z = π (x) → ϕ (π (x))

(6.2)

and

PΣ : X × L∞[U ] × L∞[I] → L∞[Rdy ](
x0 , u(·) , ϕ̂(·)

)
→ y(·)

. (6.3)

Within this system ϕ is an unknown function of π (x), ϕ̂ is a function of time and PΣ is the

input/output function of Σ. To shorten notation I denotes the unit interval [0, 1].

Definition 6.1 (Identifiability).

A system Σ is called identifiable at((
u(t)

)
0≤t≤tu

,
(
y(t)

)
0≤t≤l(u,x0)

)
∈ L∞[U ]× L∞[Rp] (6.4)

where e(u, x0) is the minimum of tu and , if it exists, the smallest possible finite escape time,

if there is at most a single pair

(x0, ϕ̂) ∈ X × L∞(I) (6.5)

such that for almost all times t the input/output function PΣ satisfies the equality

PΣ(x0, u, ϕ̂)(t) = y(t) (6.6)

and ϕ̂(t) = ϕ ◦ π(x(t)) for some smooth function ϕ : Z → I.

The system Σ is identifiable if it is identifiable at any admissible pair (u(.), y(.)).
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Definition 2:

TΣ :

{
dξ
dt

= Tx,ϕf(x, u, ϕ; ξ, η)

ŷ = dx,ϕh(x, u, ϕ; ξ, η)

where (ξ, η) ∈ TxX × TϕI, we set

P t
TΣ(ξ0, η) = dx,ϕh(x, u, ϕ̂;Tx,ϕφt(x, u, ϕ̂; ξ0, η), η)

= Tx,ϕP
t
Σ(ξ0, η)

Σ is infinitesimally identifiable at (x0, u, ϕ̂) ∈ X ×L∞[U ]×L∞[I] if P t
TΣ is injective ∀t > 0

Σ is uniformly infinitesimally identifiable if this is true at all (x0, u, ϕ̂)

Let DkΦ = X × (U ×R(k−1)du)× (I ×Rk−1) be the space of k-jets of the system Σ

(jk (u) =
(
u (0) , u′ (0) , . . . , u(k−1) (0)

)
), we set

ΦΣ
k : DkΦ → Rkdy

(x0, j
k(u), jk(ϕ̂)) → jk (y)

ΦΣ,∗
k,2 : DkΦ×DkΦ → Rkdy ×Rkdy

(z1, z2) → (ΦΣ
k (z1),ΦΣ

k (z2))

Definition 3: Σ is differentially identifiable of order k if

ΦΣ,∗
k,2 (z1, z2) ∈ ∆k ⇒ (x1, ϕ̂1(0)) = (x2, ϕ̂2(0))

Proposition. Differential Identifiability ⇒ Identifiability

Theorem 1.

• If dy ≥ 3, differential identifiability of order 2n+ 1 is a generic property in the class of

C∞ systems.

• If dy < 3, differential identifiability is not a generic property.

Zi =
(
xi, ϕi, ϕ

′
i, . . . , ϕ

k
i , j

k
Σ(xi, ϕi)

)
, i = 1, 2

Z = (Z1, Z2)

Φ(Z) = ΦΣ
k (Z1)− ΦΣ

k (Z2) ∈ Rk dy ,

k = 2n+ 1, dy ≥ 3

Let us suppose that Φ is a submersion

codimΦ−1 (0) = k dy
Let ΠΦ−1 (0) =

(
xi, ϕi, j

k
Σ(xi, ϕi)

)
i=1,2

codimΠΦ−1 (0) ≥ k dy − 2 (k − 1) = k (dy − 2) + 2

≥ k + 2 ≥ 2n+ 3

ρΣ : (X × I)2 \∆ →
(
JkΣ
)2

(x1, ϕ1, x2, ϕ2) →
(
xi, ϕi, j

k
Σ(xi, ϕi)

)
i=1,2

Multijet transversality theorem: the set of Σ such that ρΣ is transversal to ΠΦ−1 (0)

is residual.



6.1. THEORETICAL PART 49

dim (X × I)2 \∆ = 2n+ 2

⇓
generically, ρΣ avoids ΠΦ−1 (0)

Theorem 2. If Σ is uniformly infinitesimally identifiable then

i) ∂
∂ϕ

{
h, Lfϕh, . . . , (Lfϕ)n−1h

}
≡ 0

ii) ∂
∂ϕ
Lnfϕh 6= 0

iii) dxh ∧ ... ∧ dxLn−1
fϕ

h 6= 0,

Therefore, locally, the system can be written

ẋ1 = x2
...

ẋn−1 = xn
ẋn = ψ(x, ϕ)

y = x1

and ∂
∂ϕ
ψ(x, ϕ) 6= 0

Theorem 3. If Σ meets the following conditions,

i) ∂
∂ϕ

{
h, Lfϕh, . . . , (Lfϕ)n−1h

}
≡ 0

ii) ∂
∂ϕ
Lnfϕh 6= 0

iii) dxh ∧ ... ∧ dxLn−1
fϕ

h 6= 0,

then Σ is

1) locally identifiable,

2) loc. unif. infinitesimally identifiable,

3) loc. diff. identifiable of order n+ 1.

Let k < n be the first k such that dϕL
k
fh 6≡ 0:

Σ


y = x1

ẋ1 = x2 · · ·
ẋk−1 = xk
ẋk = Lkf (x, ϕ) = fk(x, ϕ) · · ·
ẋn = fn(x, ϕ)

TΣ



ẋ = f (x, ϕ)

ŷ = ξ1

ξ̇1 = ξ2 · · ·
ξ̇k−1 = ξk
ξ̇k = dxfk (x, ϕ) ξ + dϕfk (x, ϕ) η

A feedback η = −dxfk (x, ϕ0) ξ

dϕfk (x, ϕ0)
in ϕ0 s.t. dϕfk (x, ϕ0) 6= 0 gives dξk

dt
= 0 which contradict

observability.
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If ∂
∂ϕ
Lnfϕh = 0 at (x, ϕ)

X × I ⊃ E =
{

(x, ϕ) ; dϕL
n
fh = 0

}
↓ Π

X ⊃ ΠE

Hardt’s theorem ⇒ ∃ϕ̂

{
y = x1, ẋ1 = x2, . . . ẋn = ψ (x, ϕ̂ (x))

ŷ = ξ1, ξ̇1 = ξ2, . . . ξ̇n = dxψ (x, ϕ̂ (x)) + 0

Define El =
{
dxhi, dxLfϕhi, . . . , dxL

l−1
fϕ
hi , i = 1, 2

}
and N (l) = rank (El) at a generic point:

k is defined by

N (0)N (1) · · · N (k − 1)N (k)N (k + 1) · · · N (k +m)

0 2 2k − 2 2k 2k + 1 2k +m

(2k +m ≤ n)

The order of the system is the first integer r such that dϕL
r
fϕ

(h1, h2) 6≡ 0.

Lemma: If Σ is uniformly infinitesimally identifiable then (1) 2k +m = n

(2) r ≤ k +m
Proof:

(1) ϕ = ϕ0 =cte


ẋ = f (x, ϕ0)

ξ̇ = g (x, ξ, ϕ0)

y = h (x, ϕ0)

contradict observability

(2)

{
ẋ = f (x)

y = h (x)
contradict identifiability

Définition 5. A system Σ is regular if (1) and (2) holds.



y1 = x1

ẋ1 = x3
...

ẋn−3 = xn−1

ẋn−1 = fn−1(x, ϕ)

y2 = x2

ẋ2 = x4
...

ẋn−2 = xn
ẋn = fn(x, ϕ)

with ∂
∂ϕ

(fn−1, fn) 6= 0

N (l) increases by steps of 2 until the last

derivative and apparition of ϕ.
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

y1 = x1 y2 = x2

ẋ1 = x3 ẋ2 = x4
...

...

ẋ2k−3 = x2k−1 ẋ2k−2 = x2k

ẋ2k−1 = f2k−1(x1, ..., x2k+1)

ẋ2k = x2k+1
...

ẋn−1 = xn
ẋn = fn(x, ϕ)

with ∂fn
∂ϕ
6= 0.

N (l) increases by steps of 1 when ϕ appears for the first time, ' single-output case.

y1 = x1 y2 = x2

ẋ1 = x3 ẋ2 = x4
...

...

ẋ2r−3 = x2r−1 ẋ2r−2 = x2r

ẋ2r−1 = ψ(x, ϕ) ẋ2r = F2r(x1, . . . , x2r+1, ψ(x, ϕ))

ẋ2r+1 = F2r+1(x1, . . . , x2r+2, ψ(x, ϕ))
...

ẋn−1 = Fn−1(x, ψ(x, ϕ))

ẋn = Fn(x, ϕ)

with ∂ψ
∂ϕ
6= 0, ∂F2r

∂x2r+1
6= 0, ...., ∂Fn−1

∂xn
6= 0

ϕ appears when N (l) increases by steps of 2.

If r = k before the last derivative:

dxh1 ∧ · · · ∧ dxLk−1
fϕ

h1 ∧ dxLk−1
fϕ

h2 ∧ dxLkfϕh2 6≡ 0

If dϕL
k
fϕ
h1 6= 0, we obtain ϕ using y1 and x2k,. . . ,xn using y2

If dϕL
k
fϕ
h1 ≡ 0, we obtain ϕ using y2

ẋ1 = F1 (x1, x2, u) ∂F1

∂x2
6= 0

ẋ2 = F2 (x1, x2, x3, u) ∂F2

∂x3
6= 0

...

ẋn = Fn (x, u)

ξ1 = y = x1, ξ2 = F1(x1, x2, u)

ξ3 = ∂F1

∂x2
F2 (x1, x2, u) , · · ·

ξi+1 = ∂F1

∂x2
· · · ∂Fi−1

∂xi
Fi (x1, . . . , xi+1, u)
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
ξ̇1 = ξ2

ξ̇2 = ξ3 + ∂F1

∂x1
ẋ1 + ∂F1

∂u
u̇

...

ξ̇n = G (x, u, u̇)

Ref. H. Hammouri, M. Farza, Nonlinear observers for local uniform observable systems{ dx

dt
= A(t)x+ b(x, u)

y = C(t)x

A(t) =


0 a2 (t) 0 · · · 0

a3 (t)
. . .

...
...

. . . . . . 0

an (t)

0 · · · 0


C(t) =

(
a1(t) 0 · · · 0

)
0 < am ≤ ai(t) ≤ aM

b (x, u) = b1(x1, u)
∂

∂x1

+ b2(x1, x2, u)
∂

∂x2

+ bn(x1, ..., xn, u)
∂

∂xn

dz
dt

= A(t)z + b(z, u)− S(t)−1C (t)′ r−1(C (t) z − y(t))
dS
dt

= −(A(t) + b∗(z, u))′S − S(A(t) + b∗(z, u))

+C (t)′ r−1C (t)− SQθS

dθ
dt

= λ(1− θ)

∆ =


1

1
θ

. . .

(1
θ
)n−1


Qθ = θ2∆−1Q∆−1

If θ is large, high-gain observer (HGEKF)

If θ ≈ 1, Classical Extended Kalman filter (EKF)

There exist λ0 > 0 such that for any 0 ≤ λ ≤ λ0, there exist θ0 such that for any θ (0) > θ0, for

any S (0) ≥ c Id, for any compact K ⊂ Rn, for any z (0) ∈ K then if we set ε (t) = z (t)−x (t)

for any t ≥ 0

||ε(t)||2 ≤ R(λ, c)e−atΛ(θ (0) , t, λ)||ε (0) ||2
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where

Λ(θ (0) , t, λ) = θ (0)2(n−1)+ a
λ e−

a
λ
θ(0)(1−e−λt)

and a is a positive constant and R(λ, c) is a decreasing function of c.

Change of variables

{
x̃ = ∆x

P̃ = 1
θ
∆P∆ (P = S−1)

+ time change dτ = θ (t) dt

We set ε = z − x = error then we calculate T ε (τ)S (τ) ε (τ) .

Observability give us αI ≤ S (τ) ≤ βI then

T ε (τ)S (τ) ε (τ) −→ 0⇐⇒ ε (τ) −→ 0

When τ ≤ T

‖ε (τ)‖2 ≤ θ (τ)2(n−1)H (c) e−(a1θ(T )−a2)τ ‖ε (0)‖2

We use N observers in parallel. At times kT :

• a new observer is initialized with θ (kT ) = θ0,

• the older observer is killed.

Therefore, at any time t, we haveN observers initialized at times kT , (k − 1)T . . . (k −N + 1)T

where k =
⌊
t
T

⌋
.

State estimation: the estimation given by the observer with smallest innovation ‖y − Cx̂‖.

6.2 Biological reactor
ds (t)

dt
= −µ (s (t))x (t) +D(t)(Sin − s (t))

dx (t)

dt
= (µ (s (t))−D(t))x (t)

s(t) : substrates

x(t) : biomass

D(t) : influent flow rate

Sin : substrate concentration

in the influent

µ (s) > 0, µ (0) = 0 specific growth rate,

Monod µ(s) = µ0s
km+s

or

Haldane µ(s) = µ0s

km+s+ s2

ki

· · ·

Only s (t) is measured

ds (t)

dt
= −µ (s (t))x (t) +D(Sin − s (t))
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The system is observable.

Only x (t) is measured

dx (t)

dt
= (µ (s (t))−D (t))x (t)

dµ (s (t))

dt
= µ′ (s (t)) (−µ (s (t))x (t) +D (t) (Sin − s (t)))

The system is observable (depending on µ).

Same questions but µ (s) is unknown
ds (t)

dt
= −µ (s (t))x (t) +D(Sin − s (t))

dx (t)

dt
= (µ (s (t))−D)x (t)

Only x (t) is measured,

can we reconstruct µ (s) and s (t) ? no

Only s (t) is measured,

can we reconstruct µ (s) and x (t) ? yes if...

Both x (t) and s (t) are measured,

can we reconstruct µ (s) ? yes
dx (t)

dt
= (µ (s)−D)x

ds (t)

dt
= −µ (s) x+D(Sin − s)

y = x

s(t) = e−Dts(0) +

∫ t

0

e−D(t−τ)(−(µx)(τ) +DSin)dτ

s (0) = s0

s̃(t) = e−Dts̃0 +

∫ t

0

e−D(t−τ)(−(µx)(τ) +DSin)dτ

s̃ (0) = s̃0 ≈ s0

µ̃ (s̃) = µ (s)⇒ dx (t)

dt
= (µ̃ (s̃ (t))−D)x (t)

Let us denote z(t) = µ(s(t))x(t), and assume that
dkz

dtk
= 0
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

ṡ = −z +D(t)(Sin − s)
ẋ = z −D(t) x

ż = z1 · · ·
żk−2 = zk−1

żk−1 = 0

y = (s, x)

where ds
dt

= ṡ

Linear (optimal) Kalman observer


X = x+ s

D̃ (t) =
∫ t

0
D (τ) dτ

Λ (t) = eD̃(t)(s− Sin) + Sin

Λ̇ = −eD̃(t)(X − s)µ (s)

= (Λ−X0)µ (s)

with Λ (0) = s (0)

If s (t0) = s (t1), t0 < t1 then

Λ̇(t0)

Λ(t0)−X0

= µ(s(t0)) = µ(s(t1)) =
Λ̇(t1)

Λ(t1)−X0

gives X0 hence µ(s(t)) = Λ̇(t)
Λ(t)−X0

µ (s) is identifiable ⇐⇒ s(t) visits twice the same value

1. µ is identified at sample values k∆s, at time t, giving µ̂t (h∆s);

2. x (t) is estimated using a linear Kalman filter and µ̂t (h∆s)

Simulation:

µ (s) is the Haldane law, µ̂0 (s) is the Monod law,
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6.3 FCC process

Reactor model

Temperature in the reactor:

ScHraṪra = ScRc (Trg − Tra) + StfRtf (Ttf − Tra)
−∆HfvRtf −∆HcrRtfCtf

Ctf =
Rcr

Rcr +Rtf

Rcr =

√
kcrRcPraHra

10C0.12
rc

exp

(
−1

2

Acr
RTra

)
,

with:

• Reactor operating conditions Tra|t=0 = 775 K, Hra = 1.85 10−4 kg, Pra = 211.7 kPa,

• Feed properties Rtf = 41 kg / s, Ttf = 492.8 K, Stf = 3140 J / (kg .K),

• Catalyst recirculation Rc|t=0 = 290 kg / s, 0 < Rmin
c ≤ Rc ≤ Rmax

c , Sc = 1047 J / (kg .K),

• Heat constants ∆Hcr = 4.65 105 J / kg, ∆Hfv = 1.74 105 J / kg, ∆Hrg = 3.02 107 J / kg,

• kcr = 25.96 kPa−1 s−1, Acr = 83.8 103 J /mol

• R = 8.314 J / (mol .K)

Carbon concentration on spent catalyst in the reactor:

HraĊsc = Rc (Crc − Csc) + 100Rcf

Rcf = Rcc +Rad

Rcc =

√
kccRcPraHra

10C0.03
rc

exp

(
−1

2

Acc
RTra

)
Rad = FcfRtf

with:

• Csc|t=0 = 1.2

• kcc = 2.66 10−4 kPa−1 s−1, Acc = 4.18 104 J /mol
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Regenerator model

Temperature in the regenerator:

ScHrgṪrg = ScRc (Tra − Trg) + SaiRai (Tai − Trg) + ∆HrgRcb

Rcb =
Rai

242
(21−Ofg)

Ofg = 21 exp

(
−PrgHrg

Rai
1
Kod

+ 1
KorCrc

)
Kod = 6.34 10−9R2

ai

Kor = 1.16 10−5 exp

 Aor

R
(

1
866.7
− 1

Trg

)


with:

• Regenerator operating conditions Trg|t=0 = 943 K, Hrg = 1.53 105 kg, Prg = 254.4 kPa,

• Air properties Rai|t=0 = 26 kg / s, 0 < Rmin
ai ≤ Rai ≤ Rmax

ai , Tai = 394 K, Sai =

1130 J / (kg .K)

• Aor = 1.47 105 J /mol

Carbon concentration on regenerated catalyst in the regenerator:

HrgĊrc = Rc (Csc − Crc)− 100Rcb

with Crc|t=0 = 0.3

ϕ (x;u) = ϕ (Trg, Tra, Crc, Csc, Fcf ;Rai)

=
(
Trg, Tra, Ctf (Crc, Tra) ,

Csc
Crc
,
Fcf
Crc

)
= ξ

ẋ1 = Ṫrg = ψ (x, ϕ (x1) , u)

ẋ2 = Ṫra = a3(t)x3 + f2 (x1, x2)

ẋ3 ' Ċrc = a4(t)x4

+f3 (x1, x2, x3, ψ (x, ϕ (x1) , u) , u, u̇)

ẋ4 ' Ċsc = a5(t)x5 + f4 (x1, x2, x3, x4)

ẋ5 ' Ḟcf = F (x)

Here, ψ = Rcb, ϕ = Kor and π (x) = Trg = x1. u = (Rai, Pra)

dx

dt
= F (x, u)
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Our diffeomorphism ξ = ϕ (x, u) depend on u supposed to be smooth, hence:

dξ
dt

= Dϕ (ϕ−1
u (ξ)) f (ϕ−1

u (ξ) , u) +
∂ϕ(ϕ−1

u (ξ),u)
∂u

u̇

= F (ξ, u, u̇)
dξ̂
dt

= F
(
ξ̂, u, u̇

)
+ PCTR−1

(
y − Cξ̂

)
dP
dt

= F ∗
(
ξ̂, u, u̇

)
P + PF ∗

(
ξ̂, u, u̇

)
+Qθ − PCTR−1CP

Since Cϕu (x) = Cx, equations are those of a modified extended Kalman filter

dx̂
dt

= f (x̂, u) + pCTR−1 (y − Cx̂)
dp
dt

= f ∗ (x̂, u) p+ pf ∗ (x̂, u)T + qθ (x̂)

−ph∗ (x̂, u)T R−1h∗ (x̂, u) p

+D−1
ψu

(x̂)D2
ψu
·
(
ph∗ (x̂, u)T R−1 (h (x̂, u)− y)

)
p

+pD2
ψu
·
(
ph∗ (x̂, u)T R−1 (h (x̂, u)− y)

)
D−1
ψu

(x̂)T

where qθ (x̂) = Dϕu (x̂)−1Qθ

(
Dϕu (x̂)−1)T

The two last lines (transposed) correspond to the change of coordinate.

We use a second order system to estimate Kor i.e.
d3Kor

dt3
= 0

We use three parallel extended Kalman filters such that

• θ0 = 3 (starting value for each observers)

• θHG = 2 (minimal value of θ ensuring high-gain)

• Time between two consecutive initializations: 2 hours

At last,

ξ =

(
Trg, Rcb, K̇or, K̈or, Tra, Ctf ,

Csc
Crc

,
Fcf
Crc

)
and

∆−1 = diag
(
1, θ, θ2, θ3, 1, θ, θ2, θ3

)
with Qθ = θ2∆−1Q∆−1

and Rθ = (C∆−1C ′)R (C∆−1C ′)
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