
Control Engineering 3
(Regelungstechnik 3)

Lecture Notes

Jürgen Pannek

January 27, 2026

Jürgen Pannek
Institute for Intermodal Transport and Logistic Systems
Hermann-Blenck-Str. 42
38519 Braunschweig

FOREWORD

During winter term 2025/26 I give the lecture to the module Control Engineering 3 (Regelung-

stechnik 3) at the Technical University of Braunschweig. These lecture notes are the 3rd edition,
which I prepared to structure the lecture and support my students in their learning process. The
notes will be updated to integrate remarks and corrections in due course of the lecture itself.

The aim of the module is to provide participating students with knowledge of advanced control
methods, which extend the range of control engineering. After having successfully completed
the lecture Modern Control Systems, students are able to define control methods for embedded
and networked systems, transfer them to models and applications and apply them. The students
can specify and explain the aspects of consistency, stability and robustness as well as areas of
application of methods. In addition, they are able to implement the integration of methods in
toolchains and apply them to real systems such as vehicles. Students can also reproduce processes
of parameter application and automated testing and transfer them to case studies.
To this end, the module will tackle the subject areas

optimal and robust control as well as

predictive control

for linear as well as nonlinear systems. In particular, we discuss the methods

LQR – linear quadratic control,

H2 regulator – output feedback control,

H∞ regulator – robust control,

MPC – model predictive control, and

DCS – distributed control systems.

II

within the lecture and support understanding and application within the tutorial classes. The
module itself is accredited with 5 credits.
An electronic version of this script can be found at

https://www.tu-braunschweig.de/itl/lehre/skripte

Literature for further reading

Stability and observability

SONTAG, E.D.: Mathematical Control Theory: Deterministic Finite Dimensional Sys-

tems. Springer, 1998. – 531 S

HINRICHSEN, D. ; PRITCHARD, A.J.: Mathematical system theory I: Modeling, state

space analysis and robustness. Springer, 2010

ISIDORI, A.: Nonlinear Control Systems. 3rd edition. Springer, 1995

LQR, H2 and H∞ control

ANDERSON, B.D.O. ; MOORE, J.B.: Optimal control: linear quadratic methods.
Courier Corporation, 2007

SKOGESTAD, S. ; POSTLETHWAITE, I.: Multivariable feedback control: analysis and

design. John Wiley & Sons, 2005

KALMAN, R.E. u. a.: Contributions to the theory of optimal control. In: Bol. soc. mat.

mexicana 5 (1960), No. 2, pp. 102–119

Predictive and distributed control

GRÜNE, L. ; PANNEK, J.: Nonlinear Model Predictive Control: Theory and Algo-

rithms. 2. Springer, 2017

RAWLINGS, J.B. ; MAYNE, D.Q. ; DIEHL, M.: Model predictive control: theory,

computation, and design. Second. Nob Hill Publishing Madison, WI, 2017

RICHARDS, A. ; HOW, J.: A Decentralized Algorithm for Robust Constrained Model
Predictive Control. In: Proceedings of the American Control Conference, 2004, pp.
4241–4266

https://www.tu-braunschweig.de/itl/lehre/skripte

Contents

Contents iv

List of figures v

List of definitions and theorems x

1 Stability and Observability 1
1.1 System . 1

1.2 Stability . 7

1.3 Observability . 13

I Linear systems 19

2 Optimal stabilization 21
2.1 Linear quadratic regulator — LQR . 21

2.2 H2 control . 26

2.3 H∞ control . 31

3 Optimal observation 35
3.1 Recursive estimation . 35

3.2 Transformation of dynamics . 37

3.3 Kalman filter . 40

II Nonlinear systems 45

4 Digitalization 47
4.1 Zero order hold . 48

4.2 Practical stability . 51

4.3 Existence of stabilizing feedback . 53

4.4 Intersample behavior . 55

IV CONTENTS

5 Model predictive control 57
5.1 Introduction of constraints . 58
5.2 MPC approach . 62
5.3 Recursive feasibility . 64
5.4 Stability conditions . 67

6 Distributed control 73
6.1 Separation of systems . 75
6.2 Sequential approach . 85
6.3 Hierarchical approach . 91
6.4 Parallel approach . 96

7 Control Barrier Functions 103
7.1 Forward invariance . 104
7.2 Control barrier functions . 107
7.3 Integration of CBF in MPC . 109

Bibliography 113

List of Figures

1.1 Term of a system . 2
1.2 Sketch of a dynamic flow and a trajectory . 5
1.3 Flow of information for controllability and observability 6
1.4 Connection of controllability and stability . 12
1.5 Connection of observability and detectability 17

2.1 Connection of LQR results . 25

4.1 Zero order hold sampling . 50
4.2 Zero order hold solution . 50

5.1 Building blocks within the MPC Algorithm 5.9 58
5.2 Sketch of a three stage supply network . 59
5.3 Definition of the driving path via splines for given routing points 61
5.4 Sketch of a viability set . 68

6.1 Building blocks within the MPC Algorithm 5.9 74
6.2 Decomposition of global state and control variables by the projections π

p
X and π

p
U 78

6.3 Illustration of collecting neighboring data from those subsystems q ∈ I p(k). . . 80
6.4 Sequential communication structure of the Richards and How DMPC scheme . . 86
6.5 Communication graph (dashed) and dependency graph (solid) in a hierarchical

DMPC scheme . 92
6.6 Communication schedule for dual decomposition 97

7.1 Illustration of forward invariance via CBF . 110

List of Definitions and Theorems

Definition 1.1 System . 1
Definition 1.2 Time . 3
Definition 1.3 State . 3
Definition 1.5 State space – continuous time system 3
Definition 1.7 State space – discrete time system . 4
Definition 1.9 Linear control system . 5
Theorem 1.10 Solution of linear control system . 6
Corollary 1.11 Superposition and time shift . 6
Definition 1.12 Operating point . 7
Definition 1.13 Stability and Controllability . 7
Theorem 1.14 Eigenvalue criterion . 8
Theorem 1.16 Linear feedback . 9
Theorem 1.17 Kalman criterion . 9
Theorem 1.19 Separability . 10
Theorem 1.20 Hautus criterion . 10
Theorem 1.21 Controllable canonical form . 11
Theorem 1.22 Assignable polynomial . 11
Theorem 1.23 Stabilizing polynomial . 11
Corollary 1.24 Polynomial for Hautus criterion . 11
Definition 1.26 Distinguishability . 13
Lemma 1.27 Necessary and sufficient condition for distinguishability 13
Theorem 1.29 Kalman criterion . 14
Theorem 1.30 Separability . 14
Definition 1.31 Dual system . 15
Theorem 1.32 Duality . 15
Definition 1.34 Detectability . 15
Theorem 1.35 Hautus criterion . 15
Theorem 1.36 Observable canonical form . 16
Theorem 1.37 Duality of detectability and controllability 16
Definition 2.1 Key performance criterion . 21

VIII LIST OF DEFINITIONS AND THEOREMS

Definition 2.2 Cost function . 22

Definition 2.3 Cost functional . 22

Definition 2.4 Optimal control problem . 22

Definition 2.5 Null controlling . 23

Corollary 2.6 Null controlling stability . 23

Definition 2.7 Quadratic cost function . 23

Definition 2.8 LQ problem . 23

Theorem 2.9 Null controlling . 24

Theorem 2.10 LQR feedback . 24

Theorem 2.11 Algebraic Riccati equation . 24

Definition 2.14 L2 norm . 26

Corollary 2.16 H2 norm equivalence . 27

Corollary 2.17 Laplace-transform impulse response 28

Theorem 2.18 H2 norm equivalence for LTI . 28

Theorem 2.19 H2 stability . 29

Definition 2.20 H2 problem . 29

Theorem 2.22 H2 feedback . 30

Definition 2.25 L∞ norm . 31

Definition 2.27 H∞ problem . 32

Theorem 2.28 H∞ feedback . 33

Definition 3.4 Filtering . 38

Definition 3.5 Estimator dynamics . 38

Definition 3.6 Error function . 38

Definition 3.7 Cost functional . 39

Definition 3.8 Optimal estimation problem . 39

Corollary 3.9 Null controlling observability . 39

Definition 3.10 Error dynamics . 40

Definition 3.12 Quadratic cost functional for observability 41

Theorem 3.13 Time transformation . 41

Definition 3.14 Kalman filter problem . 42

Theorem 3.15 Kalman filter . 42

Definition 4.2 Zero order hold . 49

Definition 4.4 Zero order hold solution . 49

Definition 4.7 Practical stability/controllability . 51

Lemma 4.9 Existence of feed forward . 52

Corollary 4.10 Existence of practically stabilizing feed forward 52

Definition 4.12 Practical Control-Lyapunov functions 53

LIST OF DEFINITIONS AND THEOREMS IX

Theorem 4.14 Existence of feedback . 54

Theorem 4.16 Existence of practical Control-Lyapunov function 54

Definition 4.17 Uniform boundedness . 55

Theorem 4.18 Asymptotic stability and uniform boundedness over T 55

Definition 5.2 Constraints . 60

Definition 5.6 Constrained optimal control problem 62

Definition 5.8 Digital constrained optimal control problem 63

Definition 5.11 Admissibility . 65

Definition 5.13 Feasibility . 66

Theorem 5.14 Recursive feasibility and admissibility 66

Definition 5.17 Terminal constraints . 68

Definition 5.19 Feasibility set . 69

Corollary 5.20 Feasibility . 69

Theorem 5.21 Recursive feasibility using terminal constraints 69

Theorem 5.22 Asymptotical stability using terminal constraints 70

Definition 5.23 Terminal costs . 70

Theorem 5.24 Asymptotical stability using terminal costs 70

Theorem 5.25 Asymptotical stability using suboptimality 70

Definition 6.3 Projection . 76

Definition 6.4 Decomposition . 77

Definition 6.7 Neighboring index set . 79

Definition 6.8 Neighboring data . 79

Corollary 6.11 Equivalent subsystem split . 81

Definition 6.12 Projected digital constrained optimal control problem 82

Theorem 6.16 Recursive feasibility of distributed NMPC 85

Definition 6.17 Neighboring data extension . 86

Theorem 6.20 Stability of Richards and How Algorithm 91

Corollary 6.21 Independence of systems . 92

Definition 6.22 List of parallel operational systems 93

Definition 6.23 Priority and deordering rule . 93

Definition 6.27 Cost operator . 98

Definition 7.1 Forward invariance . 105

Definition 7.4 Safe set . 106

Definition 7.6 Lie derivative . 107

Definition 7.7 Control barrier function . 107

Definition 7.8 Control Barrier Function . 108

Theorem 7.10 Forward invariance via CBF . 110

X LIST OF DEFINITIONS AND THEOREMS

Theorem 7.11 Safety Guarantee via CBF . 110
Definition 7.13 MPC problem with Control Barrier Function 111

CHAPTER 1

STABILITY AND OBSERVABILITY

In control engineering, stability and observability are fundamental properties of systems. A sys-
tem is considered stable if its state and output remain bounded for any bounded input, and the
effects of the input diminish over time. Observability implies that the system’s state can be
uniquely determined based on the known history of inputs and outputs.
This chapter discusses methods for enforcing and evaluating these properties. We will distinguish
between linear and nonlinear systems. Linear systems can be evaluated analytically, allowing the
use of formulas to prove properties. In contrast, nonlinear systems require complex simulations
to evaluate.
We begin by introducing the necessary terms from system theory and control theory, followed by
definitions of stability and observability.

1.1. System

The term system as such is typically not defined clearly. In certain areas, a system stands for a
connected graph, a dynamically evolving entity or even a simulation or an optimization. While
the intention of the latter are quite distinct, they all can be boiled down to the following:

A system is the connection of different interacting components to realize given tasks.

The interdependence of systems with their environment is given by so called inputs and outputs.
More formally, we define the following:

Definition 1.1 (System).
Consider two sets U and Y . Then a map Σ : U → Y is called a system.

2

The set U and Y are called input and output sets. An element from the input set u ∈ U is called
an input, which act from the environment to the system and are not dependent on the system
itself or its properties. We distinguish between inputs, which are used to specifically manipulate
(or control) the system, and inputs, which are not manipulated on purpose. We call the first ones
control or manipulation inputs, and we refer to the second ones as disturbance inputs. An element
from the output set y ∈ Y is called an output. In contrast to an input, the output is generated by
the system and influences the environment. Here, we distinguish output variables depending on
whether we measure them or not. We call the measured ones measurement outputs.

System Σ

u1
u2

...
unu

y1
y2

...
yny

Figure 1.1.: Term of a system

In the literature, certain classes of systems are considered:

A system is called linear if it is linear in inputs and outputs, and nonlinear if it is not linear
in either the inputs or outputs.

A system is time invariant if all parameters are constants, and time varying if at least one
parameter is time-dependent.

Systems can be classified as static or dynamic depending on whether their outputs depend
solely on the input at the same time instant or also on its history.

Causal systems depend only on the history of the inputs, while acausal systems include
future values.

If inputs are mapped directly to outputs, then the map is called input output system. If the
input triggers changes of an internal variable and the output depends on the latter, then the
map is called state space system.

If time is measured continuously, the system is said to be in continuous time. If time is
sampled, it is referred to as discrete time system.

To assess systems, we require a formal notation of time:

1.1. SYSTEM 3

Definition 1.2 (Time).
A time set T is a subgroup of (R,+).

Within the lecture, we focus on state space systems, which are time invariant, dynamic and causal.
To introduce such systems, we first need to define what we referred to as internal variable:

Definition 1.3 (State).
Consider a system Σ : U → Y . If the output y(t) uniquely depends on the history of inputs
u(τ) for t0 ≤ τ ≤ t and some x(t0), then the variable x(t) is called state of the system and the
corresponding set X is called state set.

Within Definition 1.3, input, output and state refer to tuples

u = [u1 u2 . . . unu]
⊤ (1.1a)

y =
[
y1 y2 . . . yny

]⊤
(1.1b)

x = [x1 x2 . . . xnx]
⊤ . (1.1c)

where uj is an element within the subset j of the input set U , yj is an element within the subset j
of the output set Y and xj is an element within the subset j of the state set X .

Remark 1.4
Here, we use this notation to allow for real valued and other entries such as gears, method

characteristics or switches. In the real valued setting, we have U ⊂ Rnu , Y ⊂ Rny and X ⊂
Rnx .

In the continuous time setting T = R, we can utilize the short form ẋ for d
dt x and obtain the

following compact notation:

Definition 1.5 (State space – continuous time system).
Consider a system Σ : U → Y in continuous time T = R satisfying the property from Defini-
tion 1.3. If X is a vector space, then we call it state space and refer to

ẋ(t) = f (x(t), u(t), t), x(t0) = x0 (1.2a)

y(t) = h(x(t), u(t), t). (1.2b)

as continuous time system. Moreover, u, y and x are called input, output and state of the system.

4

The state of a system at time instant t can then be depicted as a point in the nx–dimensional state
space. The curve of points for variable time t in the state space is called trajectory and is denoted
by x(·).

Remark 1.6
Systems with infinite dimensional states are called distributed parametric systems and are de-

scribed, e.g., via partial differential equations. Examples of such systems are beams, boards,

membranes, electromagnetic fields, heat etc..

Similarly, in discrete time T = Z we define the following:

Definition 1.7 (State space – discrete time system).
Consider a system Σ : U → Y in discrete time T = Z satisfying the property from Defini-
tion 1.3. If X is a vector space, then we refer to

x(k + 1) = f (x(k), u(k), k), x(0) = x0 (1.3a)

y(k) = h(x(k), u(k), k). (1.3b)

as discrete time system. Again, u, y and x are called input, output and state of the system.

While we have t ∈ R in continuous time, for discrete time systems the matter of time refers to
an index k ∈ Z. Therefore, trajectories are no longer represented as curves but as sequences of
points within their respective set. Digitalization typically results in discrete time systems, which
are obtained by sampling continuous time systems using an A/D and D/A converter. The outcome
of this process is a time grid. The simplest case is equidistant sampling with a fixed sampling time
T, which produces

T := {tk | tk := t0 + k · T} ⊂ R. (1.4)

where t0 is some fixed initial time stamp. Apart from equidistant sampling, other types such as
event based or sequence based are possible.

Remark 1.8
Note that the class of discrete time systems is larger and contains the class of continuous time

systems, i.e. for each continuous time system there exists a discrete time equivalent, but for some

discrete time systems no continuous time equivalent exists.

1.1. SYSTEM 5

Note that in both discrete and continuous time, the map shows a flow within the state space. A tra-
jectory is obtained by specifying an initial value and an input sequence. Figure 1.2 illustrates the
concept of flow and trajectory. In this case, the flow is colored to indicate its intensity whereas the
arrows indicate its direction. The trajectory is evaluated for a specific initial value and „follows“
the flow accordingly.

x1

x2

Figure 1.2.: Sketch of a dynamic flow and a trajectory

As stated in the introduction, stability refers to the ability to control a system to achieve a specific
goal, such as boundedness or convergence. In order to achieve this, the input must have an impact
on the states, either directly or indirectly. Observability, on the other hand, refers to the ability
to identify the status of a system, that is, to be able to measure states directly or indirectly. This
context is illustrated in Figure 1.3. The figure demonstrates that not all states can be manipulated,
even indirectly, and not all states can be observed. However, we will see that even in this case
methods can be applied to ensure stability and observability.
In order to discuss the terms stability and observability in details, we focus on the special class of
linear control systems:

Definition 1.9 (Linear control system).
For matrices A ∈ Rnx×nx , B ∈ Rnx×nu , C ∈ Rny×nx , D ∈ Rny×nu , we call the system

ẋ(t) = A · x(t) + B · u(t), x(0) = x0 (1.5a)

y(t) = C · x(t) + D · u(t) (1.5b)

6

u

x1

xj

xk

xnx

y

Figure 1.3.: Flow of information for controllability and observability

linear time invariant control system in continuous time with initial value x0 ∈ Rnx . The time
discrete equivalent reads

x(k + 1) = A · x(k) + B · u(k), x(0) = x0 (1.6a)

y(k + 1) = C · x(k) + D · u(k). (1.6b)

This class is of particular interest as we can directly give its solution

Theorem 1.10 (Solution of linear control system).
Consider a linear control system (1.5). Then for any initial condition x(t0) = x0 and any piece-

wise continuous control function u ∈ U there exists a unique solution

x(t; t0, x0, u) = expA·(t−t0) x0 +

t∫
t0

expA·(t−s) ·B · u(s)ds. (1.7)

In the discrete time case (1.6) the solution reads

x(k) = Ak · x0 +
k−1

∑
j=0

Ak−1−j · B · u(j). (1.8)

From the solution, we directly obtain the so called superposition property and the time shifting
property:

Corollary 1.11 (Superposition and time shift).
Consider a linear control system from Definition 1.9. Then the superposition principle

x(t; t0, x0, u) = x(t; t0, x0, 0) + x(t; t0, 0, u) (1.9)

1.2. STABILITY 7

and the time shift property

x(t; t0, x0, u) = x(t; s, x(s; t0, x0, u), u) = x(t − s; t0 − s, x0, u(s + ·)) (1.10)

hold.

The superposition principle allows us to separate the uncontrolled solution (u = 0) and the
unforced solution (x0 = 0).

1.2. Stability

Stability is a crucial characteristic of control systems and is linked to specific points in the state
space known as the operating point. At these points, the system’s dynamics should be zero. In
other words, the input (as a control) must be selected appropriately to ensure that the system
remains stable.

Definition 1.12 (Operating point).
For continuous time systems (1.2) the pairs (x⋆, u⋆) satisfying

f (x⋆, u⋆) = 0 (1.11)

are called operating points of the system. For discrete time systems (1.3) we call (x⋆, u⋆) oper-
ating point if

f (x⋆, u⋆) = x⋆ (1.12)

If (1.11) or (1.12) hold true respectively for any u⋆, then the operating point is called strong or
robust operating point.

Note that for autonomous systems, that is (1.2) or (1.3) being independent of time t or k, the
control u ∈ Rnu is required to be constant and fixed to u = u⋆ in order to compute the operating
points.
Based on this definition, the property of stability can be characterized by boundedness and con-
vergence of solutions:

Definition 1.13 (Stability and Controllability).
For a system (1.2) we call x⋆

8

strongly or robustly stable operating point if, for each ε > 0, there exists a real number
δ = δ(ε) > 0 such that for all u we have

∥x0 − x⋆∥ ≤ δ =⇒ ∥x(t)− x⋆∥ ≤ ε ∀t ≥ 0 (1.13)

strongly or robustly asymptotically stable operating point if it is stable and there exists a
positive real constant r such that for all u

lim
t→∞

∥x(t)− x⋆∥ = 0 (1.14)

holds for all x0 satisfying ∥x0 − x⋆∥ ≤ r. If additionally r can be chosen arbitrary large,
then x⋆ is called globally strongly or robustly asymptotically stable.

weakly stable or controllable operating point if, for each ε > 0, there exists a real number
δ = δ(ε) > 0 such that for each x0 there exists a control u guaranteeing

∥x0 − x⋆∥ ≤ δ =⇒ ∥x(t)− x⋆∥ ≤ ε ∀t ≥ 0. (1.15)

weakly asymptotically stable or asymptotically controllable operating point if there exists a
control u depending on x0 such that (1.15) holds and there exists a positive constant r such
that

lim
t→∞

∥x(t)− x⋆∥ = 0 ∀∥x0 − x⋆∥ ≤ r. (1.16)

If additionally r can be chosen arbitrary large, then x⋆ is called globally asymptotically

stable.

Stability and controllability are important properties of a system. Stability allows the input to be
considered as a disturbance while still retaining the mentioned properties. Controllability, on the
other hand, refers to inducing these properties to the system by means of the input.
In the linear case, we can derive sufficient properties for the system to be stable using the Eigen-
value criterion:

Theorem 1.14 (Eigenvalue criterion).
Consider a system (1.5) with u ≡ 0. Let λ1, . . . , λj ∈ C be the Eigenvalues of A.

Then the operating point x⋆ = 0 is stable iff all Eigenvalues have non-positive real part

and for all Eigenvalues with real part 0 the corresponding Jordan block is one-dimensional.

1.2. STABILITY 9

Then the operating point x⋆ = 0 is locally asymptotically stable iff all Eigenvalues have

negative real part.

Remark 1.15
If all Eigenvalues of a matrix A exhibit negative real part, then the matrix is called Hurwitz.

Given the Eigenvalue criterion, it is straightforward to derive an input, which induces the stability
property.

Theorem 1.16 (Linear feedback).
Consider a system (1.5) with u = F · x. Then the operating point x⋆ = 0 is locally asymptotically

stable iff all Eigenvalues of A + B · F for a feedback F have negative real part.

So technically, that would be it. Yet, we don’t know

1. whether or not it is actually possible that a feedback F can be constructed such that the
conditions of Theorem 1.16 hold, nor

2. how such a feedback can be constructed.

To answer the first question, we take a look at controllability of a system. Here, Kalman formu-
lated that idea to reach points by combinations of dynamics and input, that is A and B. Since the
dimension of the set reachable by the dynamics only cannot grow larger after nx − 1 iterations,
he introduced the so called Kalman criterion:

Theorem 1.17 (Kalman criterion).
The system (1.5) is controllable iff for the controllability matrix

rk
(

B | A · B | . . . | Anx−1 · B
)
= nx (1.17)

holds. Then the pair (A, B) is called controllable.

Remark 1.18
The reachable set is typically defined as the set of points, which can be reached from x0 = 0
within a certain time t ≥ 0 via

R(t) := {x(t, 0, u) | u ∈ U} .

10

Similarly, the controllable set refers to those points x0, for which a control u can be found to

drive the solution to the origin, i.e.

C(t) := {x0 | ∃u ∈ U : x(t, x0, u) = 0} .

Unfortunately, Kalman assumed that the control needs to affect all dimensions of the state space
for the system to be controllable. However, if a part of the system is already controllable without
the control affecting it, then only the controllability of the remaining part needs to be ensured.
Therefore, Hautus introduced separability in the state space:

Theorem 1.19 (Separability).
For any system (1.5), which is not controllable, there exists a linear transformation T such that

Ã := T−1 · A · T =

(
A1 A2

0 A3

)
, B̃ := T−1 · B =

(
B1

0

)
(1.18)

where (A1, B1) is controllable.

Now, the idea is to simply apply the Kalman criterion to the separated part of the dynamics/state
space:

Theorem 1.20 (Hautus criterion).
Consider a system (1.5). Then (A, B) is controllable iff

rk (λId − A | B) = nx (1.19)

holds

1. for all λ ∈ C or

2. for all eigenvalues λ ∈ C of A.

After addressing whether feedback can be constructed, we will now shift our focus to computing
such feedback. We will achieve this by applying basic linear algebra, which will provide us with
the controllable canonical form. We will begin with the simpler Kalman case.

1.2. STABILITY 11

Theorem 1.21 (Controllable canonical form).
Consider a system (1.5). Then (A, B) is controllable iff there exists a linear transformation T
with

Ã = T−1 · A · T =


0 1 · · · 0
...

...

0 0 · · · 1
α1 α2 · · · αnx

 B̃ = T−1 · B =


0
...

0
1

 (1.20)

with coefficients αj of the assigned polynomial ΞA = znx − αnx znx−1 − · · · − α2z − α1.

Based on the latter, we directly obtain controllability if we can assign any polynomial.

Theorem 1.22 (Assignable polynomial).
Consider a system (1.5). Then the pair (A, B) is controllable iff every polynomial of degree nx is

assignable.

To enforce the stability property, we require that the roots of an assignable polynomial are in the
negative complex half-plain. Hence, if any polynomial is assignable, we choose one for which
the root criterion holds.

Theorem 1.23 (Stabilizing polynomial).
Consider a system (1.5). Then the operating point x⋆ = 0 is locally asymptotically stable iff there

exists an assignable polynomial, for which all roots in C have negative real part.

Coming back to Hautus’s case, we basically require that the uncontrollable part is already stable,
that is:

Corollary 1.24 (Polynomial for Hautus criterion).
For any system (1.5), the following is equivalent:

There exists an assignable polynomial, for which all roots in C have negative real part.

The pair (A, B) is controllable or (A, B) is not controllable but A3 has only eigenvalues

with negative real part.

Combining these lines of argumentation, Figure 1.4 provides an overview of the results.

12

(A, B) is controllable

Existence assignable polynomial

Theorem 1.22

Existence assignable polynomial with negative real roots

(A, B) is controllable
or

(A, B) is not controllable but A3 has only eigenvalues with negative real part

Corollary 1.24

(A, B) is stable

Theorem 1.23

Kalman Hautus

Figure 1.4.: Connection of controllability and stability

Remark 1.25
Theorem 1.23 and Corollary 1.24 are often called pole shifting theorem as the roots of the char-

acteristic polynomial are equivalent to the poles of the transfer matrix of the system.

Regarding stability, we obtain the (dis-)advantages shown in Table 1.1.

Table 1.1.: Advantages and disadvantages of stability results

Advantage Disadvantage

✓ Allows for canonical form ✗ Is limited to linear systems

✓ Uses simple computation ✗ Unable to treat instabilities

✓ Provides analytic solution ✗ May require separation

1.3. OBSERVABILITY 13

1.3. Observability

In many cases, only a reasonable subset of manipulable inputs are controllable, with regards
to controllability. Similarly, regarding observability, in most cases only a subset of measurable
outputs are actually measured. For our linear time invariant system (1.5) or (1.6) this means that
the matrices C, D are not full rank matrices. In practice, states are typically measured while
inputs remain unmeasured, i.e. D = 0.
The task for observability is to derive information on the system from the outputs y(·) ∈ Y by
utilizing the values themselves and the history of values.

Definition 1.26 (Distinguishability).
For a system (1.2) we call

two states x1, x2 ∈ X distinguishable if there exists an input u ∈ U such that

h(x1(t), u(t)) ̸= h(x2(t), u(t)) (1.21)

for some time t ∈ T .

the system observable if any two states x1, x2 ∈ X are distinguishable.

As in the previous Section 1.2, we now focus on the linear time invariant case. For such systems,
we have that equation (1.21) reads

C · x(t, x1, u(t)) ̸= C · x(t, x2, u(t)). (1.22)

By superposition, we can simplify the latter using linearity:

Lemma 1.27 (Necessary and sufficient condition for distinguishability).
Consider the system (1.5). Then two states x1, x2 ∈ X are distinguishable iff condition

C · x(t, x1 − x2, 0) ̸= 0 (1.23)

holds for some t ≥ 0.

Note that the lemma states that whether states are distinguishable and observable does not depend
on the input u in the linear case.

14

Remark 1.28
The set of non-observable states is defined as those states x0 such that the output for u = 0 is

always zero, i.e.

N (t) := {x0 | C · x(t, x0, 0) = 0 ∀t ≥ 0} .

So again as in Section 1.2, we

1. need to identify conditions to ensure that a system is observable, and

2. have to construct an observer.

Based on Lemma 1.27, we can apply the Eigenvalue criterion from Theorem 1.14 to the pair
(A, C).

Theorem 1.29 (Kalman criterion).
The system (1.5) is observable and the pair (A, C) is called observable iff for the observability

matrix

rk
(

C⊤ | A⊤ · C⊤ | . . . |
(

A⊤
)nx−1

· C⊤
)
= nx (1.24)

holds.

Following Hautus’ approach, we can use the same separation within the dynamics to expand the
applicability of Kalman’s criterion.

Theorem 1.30 (Separability).
For any system (1.5), which is not observable, there exists a linear transformation T such that

Ã := T−1 · A · T =

(
A1 A2

0 A3

)
, B̃ := T−1 · B =

(
B1

0

)
, C̃ := C · T =

(
0 C2

)
(1.25)

where (A3, C2) is observable.

Now, we are faced with the challenge of lacking an equivalent for stability in the context of
observable systems. However, it has been observed that there are significant similarities between
controllability and observability, which also apply on a systemic level:

1.3. OBSERVABILITY 15

Definition 1.31 (Dual system).
Consider the system (1.5) defined by (A, B, C). Then we define the dual system as given by
(A⊤, C⊤, B⊤).

Using this definition, we obtain

Theorem 1.32 (Duality).
Consider a system (A, B, C) and its dual (A⊤, C⊤, B⊤). Then we have

(A, B, C) controllable ⇐⇒ (A⊤, C⊤, B⊤) observable (1.26)

(A, B, C) observable ⇐⇒ (A⊤, C⊤, B⊤) controllable (1.27)

Remark 1.33
In particular, we have that the reachable set of the dual system is identical to the observable set(⋃

t≥0
R(t)

)
⊤ =: R⊤ = N⊥ :=

(⋂
t≥0

N (t)

)⊥

.

and vice versa.

Using duality, we define the property detectability, which resembles stability of the dual system.

Definition 1.34 (Detectability).
A system (1.5) is called detectable if

lim
t→∞

x(t, x0, 0) = 0 (1.28)

holds for all x0 ∈ X .

Detectability therefore means that information on the non-observable part (cf. Theorem 1.30) is
not required as respective solutions are asymptotically stable.
Hence, we now have the means to transfer the Hautus criterion to observability.

Theorem 1.35 (Hautus criterion).
Consider a system (1.5). Then (A, C) is observable iff

rk
(

λId − A⊤ | C⊤
)
= nx (1.29)

16

holds

1. for all λ ∈ C or

2. for all eigenvalues λ ∈ C of A.

Similar to the canonical form for controllability, for observable systems a respective transforma-
tion can be found.

Theorem 1.36 (Observable canonical form).
Consider a system (1.5). Then (A, C) is observable iff there exists a linear transformation T with

Ã = T−1 · A · T =


0 · · · · · · 0 α1

1
... α2

... 1 . . . 0
...

0 0
... 1 αnx

 C̃ = C · T =
(

0 · · · 0 1
)

(1.30)

with coefficients αj of the assigned polynomial ΞA = znx − αnx znx−1 − · · · − α2z − α1.

Using duality, we particularly have

Theorem 1.37 (Duality of detectability and controllability).
A system (A, C) is detectable iff the system (A⊤, C⊤) is controllable.

Combining these lines of argumentation together with the core of stability, Figure 1.5 provides
an overview of the results.
We like to point out that the properties controllability and observability are independent from one
another and only connected for the respective dual system. Consequently, there exist four classes
of systems

1. controllable and observable,

2. controllable and not observable,

3. not controllable and observable, and

4. not controllable and not observable.

These classes can also be seen in Figure 1.3, which served as starting point for these terms.
Regarding observability, we obtain the (dis-)advantages shown in Table 1.2.

1.3. OBSERVABILITY 17

(A, C) is observable

(A⊤, C⊤) is controllable

Theorem 1.32

Existence assignable polynomial

Theorem 1.22

Existence assignable polynomial with negative real roots

(A, C) is observable
or

(A, C) is not observable but A1 has only eigenvalues with negative real part

(A⊤, C⊤) is controllable
or

(A⊤, C⊤) is not controllable but A1 has only eigenvalues with negative real part

Theorem 1.32

Corollary 1.24

(A⊤, C⊤) is stable

Theorem 1.23

(A, C) is detectable

Theorem 1.37

Kalman Hautus

Figure 1.5.: Connection of observability and detectability

Table 1.2.: Advantages and disadvantages of observability results

Advantage Disadvantage

✓ Allows for canonical form ✗ Is limited to linear systems

✓ Analog to stability ✗ Requires detectability

Part I.

Linear systems

CHAPTER 2

OPTIMAL STABILIZATION

Regarding stabilization, we found the Eigenvalue criterion for computing stabilizing feedbacks in
Chapter 1. While this is sufficient to guarantee stability, it only addresses a qualitative property,
while quantitative aspects such as performance or the dynamics itself are not considered. Specific
examples of quantitative aspects that should be avoided are large trajectory overshoots and large
control values.
To deal with such quantitative issues, we discuss methods that incorporate the latter directly into
their construction. To do this, we first clarify what is good and what needs to be avoided, and then
quantify these aspects. This is achieved by using so called key performance indicators within a
cost function that is optimized according to the state and the dynamics of the problem.
Throughout this chapter, we consider the case of stabilizing an operating point. More general
settings will be considered for more advanced methods. In addition, we limit ourselves to linear
time invariant systems of the form (1.5) and assume that the full state is measureable.

2.1. Linear quadratic regulator — LQR

The starting point for optimal feedback design is the quantification of good performance. For
this purpose, inputs, outputs and functional dependencies of the system can be used to derive a
quantification. For LQR we consider the state space representation, but for H2 and H∞ controllers
the frequency representation is used. To handle both concepts, we use so-called key performance
criteria.

Definition 2.1 (Key performance criterion).
A key performance criterion is a function, which measures defined information retrieved from the
system against a standard.

22

Focusing on the state space, we typically speak of cost functions. These combined information
on state and input of the system to quantify performance of the control.

Definition 2.2 (Cost function).
We call a key performance criterion given by a function ℓ : X × U → R+

0 a cost function.

The value of a key performance indicator only shows a snapshot, i.e. the evaluation at a single
point in time t ∈ T . To get the performance, we need to evaluate it over the lifetime of the
system. Since we are defining a function of a function, this is called a functional.

Definition 2.3 (Cost functional).
Consider a key performance criterion ℓ : X × U → R+

0 . Then we call

J(x0, u) :=
∞∫

0

ℓ(x(t, x0, u), u(t))dt (2.1)

cost functional.

Now we can combine the criteria to evaluate and optimize the dynamics over an operating period.
This allows us to quantify not only operating points, but also the transients from the current state
of the system to such an operating point.

Definition 2.4 (Optimal control problem).
Consider a system (1.2) and a cost functional (2.1). Then we call

min J(x0, u) =
∞∫

0

ℓ(x(t, x0, u), u(t))dt over all u ∈ U (2.2)

subject to ẋ(t) = f (x(t), u(t), t), x(t0) = x0

an optimal control problem. The function

V(x0) := inf
u∈U

J(x0, u) (2.3)

is called optimal value function.

The idea of the optimal control problem is to enforce the stability property of a system and to
compute a feedback that is optimal in terms of the key performance indicator. A simple way to
check whether a feedback stabilizes a system is to use the following condition.

2.1. LINEAR QUADRATIC REGULATOR — LQR 23

Definition 2.5 (Null controlling).
Consider a system (1.2) and a cost function J : X × U → R+

0 . If the condition

J(x0, u) < ∞ =⇒ x(t, x0, u) → 0 for t → ∞ (2.4)

holds, then we call the optimal control problem null controlling.

The relationship between condition (2.4) and stability is quite simple: If we design the key perfor-
mance criterion to be zero at the desired operating point, then once the operating point is reached,
no additional costs will be incurred over the operating period. Therefore, the state of the system
will remain at the operating point. Note that by Definition 1.12 for each operating point there
exists an input such that the state remains unchanged.

Corollary 2.6 (Null controlling stability).
If a optimal control problem is null controlling, then the system is stabilizable.

Now, we focus on the LTI case (1.5). For this particular case, it is sufficient to consider a norm
like criterion, that is a way to measure the distance from current state to operating point. The first
distance which we consider is the Euclidean distance.

Definition 2.7 (Quadratic cost function).
We call a key performance criterion ℓ : X × U → R+

0 a quadratic cost function if it is given by

ℓ(x, u) =
[
x⊤ u⊤

]
·
(

Q N
N⊤ R

)
·
[

x
u

]
(2.5)

where Q ∈ Rnx×nx , N ∈ Rnx×nu and R ∈ Rnu×nu form a symmetric and positive definite
matrix in (2.5).

Combining linear dynamics with quadratic costs gives us the so called LQ problem.

Definition 2.8 (LQ problem).
Consider the optimal control problem given by the LTI system (1.5) and the quadratic cost func-
tion (2.5). Then we refer to this setting as linear quadratic problem or LQ problem.

The nice property of the LQ problem is that its solution is null controlling and therefore the
solution also stabilizes the system.

24

Theorem 2.9 (Null controlling).
The LQ problem is null controlling.

The central question now is to compute the solution of the LQ problem. In particular, we are not
simply interested in a solution but in a solution which can be evaluated based on the state of the
system, i.e. a feedback. To this end, we utilize the idea of the value function and suppose it can
be chosen in the ansatz

V(x) = x⊤ · P · x (2.6)

for P ∈ Rnx×nx . If this ansatz is right, we obtain the following:

Theorem 2.10 (LQR feedback).
If the LQ problem exhibits a value function of the form (2.6), then the solution to the LQ problem

u⋆(t) = F · x(t, x⋆, F) (2.7)

is asymptotically stable with feedback matrix F ∈ Rnu×nx given by

F = −R−1 ·
(

B⊤ · P + N
)

(2.8)

and x(t, x⋆, F) represents the solution of the closed loop

ẋ(t) = (A + B · F) · x(t), x(0, x⋆, F) = x⋆.

To evaluate the feedback, we require the matrix P of the value function ansatz. This matrix can
be computed using the so called algebraic Riccati equation. The idea of this equation is that the
solution reaches the operating point and calculate the minimum of the ansatz (2.6), i.e. take the
derivative and set it to zero. Since the ansatz is quadratic, the necessary condition is also sufficient
for optimality.

Theorem 2.11 (Algebraic Riccati equation).
The optimal value function of the LQ problem is given by (2.6) iff the matrix P ∈ Rnx×nx is semi

positive definite and solves the algebraic Riccati equation

P · A + A⊤ · P + Q − (P · B + N) · R−1
(

B⊤ · P + N⊤
)
= 0. (2.9)

2.1. LINEAR QUADRATIC REGULATOR — LQR 25

When computing of a solution P of (2.9), we have to be careful about the requirements of the
solution for the following reason: While the algebraic Riccati equation can have more than one
solution, there exists at most one semi positive definite P. Combining the latter results, we obtain
the following procedure to compute the linear quadratic regulator (LQR):

Algorithm 2.12 (Computation of LQR)
Consider an LQ problem

min J(x0, u) =
∞∫

0

[
x(t)⊤ u(t)⊤

]
·
(

Q N
N⊤ R

)
·
[

x(t)
u(t)

]
dt over all u ∈ U (2.10)

subject to ẋ(t) = A · x(t) + B · u(t), x(t0) = x0

to be given. Then we obtain the LQR feedback F via

1. Compute a semipositive definite solution P of the algebraic Riccati equation (2.9)

P · A + A⊤ · P + Q − (P · B + N) · R−1
(

B⊤ · P + N⊤
)
= 0.

2. Compute the optimal linear feedback F via (2.8)

F = −R−1 ·
(

B⊤ · P + N
)

.

The connections between the latter results are visualized in Figure 2.1.

(A, B) is stabilizable

Exists unique P for (2.9)

Value function V(x) is of form (2.6)

Exists optimal stabilizing linear feedback F

Theorem 2.9

Theorem 2.9

Theorem 2.10

Theorem 2.10
Theorem 2.11

Figure 2.1.: Connection of LQR results

26

Remark 2.13
The state based setting described within this section can be extended to the output based setting.

For this case, we utilize the quadratic cost function

ℓ(y, u) =
[
y⊤ u⊤

]
·
(

Q̃ Ñ
Ñ⊤ R

)
·
[

y
u

]
(2.11)

with Q = C⊤ · Q̃ · C and N = C⊤ · N. Given output values y, we obtain that the respective LQ

problem is null controlling if the pair (A, C) is observable. In that case, the relations drawn in

Figure 2.1 hold.

Recapitulating the present section, we summarize the (dis-)advantages shown in Table 2.1.

Table 2.1.: Advantages and disadvantages of the LQR approach

Advantage Disadvantage

✓ Allows explicit computation ✗ Limited to LTI systems

✓ Optimal for quadratic costs ✗ Limited to quadratic costs

✓ Provides continuous feedback ✗ Requires Riccati equation

2.2. H2 control

In contrast to LQR, which focuses on properties measured within the state space, the H2 formal-
ism considers a frequency domain idea. To get to this idea, we first introduce the 2-norm for
systems.

Definition 2.14 (L2 norm).
Consider a function v : R → Rny . Then we call

∥v∥2 =

 ∞∫
0

ny

∑
j=1

vj(t)2dt

 1
2

=

 ∞∫
0

v(t)⊤ · v(t)dt

 1
2

(2.12)

2.2. H2 CONTROL 27

the L2 norm of the function. If

V(s) := v̂(s) = L(f (t)) =
∞∫

0

exp(−st) · f (t)dt, s = α + iω

denotes the Laplace transform of v, then we call

∥V∥2 =

 1
2π

∞∫
−∞

ny

∑
j=1

|Vj(iω)|2dω

 1
2

=

 1
2π

∞∫
−∞

V(iω)⊤ · V(iω)dω

 1
2

(2.13)

the L2 norm of the transform.

Remark 2.15
In the literature, the term L2 space is typically found to be the correct one. Yet, talking about

function which are bounded and analytic in the right half plane and exhibit finite Lp norms on the

imaginary axis – which are fundamental for stable function – are called Hardy spaces, the term

H2 norm has become dominant.

By Parseval’s theorem we directly have

Corollary 2.16 (H2 norm equivalence).
Consider a function v : R → Rny and its Laplace transform V := v̂. Then

∥v∥2 = ∥V∥2 (2.14)

holds for the H2 norms.

In order to apply this result, we reconsider our dynamics. For multivariable systems, we know
from control theory that a reformulation via the Laplace transform reveals a transfer matrix con-
necting inputs to outputs. In particular, for our LTI case (1.5)

ẋ(t) = A · x(t) + B · u(t)

y(t) = C · x(t) + D · u(t)

the frequency domain equivalent is given by

G(s) = C · (sId − A)−1 · B + D.

28

Computing the solution of the LTI system reveals

y(t) = C · expA·t ·x0 +

t∫
0

H(t − τ) · u(τ)dτ (2.15)

where H(t − τ) is the impulse response

H(t) :=

C · expA·t ·B + D, if t ≥ 0

0, if t < 0.

Combined, we obtain the Laplace transform of the impulse response:

Corollary 2.17 (Laplace-transform impulse response).
Consider an LTI system (1.5). Then

G(s) =
∞∫

0

H(t) · exp−st dt (2.16)

represents the transfer matrix of the system.

Now we can apply Corollary 2.16 to our dynamics and see the following:

Theorem 2.18 (H2 norm equivalence for LTI).
Consider an LTI system (1.5) and let G(s) be its Laplace transform. Then we have

∥G∥2 = ∥H∥2 (2.17)

where by (2.12) we have

∥H∥2 =

 ∞∫
−∞

ny

∑
j=1

ny

∑
k=1

|Hjk(t)|2dt

 1
2

=

 ∞∫
−∞

tr
(

H(t)⊤ · H(t)
)

dt

 1
2

. (2.18)

Equation (2.18) allows us to evaluate the H2 norm in frequency domain by means known in the
state domain. To this end, we only require the solution and the respective output, which we get

2.2. H2 CONTROL 29

from (2.15). In particular, for the LTI case we have

∥G∥2 = ∥H∥2 = tr


 ∞∫

0

C · expA·t ·B + D

⊤

·

 ∞∫
0

C · expA·t ·B + D




1
2

. (2.19)

Here, we get the first result for a respective controller:

Theorem 2.19 (H2 stability).
Consider an LTI system (1.5). Then the system is stable iff its H2 norm is finite.

Having defined the connections between the norms, the aim of the H2 controller we want to
compute now is to minimize the H2 norm of the closed loop. Note that the term associated to the
initial value x0 in (2.15) is a constant and therefore can be omitted in an optimization.

Definition 2.20 (H2 problem).
Consider the optimal control problem given by the LTI system (1.5) and the cost functional
from (2.18)

J(x0, u) := ∥H∥2
2 =

nu

∑
j=1

∞∫
0

y(t)⊤ · y(t)dt (2.20)

to be minimized over all u(t) = ej · δ(t) where δ(·) is the Dirac delta function. Then we refer to
this setting as H2 problem.

Within this setting, the input is modeled as noise, which is realized on the j-th input using the
Dirac delta and may occur at any time instant t.

Remark 2.21
If the covariance of the inputs is a unitary matrix, then the input can be interpreted as white noise.

Moreover, the result of the H2 converges in the expected value as all frequencies are accounted

for in an equal manner. Therefore, the H2 control shows a stochastic characterization.

Having defined the H2 problem, we can solve it using an identical idea as in the LQR case, that
is to impose an algebraic Riccati equation. In particular, we obtain the following:

30

Theorem 2.22 (H2 feedback).
Consider the H2 problem and suppose ∥H2∥ to be finite. Then the solution to the H2 problem

u⋆(t) = F · x(t, x⋆, F) (2.21)

is asymptotically stable with feedback matrix F ∈ Rnu×nx given by

F = −
(

D⊤ · D
)−1

· B⊤ · P (2.22)

where P is the unique symmetric positive semidefinite solution of the algebraic Riccati equation

A⊤ · P + P · A − P · B ·
(

D⊤ · D
)−1

· B⊤ · P + C⊤ · C = 0. (2.23)

Similar to the LQR case, we again have to be careful to use the positive definite solution of the
algebraic Riccati equation. The approach to evalute the H2 feedback is almost identical to the
LQR case:

Algorithm 2.23 (Computation of H2 controller)
Consider an H2 problem

min J(x0, u) = ∥H∥2
2 =

nu

∑
j=1

∞∫
0

y(t)⊤ · y(t)dt over all u(t) = ej · δ(t) (2.24)

subject to ẋ(t) = A · x(t) + B · u(t), x(t0) = x0

y(t) = C · x(t) + D · u(t) (2.25)

to be given. Then we obtain the H2 feedback F via

1. Compute a semipositive definite solution P of the algebraic Riccati equation (2.23)

A⊤ · P + P · A − P · B ·
(

D⊤ · D
)−1

· B⊤ · P + C⊤ · C = 0.

2. Compute the optimal linear feedback F via (2.22)

F = −
(

D⊤ · D
)−1

· B⊤ · P.

2.3. H∞ CONTROL 31

Remark 2.24
Note that in the LTI case we have that

J(x0, u) =
nu

∑
j=1

∞∫
0

y(t)⊤ · y(t)dt

=
nu

∑
j=1

∞∫
0

(C · x(t) + D · u(t))⊤ · (C · x(t) + D · u(t)) dt.

If we choose C = Q
1
2 and D = R

1
2 , then we obtain that H2 is a special case of LQR.

Similar to LQR, we obtain the (dis-)advantages shown in Table 2.2.

Table 2.2.: Advantages and disadvantages of H2 control

Advantage Disadvantage

✓ Optimal in L2 norm ✗ Requires Riccati equation

✓ Focuses on I/O systems ✗ Disregards dynamics

2.3. H∞ control

The idea of the H∞ feedback is similar to the H2 feedback. Instead of the L2 norm, where the
aim is to minimize the deviation of the output along the trajectory, in the H∞ case the supremum
norm is used to minimize the highest deviation.

Definition 2.25 (L∞ norm).
Consider a function v : R → Rny . Then we call

∥v∥∞ = sup
t

∥v(t)∥ (2.26)

the L∞ norm of the function. If

V(s) := v̂(s) = L(f (t)) =
∞∫

0

exp(−st) · f (t)dt, s = α + iω

32

denotes the Laplace transform of v, then we call

∥y∥∞ = sup
v

{
∥G(iω) · v∥

∥v∥ | v ̸= 0, v ∈ Cny

}
(2.27)

the L∞ norm of the transform.

Again, the terms L∞ and H∞ are used identically in the literature. In the case of H∞, we will not
go into deep but only highlight connections to H2. The first connection is about conservatism of
the controllers. Since we have

∥G · v∥2 =

 ∞∫
−∞

∥G(iω) · v(iω)∥2dω

 1
2

=

 ∞∫
−∞

∥G(iω)∥2 · ∥v(iω)∥2dω

 1
2

≤ sup
ω

(σ (G(iω))) ·

 ∞∫
−∞

∥v(iω)∥2dω

 1
2

= ∥G∥∞ · ∥v∥2

where σ(·) denotes the maximal singular value, we obtain

∥G∥∞ ≥ ∥G · v∥2

∥v∥2
∀v ̸= 0.

This can be interpreted as the concentrated impact of v close to the frequency range of ∥G∥∞.
Hence, the H∞ norm gives the maximum factor by which the system magnifies the H2 norm of
any input. For this reason, ∥G∥∞ is also referred to as gain of the system.

Remark 2.26
As a consequence, the H∞ feedback is always more conservative than the H2 feedback as it aims

to hold down the maximal amplification.

Using the H∞ norm, we define the H∞ problem similar to the H2 problem:

Definition 2.27 (H∞ problem).
Consider the optimal control problem given by the LTI system (1.5) and the cost functional
from (2.18)

J(x0, u) := ∥H∥2
∞ = sup

t

nu

∑
j=1

∥y(t)∥2 (2.28)

2.3. H∞ CONTROL 33

to be minimized over all u(t) = ej · δ(t) where δ(·) is the Dirac delta function. Then we refer to
this setting as H∞ problem.

Regarding the solutions, again an algebraic Riccati equation is employed and we obtain:

Theorem 2.28 (H∞ feedback).
Consider the H∞ problem and suppose ∥H∞∥ < γ to be finite. Then the feedbac

u⋆(t) = F · x(t, x⋆, F) (2.29)

asymptotically stablizes the system with feedback matrix F ∈ Rnu×nx given by

F = −
(

D⊤ · D
)−1

· B⊤ · P (2.30)

where P is the unique symmetric positive semidefinite solution of the algebraic Riccati equation

A⊤ · P + P · A − P · B
(

D⊤ · D
)−1

B⊤P + γ−2 · P · B · B⊤ · P + C⊤ · C = 0. (2.31)

Different to LQR and H2, we can summarize (dis-)advantages in the following Table 2.3.

Table 2.3.: Advantages and disadvantages of H∞ control

Advantage Disadvantage

✓ Optimal in L∞ norm ✗ May be conservative

✓ Focuses on maximal gain ✗ Requires Riccati equation

CHAPTER 3

OPTIMAL OBSERVATION

In the previous chapters, we discussed stability as a system property and how we can manage
to ensure that a system is asymptotically stable by computing a feedback law. The feedback,
however, is based on the state of the system x. Since typically not all states are actually measured
but instead only a restricted output y is known, the feedback cannot be evaluated.
To complete this gap in this chapter, we shift our focus to the task of estimating the state x based
on the output y. Similar to the LQR approach from Section 2.1, the aim is to derive a method
that provides us with an optimal state estimation x̂(t) ≈ x(t) and can be applied in realtime. The
latter requirement rules out all aposteriori methods minimizing over given data sets, but instead
forces a recursive approach. Recursive means that estimates from previous time instances are
re-used and are updated using newly acquired output data. Such methods are typically referred to
as observers or filters.

3.1. Recursive estimation

A typical estimation problem is given by set of data, a model of a system and a set of parameters
which shall be estimated. To illustrate the impact of the realtime requirement, we consider the
following example.

Task 3.1 (Mean value computation)
Suppose outputs y(j), j = 1, . . . , N to be given. Calculate the mean of the outputs.

36

Solution to Task 3.1: The estimate of the mean ŷ based on N outputs is given by

ŷ(N) =
1
N

N

∑
j=1

y(j).

The difficulty now arises if another output is available and the mean computation shall be updated.

Task 3.2 (Mean value update)
Consider the result from Task 3.1 to be given and a output y(N + 1) to be available. Compute

the mean of the outputs.

Solution to Task 3.2: Again, the mean is given by

ŷ(N + 1) =
1

N + 1

N+1

∑
j=1

y(j).

In this solution, the previous result from Solution 3.1 is not used. While such an approach is nu-
merically robust and requires no further insight, it may be computationally expensive depending
on the number of samples and the complexity of the computation process. Hence, reformulating
the problem such that only the newly required calculations are made, recuperating all the previous
results, may allow us to generate a more efficient solution method.

Task 3.3 (Real mean value update)
Consider the setting of Task 3.2. Reuse the results from Solution 3.1 to compute the mean

value.

Solution to Task 3.3: To recuperate the previous sum, we can equivalently evaluate

ŷ(N + 1) =
1

N + 1

N

∑
j=1

y(j) +
1

N + 1
y(N + 1)

=
N

N + 1
ŷ(N) +

1
N + 1

y(N + 1).

3.2. TRANSFORMATION OF DYNAMICS 37

Although this form already meets our requirements of reusing previous computations, it is
possible to rearrange it to a more suitable expression:

ŷ(N + 1) = ŷ(N) +
1

N + 1
(y(N + 1)− ŷ(N))

Although this expression is very simple, it is very informative because almost every recursive
algorithm can be reduced to a similar form. Based on the latter, the following observations can
be made:

The new estimate ŷ(N + 1) equals the old estimate ŷ(N) plus a correction term, that is
1

N+1 (y(N + 1)− ŷ(N)).

The correction term consists of two terms by itself: a gain factor 1
N+1 and an error term.

The gain factor decreases towards zero as more outputs are already accumulated in the
previous estimate. This means that in the beginning of the experiment, less importance is
given to the old estimate ŷ(N), and more attention is paid to the new incoming outputs.
When N starts to grow, the error term becomes small compared to the old estimate. The
algorithm relies more and more on the accumulated information in the old estimate ŷ(N)

and it does not vary it that much for accidental variations of the new outputs. The additional
bit of information in the new output becomes small compared with the information that is
accumulated in the old estimate.

The second term y(N + 1)− ŷ(N) is an error term. It incorporates the difference between
the predicted value of the next output on the basis of the model and the output y(N + 1).

When properly initiated, i.e. ŷ(1) = y(1), this recursive result is exactly equal to the non
recursive implementation. However, from a numerical point of view, it is a very robust
procedure as calculation errors etc. are compensated in each step.

3.2. Transformation of dynamics

To derive the general optimal observation problem, we consider the nonlinear system

ẋ(t) = f (x(t), u(t), t), x(t0) = x0

y(t) = h(x(t), u(t), t).
(1.2)

38

together with the known control u(t), t ≥ 0, given outputs y(t), t ≥ 0 and an estimate x̂0 of the
unknown initial state x0.
Depending on the time instant of interest, we can classify the following problem classes:

Definition 3.4 (Filtering).
Consider x(·) to be a state trajectory of a system. Given a specific time instant t, we call the
problem of computing

x(τ) with τ < t an interpolation problem,

x(τ) with τ = t a filtering problem, and

x(τ) with τ > t an prediction (or extrapolation) problem.

Within this chapter, we are interested in computing realtime estimates, i.e. τ = t and therefore
work in the area of filtering problems. To solve the latter we apply the ansatz using the so called
estimator dynamics:

Definition 3.5 (Estimator dynamics).
Given a system (1.2), we call

˙̂x(t) = f (x̂(t), u(t), t) + d(t), x̂(0) = x̂0 (3.1)

estimator dynamics where d : R → Rnx .

Based on the latter, we can quantify the mismatch between estimator and true system:

Definition 3.6 (Error function).
Consider a system (1.2) and an estimator (3.1). Then we call e : R ×X → Rnx with

e(t, x̂0) := x̂(t, x̂0, u)− x(t, x0, u) (3.2)

error function of the estimator.

Similar to the optimal control problem, we can now define the optimal estimation problem. Yet, in
contrast of finding an optimal input u(·), we aim to find an estimator x̂(·) such that the estimated
error (3.2) becomes as small as possible in the sense of a key performance indicator. Moreover,
at time t the estimator shall be computable based on outputs y(τ), 0 ≤ τ ≤ t known at time t
only.

3.2. TRANSFORMATION OF DYNAMICS 39

Similar to the cost function for the control problem where the idea of the cost is to induce stability
via null-controlling, we formulate a cost function for the estimator using the error function. Here,
the idea is to use the null-controlling property to enforce stability of the error function and thereby
convergence of the estimator.

Definition 3.7 (Cost functional).
Consider a key performance criterion ℓ : X × U → R+

0 . Then we call

J(x̂0, u) :=
∞∫

0

ℓ(e(t, x̂0), u(t))dt (3.3)

cost functional.

This gives us

Definition 3.8 (Optimal estimation problem).
Consider a system (1.2) and a cost functional (2.1). Then we call

min J(x̂0, u) =
∞∫

0

ℓ(e(t, x̂0), u(t))dt over all u ∈ U (3.4)

subject to e(t, x̂0) := x̂(t, x̂0, u)− x(t, x0, u)

ẋ(t) = f (x(t), u(t), t), x(0) = x0

˙̂x(t) = f (x̂(t), u(t), t) + d(t), x̂(0) = x̂0

an optimal estimation problem.

Note that we can use this problem to directly transfer the null controlling property from Corol-
lary 2.6 for stability to observability. In this case, not the system but the error function of the
estimation is stabilized.

Corollary 3.9 (Null controlling observability).
If a optimal estimation problem is null controlling, then the system is observable.

The latter result suggests that the solution of the optimal estimation problem from Definition 3.8
could be identical to the optimal control problem from Definition 2.4. Unfortunately, there are
some slight differences:

40

1. In the optimal control problem, we consider the state to be stabilized, while in the optimal
estimation problem the error needs to be stabilized.

2. The solution computed by the optimal control problem is the control strategy, which in the
LTI case can be evaluated by a linear feedback law. For the optimal estimation problem,
we aim to compute the current state of the problem.

3. Last, the given data for the optimal estimation problem stems from past measurements,
which cannot be used in the formulation of the optimal control problem.

In the following, we will address the integration problem of measurements from the past by
converting the optimal estimation problem. Then, similar to LQR, our aim now is to derive a
problem, for which the null controlling property can be shown.

3.3. Kalman filter

We now focus on the LTI case, where not only the dynamics are much more simple, but we can
also derive an explicit dynamics for the error function of the estimator. More precisely, for the
LTI case

ẋ(t) = A · x(t) + B · u(t) (3.5a)

y(t) = C · x(t) + D · u(t) (3.5b)

with estimator

˙̂x(t) = A · x̂(t) + B · u(t) + d(t), x̂(0) = x̂0 (3.6)

we obtain:

Definition 3.10 (Error dynamics).
Given an LTI system (1.5) with estimator dynamics (3.6) we call

ė(t) = A · e(t) + d(t) (3.7a)

ye(t) = C · e(t) (3.7b)

error dynamics.

3.3. KALMAN FILTER 41

Remark 3.11
The error dynamics are the dual wrt. the LTI system, cf. Definition 1.31. Hence, controlability of

the dual system gives us observability of the primal system.

As a consequence, all the following computations can only be executed if the system (A, C) is

observable. Otherwise, no solution can be computed.

Based on the error dynamics, we can integrate the measurements, which are available for past
time instances. Hence, the cost functional we design aims to drive the error to zero but operates
on a time frame, which leads up to the current time instant.

Definition 3.12 (Quadratic cost functional for observability).
We call

J(x̂0, d) :=
τ∫

−∞

(C · e(t)− ye(t))
⊤ · Q̂ · (C · e(t)− ye(t)) + d(t)⊤ · R · d(t)dt (3.8)

quadratic cost functional for observability where Q̂ ∈ Rny×ny and R ∈ Rnu×nu are
(semi)positive definite matrices.

In order to convert the cost functional (3.8) to be in the form (3.3), we apply the following:

Theorem 3.13 (Time transformation).
Consider an LTI system (3.7) with cost functional (3.8) to be given. Given the transformation

xτ(t, x0, d) := x(τ − t, x0, d) (3.9)

yτ
e (t) := ye(τ − t) (3.10)

the cost function (3.8) is equivalent to

Jτ(x̂0, d) :=
∞∫

0

(C · eτ(t)− yτ
e (t))

⊤ · Q̂ · (C · eτ(t)− yτ
e (t)) + d(t)⊤ · R · d(t)dt (3.11)

and the respective error dynamics is equivalent to

ėτ(t) = −A · eτ(t)− d(τ − t) (3.12a)

yτ
e (t) = C · eτ(t). (3.12b)

42

Definition 3.14 (Kalman filter problem).
Consider an LTI system (3.7) and outputs y(t), t ∈ (−∞, τ] to be given. Then we call

min Jτ(x̂0, d) :=
∞∫

0

(C · eτ(t)− yτ
e (t))

⊤ · Q̂ · (C · eτ(t)− yτ
e (t)) + d(t)⊤ · R · d(t)dt

over all x0 ∈ X (3.13)

subject to ėτ(t) = −A · eτ(t)− d(τ − t), eτ(0) = x̂0 − x0

yτ
e (t) = C · eτ(t)

Kalman filter problem.

Now, we can impose the identical ansatz

V(e) = eτ⊤ · P · eτ (3.14)

for P ∈ Rnx×nx . If this ansatz is right, we obtain the following:

Theorem 3.15 (Kalman filter).
Consider an LTI system (3.7) with cost functional (3.8) to be given. Then the solution of the

optimal estimation problem is given by

ėτ(τ) = A · eτ(τ) + L · (C · eτ(τ)− ye(τ)) (3.15)

where the gain matrix

L := −S · C⊤ · Q̂ (3.16)

is solution of the dual Riccati equation

A · S + S · A⊤ − S · C⊤ · Q̂ · C · S + D · R−1 · D⊤ = 0 (3.17)

and the value function of the optimal estimation problem is given by (3.14) with P := S−1.

Remark 3.16
In (3.15) we obtain the identical structure of the observer, which we designed in Task 3.3 for the

mean value update. For this reason, L is also called gain matrix.

3.3. KALMAN FILTER 43

Note that again a solution P of the dual Riccati equation (3.17) is not unique, yet there exists at
most one semi positive definite S. Combining the latter results, we obtain the following procedure
to compute the Kalman filter:

Algorithm 3.17 (Computation of Kalman filter)
Consider an Kalman filter problem (3.13) to be given. Then we obtain the solution via

1. Compute a semipositive definite solution S of the dual Riccati equation (3.17)

A · S + S · A⊤ − S · C⊤ · Q̂ · C · S + D · R−1 · D⊤ = 0

2. Compute the gain matrix L via (3.16)

L := −S · C⊤ · Q̂.

In practice, a Kalman filter is typically updated periodically, i.e. a dynamic for computing the
ansatz matrix S is applied to integrate newly obtained knowledge of outputs. S is also called
covariance matrix of the system. In the literature, the dynamic of this matrix is split into an
apriori and an aposteriori covariance update as well as an prediction and an correction step of the
error dynamics, cf., e.g., [6]. As we focus on continuous time dynamics, this separation is beyond
the scope of the lecture.

Part II.

Nonlinear systems

CHAPTER 4

DIGITALIZATION

Generated with chatgpt.com

If you automate chaos, you get faster chaos.

Bill Gates

48

To deal with nonlinear systems, we follow a so called direct approach, which is quite different
from the direct approach we considered in Control engineering 2. Instead of analytically or
structurally dealing with the system or its solution, we first transfer the problem into the sphere
of digital control problems and than apply optimization to compute a control strategy.
In the present chapter, we focus on the first step and digitize the control system. Here, we follow
the most simple approach and consider a so called zero order hold. At this point, we already like
to stress that by definition such a control is not Lipschitz continuous. Hence, the feedback will be
very different from the ones we considered in Control engineering 2 and in particular will not be
in the form of a function. Moreover, we don’t aim to compute a feedback which is stabilizing for
all possible digitizations. Instead, we suppose a sampling to be given and then derive a stabilizing
controller.
To conclude stability of the original system, in the present chapter we additionally discuss how
stability of the digital feedback can be guaranteed for the original system as well. Throughout the
nonlinear part of the lecture, we focus on systems of the form

ẋ(t) = f (x(t), u(t), t), x(t0) = x0

y(t) = h(x(t), u(t), t).
(1.2)

In the upcoming chapters, we will then design methods to compute and evaluate control laws,
which provide us with a stabilizing feedback for the digitized system.

4.1. Zero order hold

The most simple case of a discontinuous feedback is given by the so called zero order hold. The
idea is to sample the input, i.e. to fix a time grid T := {tk} ⊂ R and define the input to be
constant in between two sampling instances tk and tk+1. Here, we further simplify the setting by
introducing a sampling period T and define the sampling instances to be equidistant, which we
already discussed in

T := {tk | tk := t0 + k · T} ⊂ R. (1.4)

Remark 4.1
There are two more general cases: For one, the sampling times may be defined by a function of

time, or secondly, the sampling times can be defined by a function of states. The first one is com-

mon in prediction and prescription of systems where action is the far future are significantly less

important. Hence, one typically chooses between exactness of the prediction and computational

complexity. The latter case is referred to a event driven control.

4.1. ZERO ORDER HOLD 49

We still like to stress that in applications, the choice of T is not fixed right from the beginning,
but depends on the obtainable solution and stability properties. Note that the result of sampling
the control is not a discrete time system (see Definition 1.7), but a continuous time system (see
Definition 1.5) where the input u is of zero order hold. More formally, we formulate zero order
hold input and solution as a parametrization of operators with respect to T.

Definition 4.2 (Zero order hold).
Consider a nonlinear control system (1.2) and a feedback u : X → U such that ∥u(x)∥ ≤ γ(x)
holds for all x ∈ X and some continuous function γ : X → R. Moreover suppose a sampling

period T > 0 to be given, which defines the sampling times tk = k · T. Then we call the
piecewise constant function

uT(t) ≡ u(x(tk)), t ∈ [tk, tk+1) (4.1)

zero order hold.

Remark 4.3
We like to point out that higher order holds are possible as well. In practice, however, such

higher order holds are not defined using a polynomial approximation but via additional differen-

tial equations for the control itself.

As a consequence of the latter definition, the input uT is not continuous but instead exhibits jumps
at the sampling times tk, cf. Figure 4.1.
Still, the function is integrable, which is a requirement for existence of a solution of (1.2) for such
an input. This insertion directly leads to the following:

Definition 4.4 (Zero order hold solution).
Given a nonlinear control system (1.2) and a zero order hold input uT : T → U . Then we call
the function xT : T → X satisfying

ẋT(t) = f (xT(t), uT(t)) (4.2)

zero order hold solution.

In order to compute such a solution, we can simply concatenate solutions of subsequent sampling
intervals [tk, tk+1). Here, we can use the endpoint of the solution on one sampling interval to be
the initial point on the following one. Hence, the computation of xT is well defined, cf. Figure 4.2
for an illustration.

50

−3 −2 −1 1 2 3 4 5 6

−0.5

0.5

1

1.5

2

t

u
continuous

sampled

Figure 4.1.: Zero order hold sampling

−3 −2 −1 1 2 3 4 5 6

2

4

6

8

t

u/x Control uT

Solution xT

Figure 4.2.: Zero order hold solution

Remark 4.5
Since the system is Lipschitz continuous on each interval [tk, tk+1), the solution is also unique.

Hence, identifying endpoint and initial point of subsequent sampling intervals is sufficient to

show that the zero order hold solution is unique. Yet, as a consequence of this concatenation, the

4.2. PRACTICAL STABILITY 51

solution is not differentiable at the sampling points tk.

Remark 4.6
Note that despite uT to be piecewise constant, the zero order hold solution does not exhibit jumps

and shows nonlinear behavior.

4.2. Practical stability

We next introduce the concept of stability, which is equivalent to Definition 1.13. To this end, we
utilize the so called practical KL notation, which extends the standard KL concept using com-
parison functions to cases where convergence can only be guaranteed to a certain neighborhood.
For the stability concept, we use the same simplification as in Chapter 1 to shift the operating
point (x⋆, u⋆) to the origin.

Definition 4.7 (Practical stability/controllability).
Consider a nonlinear control system (1.2) with f (0, 0) = 0 and T > 0. Then we call a feedback
uT to semiglobally practically asymptotically stabilize the operating point (x⋆, u⋆) = (0, 0) if
there exists a function β ∈ KL and constants R > ε > 0 such that

∥xT(t)∥ ≤ max{β(∥x0∥, t), ε} (4.3)

holds for all t > 0 and all initial value satisfying ∥x0∥ ≤ R.

Again, the main difference between our setting here and in Control engineering 2 is that we
don’t aim to compute a feedback which is stabilizing for all T ∈ (0, T⋆]. Instead, we suppose a
sampling to be given and then derive a stabilizing controller.

Remark 4.8
The term „semiglobal“ refers to the constant R, which limits the range of the initial states for

which stability can be concluded. The term „practical“ refers to the constant ε, which is a

measure on how close the solution can be driven towards the operating point before oscillations

as in the case of the bang bang controller occur.

Different from the linear case where existence of a feedback and a feed forward control are
equivalent, in the nonlinear case we only have the following:

52

Lemma 4.9 (Existence of feed forward).
Consider a system (1.2) and let (x⋆, u⋆) be an operating point. If a feedback u : X → U exists

such that the closed loop is asymptotically stable and additionally both the feedback and the

closed loop are Lipschitz, then there exists a feed forward u : T → U such that the system is

asymptotically controllable.

As a direct conclusion of Definition 4.7, we can apply Lemma 4.9 and obtain:

Corollary 4.10 (Existence of practically stabilizing feed forward).
Consider a nonlinear control system (1.2) with f (0, 0) = 0 and suppose a feedback uT,

T > 0 to exist, which semiglobally practically asymptotically stabilizes the operating point

(x⋆, u⋆) = (0, 0). Then there exists a feed forward u : T → U such that the system is practically

asymptotically controllable.

Definition 4.7 also shows the dilemma of digital control using fixed sampling periods: Both
close to the desired operating point and for initial values far away from it, the discontinuous
evaluation of the feedback uT leads to performance degradation. Close to the operating point, a
slow evaluation leads to overshoots even if the dynamics is typically rather slow. Far away from
the operating point, the dynamics is too fast to be captured in between two sampling points which
leads to unstable behavior.
Still, it may even be possible to obtain asymptotic stability (not only practical asymptotic stability)
using fixed sampling periods T as shown in the following task:

Task 4.11
Consider the system

ẋ1(t) =
(
−x1(t)2 + x2(t)2

)
· u(t)

ẋ2(t) = (−2 · x1(t) · x2(t)) · u(t).

Design a zero order hold control such that the system is practically asymptotically stable.

Solution to Task 4.11: We set

uT(t) =

1, x1 ≥ 0

−1, x1 < 0
.

4.3. EXISTENCE OF STABILIZING FEEDBACK 53

For this choice, the system is globally asymptotically stable for all T > 0 and even inde-
pendent from T. The reason for the latter is that the solutions never cross the switching line
x1 = 0, i.e. the input to be applied is always constant, which leads to independence of the
feedback from T.

As described before, the behavior observed in Task 4.11 is the exception. In practice, the limita-
tions of semiglobality and practicality is typically the best we can expect in zero order hold input
of nonlinear system.

4.3. Existence of stabilizing feedback

In order to show that a stabilizing zero order hold input exists, we utilize the concept of Control-
Lyapunov functions, which extend the standard Lyapunov approach.

Definition 4.12 (Practical Control-Lyapunov functions).
Consider a nonlinear control system (1.2) with operating point (x⋆, u⋆) = (0, 0) such that
f (x⋆, u⋆) = 0 and a neighborhood N (x⋆). Then the continuous function VT : Rnx → R+

0

is called a semiglobal practical Control-Lyapunov function if there exist constants R̂ > ε̂ > 0 as
well as functions α1, α2,∈ K∞ and a continuous function W : X → R+ \ {0} such that there
exists a control function u satisfying the inequalities

α1(∥x∥) ≤ VT(x) ≤ α2(∥x∥) (4.4)

inf
u∈U

VT(xT(tk+1)) ≤ max {VT(xT(tk)− T · W(xT(tk)), ε̂)} (4.5)

for all x ∈ N \ {x⋆} with VT(x) ≤ R̂.

The latter definition extends the concepts of a Control-Lyapunov function is various ways. For
one, as the zero order hold solution is not differentiable, we can no longer assume VT to be
differentiable. Hence, the formulation of decrease in energy in inequality (4.5) is given along
a solution instead of its vector field. Moreover, the ideas of semiglobality and practicality are
integrated.

Remark 4.13
Comparing Definition 4.12 to Definition 4.7, we can identify the similarity of semiglobality be-

tween the constants R and R̂ as well as ε and ε̂. The difference between these two pairs lies in

their interpretation: For KL function, we utilize the state space, whereas for Control-Lyapunov

54

functions the energy space is used. Hence, both values are a transformation of one another using

the Control-Lyapunov function VT.

Now, supposingly that a practical Control-Lyapunov function exists, we can directly derive the
existence of a zero order hold control.

Theorem 4.14 (Existence of feedback).
Consider a nonlinear control system (1.2) with operating point (x⋆, u⋆) = (0, 0) such that

f (x⋆, u⋆) = 0 and T > 0. Let VT to be a semiglobal practical Control-Lyapunov function.

Then the minimizer

uT(t) := argmin
u∈U

VT(xT(tk+1)) (4.6)

is a semiglobally practially asymptotically stabilizing feedback.

Note that in (4.6), the right hand side depends on u implicitly as xT(tk+1) is defined using the
initial value xT(tk) and the zero order hold input u. Hence, the definition (4.6) is proper.

Remark 4.15
The transfer from infimum in (4.5) to minimum in (4.6) is only possible as the input is constant in

between two sampling instances tk and tk+1 and therefore the solution xT(·) is continuous with

respect to u.

Unfortunately, the pure existence of a feedback does not help us in computing it. Additionally,
we still require the existence of a practical Control-Lyapunov function to conclude existence of
such a feedback. Here, we first address existence of a Control-Lyapunov function, for which the
following is known from the literature:

Theorem 4.16 (Existence of practical Control-Lyapunov function).
Consider a nonlinear control system (1.2) with operating point (x⋆, u⋆) = (0, 0) such that

f (x⋆, u⋆) = 0. If the system is asymptotic controllable, then there exists a semiglobal practi-

cal Control-Lyapunov function.

The most important aspect of Theorem 4.16 is the requirement regarding the control system. The
result does only require the system to be asymptotically controllable, i.e. without digitalization.

4.4. INTERSAMPLE BEHAVIOR 55

4.4. Intersample behavior

Unfortunately, the results only hold true for the digitized system, i.e. only for time instances
tk ∈ T . The behavior of the system between these instances is called intersample behavior and
can be estimated using properties of the system dynamics. The main tool is the so called uniform
boundedness.

Definition 4.17 (Uniform boundedness).
Consider a nonlinear control system (1.2) with operating point (x⋆, u⋆) = (0, 0) together with a
input uT : T → U . If there exists a function γ ∈ K and a constant η > 0 such that for all x ∈ X
with ∥x∥ ≤ η, the solutions exist on [0, T] and the solutions satisfy

∥xT(t)∥ ≤ γ(∥x∥) (4.7)

for all t ∈ [0, T] then the solutions are called uniformly bounded over T.

Using boundedness, it can be shown that the system will stay bounded in between sampling
instances.

Theorem 4.18 (Asymptotic stability and uniform boundedness over T).
Consider nonlinear control system (1.2) with operating point (x⋆, u⋆) = (0, 0) together with

a input uT : T → U . Then the system is semiglobally practically asymptotically stable iff

there exists a semiglobally practically asymptotically stabilizing feedback uT : T → U and the

solutions xT : T → X are uniformly bounded over T.

Concluding, if we can compute an semiglobally practically asymptotically stabilizing feedback
law for the discrete time system induced by the sampled data system, then the digitizes continuous
time closed loop is also semiglobally practically asymptotically stable provided its solutions are
uniformly bounded over T.

In practice, however, the two tasks of deriving feedback uT and Control-Lyapunov function VT

are often done in the inverse sequence. To this end, first a feedback uT is derived, and then the
inequality (4.5) is shown to hold for this feedback

VT(xT(tk+1)) ≤ max {VT(xT(tk)− T · W(xT(tk)), ε̂)} .

The reason for using such a procedure is that Theorem 4.14 only requires a Control-Lyapunov
function for fixed R̂, ε̂ to exists for some T0 > 0 in order to conclude existence also for all

56

smaller sampling periods. Hence, if we find a constructive way to derive a feedback, then a
practical Control-Lyapunov function can be derived and stability properties of this feedback can
be concluded.
In the following chapters, we now focus on constructing such a feedback. To simplify the respec-
tive notation, we utilize the discrete time notation

x(k + 1) = f (x(k), u(k), k), x(0) = x0

y(k) = h(x(k), u(k), k).
(1.3)

introduced in Definition 1.7. To this end, we assume that the differential equation is solved to
compute the state x(k + 1) based on the continuous time dynamics (1.2) and the zero order hold
control u(t) := uT(t) =: u(k).

CHAPTER 5

MODEL PREDICTIVE CONTROL

Generated with chatgpt.com

The best way to predict the future is to create it.

Abraham Lincoln

58

Based on the previous Chapter 4 on digitalization, we now discuss one approach to compute a
zero order hold feedback for a nonlinear system. The approaches we considered so far are based
on the analytical solution of an optimal control problem using the Riccati approach for a quadratic
optimal value function ansatz V(x) = x · P · x. However, as soon as the cost is nonquadratic,
the dynamics nonlinear or is state and control constraints are introduced, the value function V
is no longer quadratic and the approach in general no longer possible. The same holds for the
optimal feedback law, which is typically a rather complicated function for which already the
storage poses problems and limits such approaches to low dimensions. Moreover, the approach is
only capable to compute a Lipschitz continuous feedback. Yet if no continuous feedback exists,
by controllability we know that some kind of control exists, for which stability can be shown, e.g.
a discontinuous one.
The model predictive control approach takes a step back from optimality over an infinite horizon
by approximating it via a series of finite horizon problems. The purpose of the present chapter is
twofold: For one, we discuss the construction of a basic MPC algorithm and the interplay of the
building blocks as outlined in Figure 5.1 Thereafter, we show how a feedback can be constructed

Simulation Optimization

Digitalization

MPC

Figure 5.1.: Building blocks within the MPC Algorithm 5.9

from such an approach and how stability of the closed loop can be guaranteed.

5.1. Introduction of constraints

In the previous chapters, we considered systems operating in sets such as the state set X , the
control set U and the output set Y . We then refined this general class of systems given in Defi-
nition 1.1 for continuous time systems (1.2) and discrete time systems (1.3) which led us to the
term state space, control space and output space.
For designing the LQR, H2 and H∞ controllers, we implicitly assumed that these spaces are

5.1. INTRODUCTION OF CONSTRAINTS 59

unbounded. In practical applications, however, we often face the problem that requirements need
to be met. To illustrate this point, we consider the following:

Task 5.1
Consider a supply chain as multi stage network driven by the dynamics

ṡp(t) = fs(ap(t), ℓp(t)) (Stock)

ȯp
u(t) = fo(op(t), ap(t)) (Unfulfilled order to stock)

ḃp(t) = fb(dp(t), ℓp(t)) (Backlog from stock)

where p ∈ S = {S, M, R} denotes the stages, cf. Figure 5.2. Typically, the stage set

contains supplier (S), manufacturer (M) and retailer (R). Moreover, ap, ℓp, op and dp

denote the arriving and leaving as well as the order and demand rates. Formulate the basic

constraints such a system needs to obey in order to be physically meaningful.

Su
pp

lie
r

M
an

uf
ac

tu
re

r

R
et

ai
le

r

C
us

to
m

er
oC

dR

oR

dM

oM

dS

τ S
S

oS

aS

τSM τMR τRC

ℓS

aM

ℓM

aR

ℓR

aC

Figure 5.2.: Sketch of a three stage supply network

Solution to Task 5.1: For all times t ≥ 0 and stages p ∈ S , the system is subject to the
constraints

0 ≤ op(t) ≤ op
max 0 ≤ sp(t) ≤ sp

max

0 ≤ op
u(t) ≤ op

u,max 0 ≤ bp(t) ≤ bp
max

as well as unknown costumer orders oC and fixed delivery delays τij, where i, j ∈ S represent
consecutive stages. The stages need to be linked since arrival/leaving as well as demand/order
information is required to evaluate the dynamics. Here, we use aj(t + τij) = ℓi(t) and

60

dj(t) = oi(t) for consecutive nodes i, j ∈ S and ai(τii) = oi(t) for the supplier to define
these connections. The state for each stage can be defined via xp := (sp, op

u, bp)⊤.

Hence, constraints arise naturally in practical problems as states need to be bounded, e.g. to
prevent the system from collapsing or hitting physical barriers, or the controls need to be bounded,
e.g., for energy reasons or actuator limitations, or outputs need to be bounded, e.g., due to sensor
limitations. To address these requirements formally, we define constraints for our system as
follows.

Definition 5.2 (Constraints).
Given the state, control and output sets X , U and Y , we call X ⊂ X state constraints, U ⊂ U
control constraints and Y ⊂ Y output constraints.

We like to stress that constraints are always causing trouble in numerical computations. For this
reason, in many applications constraints are not formulated „hard“, that is as constraints that must
be satisfied, but instead as „soft“ by adding them as KPI to the cost function by penalizing the
violation of constraints.

Remark 5.3
Note that by definition soft constraints may be violated. Hence, such an approach is not applicable

for safety critical constraints.

Alternatively, modelers can focus on circumventing the usage of constraints as outlined in the
following task:

Task 5.4
Model cars going from an initial point x0 ∈ R2 to a target point x⋆ ∈ R2 via routing points

xj ∈ R2, j = 1, . . . , M as illustrated in Figure 5.3 using a one dimensional system only.

Solution to Task 5.4: Define the route of each vehicle via routing points via interpolation
by splines. The car is then controlled along the arc of the spline. Then, we create a one
dimensional dynamics via the velocity along the arc length as a control.

5.1. INTRODUCTION OF CONSTRAINTS 61

Figure 5.3.: Definition of the driving path via splines for given routing points

To formalize this approach, we call M ∈ N the number of routine points. Denoting the
entire arc length by L, the routing points are interpolated via the cubic spline

S(ℓ) =

(
Sx(ℓ)

Sy(ℓ)

)
, 0 ≤ ℓ ≤ L,

which is parametrized by ℓ representing the position on the arc. The arc length is approxi-
mated by

ℓ0 := 0, ℓj+1 := ℓj +
√
(xj+1 − xj)2 + (yj+1 − yj)2, L := ℓM.

Last, we re-obtain the parametrized driving route via(
x(ℓ)
y(ℓ)

)
:=

(
Sx(ℓ)

Sy(ℓ)

)
for 0 ≤ ℓ ≤ L.

The spline gives us the route of each car, and its velocity is the time derivative of the current
position on the arc. Hence, driving along the route is equivalent to solving the initial value
problem

ℓ̇(t) = u(t), ℓ(0) = 0

where t denotes time and u(t) represents the velocity of the car at time instant t. By choosing

62

the velocity u ∈ U we can control the car along the route. The corresponding position at
time instant t is given by (

x(ℓ(t))
y(ℓ(t))

)
=

(
Sx(ℓ(t))
Sy(ℓ(t))

)

Remark 5.5 Note that deriving the routing points in Task 5.4 is a different and decoupled

problem, which may be solved by a traffic guidance system. For simplicity, the center of

the traffic lane can be chosen. Regarding a production process or a single machine, these

routing points can be regarded as a feedforward control.

Instead of the velocity along the route, we could also use the acceleration or jerk. These

choices result in a differential equation of higher order. Additionally, the bounds on the

velocity are then state constraints, which drastically increase the complexity of the problem.

As mentioned before, we could also impose more complex models for each car and the

respective dynamics. However, these model would lead to an increase in the computational

cost. Since the modeled arcs are locally controlled by sublayer controllers of the car, these

arcs represent reality close enough. Hence, such an approach is more efficient.

5.2. MPC approach

Having defined constraints, we can now generalize the setting from Chapter 2 to a nonlinear
constrained optimal control problem. Note that in Definition 2.4, we used the general nonlinear
form, which we later specified to LTI systems to discuss the LQR, H2 and H∞ controller.
Formally, we obtain

Definition 5.6 (Constrained optimal control problem).
Consider a system (1.2) and a cost functional (2.1). Then we call

min J(x0, u) =
∞∫

0

ℓ(x(t, x0, u), u(t))dt over all u ∈ U∞ (5.1)

subject to ẋ(t) = f (x(t), u(t), t), x(t0) = x0

x(t) ∈ X, t ∈ [0, ∞)

5.2. MPC APPROACH 63

an constrained optimal control problem. The function

V(x0) := inf
u∈U

J(x0, u) (5.2)

is called optimal value function.

Since the continuous time formulation allows for infinitely many control changes, it is not only
computationally difficult or intractable to solve. Additionally, actuators work in a sampled man-
ner, hence such a control is practically also not usable. To address these issues, we apply the
following adaptations:

By applying digitalization, we can shift the problem to the discrete time formulation solv-
ing the sampling issue. Moreover, digitalization allows us to decouple optimization and
simulation.

Cutting the infinite horizon to a finite one allows us to address the computational issue. For
one, simulation techniques to digitalized or discrete time systems are very effective, and
secondly, optimization methods for finitely many inputs are well developed.

These are the ingredients linked in Figure 5.1, which allow us to divide the control problem (5.1)
accordingly. To formalize this procedure, we first introduce the following:

Notation 5.7 (Open/closed loop index)
In the context of MPC we denote the closed loop time index by n and the open loop time index
by k. Moreover, we denote the open loop horizon by N.

Now, the subproblems to solve take the following form:

Definition 5.8 (Digital constrained optimal control problem).
Consider a constrained optimal control problem (5.1). Applying digitalization, zero order hold
and horizon cutting, we call

min J(x0, u) =
N−1

∑
k=0

ℓ(x(k, x0, u), u(k)) over all u ∈ UN (5.3)

subject to x(k + 1) = f (x(k), u(k), k), x(0) = x0

x(k) ∈ X, k ∈ [0, N]

a digital finite constrained optimal control problem or MPC open loop problem.

64

While the problem is solvable now, it does not give us a solution of the original problem. To still
be able to at least approximate such a solution, MPC can be used. The idea of MPC is split up
the problem over time and only consider time windows, for which the problem is to be solved.
This goes hand in hand with the digitalization idea and the time windows are constructed such
that each window starts at a sampling instant. To capture long term system behavior, the length of
the time windows is longer than one sampling period and measured in multiples of the sampling
period. As the time windows solution is longer than required, only a fraction of the solution is
applied.
Combined, MPC is a three step scheme:

Algorithm 5.9 (Basic MPC Algorithm)
For each closed loop time index n = 0, 1, 2 . . .:

(1) Obtain the state x(n) ∈ X of the system.

(2) Set x0 := x(n), solve the digital finite optimal control problem (5.3) and denote the ob-
tained optimal control sequence by u⋆(·) ∈ UN.

(3) Define the MPC feedback µN(x(n)) := u⋆(0).

While easily accessible and adaptable, the method behind Algorithm 5.9 exhibits some severe
flaws that need to be considered before putting it into practice:

1. Cutting the horizon to N < ∞ may result in infeasibility of the problem at closed loop time
indexes n > 0. A simple example is a car driving towards a wall. If the prediction horizon
is too small, the car is unable to stop before hitting the wall. Mathematically speaking, no
solution can be found satisfying all constraints. We address this issue in Section 5.3 and
show how feasibility can be guaranteed recursively.

2. Cutting the horizon may also result in destabilizing the system. Again, we can use the
car/wall example and put the target point behind the wall, i.e. the car needs to go around
the wall. If the wall is long compared to the prediction horizon, the car will not be able to
„see“ a possibility of going around the wall and stop in front of it. Hence the system is not
asymptotically stable. In Section 5.4, we address this issue using three different strategies.

5.3. Recursive feasibility

From the discussing above on existence of a solution throughout the MPC iterations we obtain
that we require for each n

5.3. RECURSIVE FEASIBILITY 65

existence of a solution for problem (5.3) at closed loop index n and

guarantee that the subsequent problem (5.3) at closed loop index n + 1 exhibits a solution.

Remark 5.10
At this point, we want to stress the fact that loss of feasibility is due to the method of MPC,

i.e. the cutting of the horizon. This problem does not exist for the original constrained optimal

control problem (5.1). However, if the latter does not exhibit a solution, then it is not possible to

approximate such a non-existing solution using MPC.

The first property is referred to as feasibility, the second as recursive feasibility. To formalize
these properties, we first introduce the following:

Definition 5.11 (Admissibility).
Consider a discrete time control system (1.3) with state and input constraints X ⊂ X and U ⊂ U .

The states x ∈ X are called admissible states and the inputs u ∈ U(x) are called admissi-

ble inputs for x. The elements of the set {(x, u) | x ∈ X, u ∈ U(x)} are called admissible

pairs.

For N ∈ N and initial value x0 ∈ X we call an input sequence u ∈ UN and the corre-
sponding trajectory xu(k, x0) admissible for x0 up to time N if

the running time constraint

(xu(k, x0), u(k)) are admissible pairs ∀k = 0, . . . , N − 1

and the terminal constraint

xu(N, x0) ∈ X

hold. We denote the respective set of admissible sequences by UN
X(x0).

An input sequence u ∈ U∞ are the corresponding trajectory xu(k, x0) are called admissible

for x0 if they are admissible for x0 up to every time N ∈ N. We denote the set of admissible
input sequences for x0 by U∞

X(x0).

A feedback µ : X → U is called admissible if µ(x) ∈ U1
X(x) holds for all x ∈ X.

We like to note the slight difference between U and U1(x): By definition of admissibility for x

66

up to time 1, we have that

U1
X(x) := {u ∈ U(x) | f (x0, u) ∈ X} ⊂ U(x).

This is essential especially for our definition of an admissible feedback, which ensures exactly
that.

Remark 5.12
Note that even if U(x) = U is independent of the actual state x, the set UN(x) may still depend

on x for some or all N ∈ N.

The property of admissibility is defined on sequences of states and inputs, yet not on the problem.
We now use admissibility to formalize the problem property of feasibility:

Definition 5.13 (Feasibility).
Consider a digital finite constrained optimal control problem (5.3).

We call an initial condition x0 ∈ X feasible for (5.3) if UN(x0) ̸= ∅.

The MPC Algorithm 5.9 is called recursively feasible on a set A ⊂ X if each x ∈ A is
feasible for (5.3) and x ∈ A implies f (x, µN(x)) ∈ A.

In order to guarantee that Algorithm 5.9 is recursively feasible, the so called viability assumption

can be used.

Theorem 5.14 (Recursive feasibility and admissibility).
Consider the MPC Algorithm 5.9. If the viability assumption

∀x ∈ A ⊂ X : ∃u ∈ U(x) such that f (x, u) ∈ A ⊂ X (5.4)

holds, then the MPC Algorithm 5.9 is recursively feasible on A and the pairs

(xµN(n), µN(xµN(n))) as well as the feedback µN are admissible for all n ∈ N.

We like to point out that the viability assumption (5.4) looks simple, yet in practice it is rather
difficult to identify the set A.

5.4. STABILITY CONDITIONS 67

Task 5.15
Consider sampled data model of a car

x(k + 1) =

(
x1(k) + x2(k) + u(k)/2

x2(k) + u(k)

)

on a one dimensional road with position x1, speed x2 and piecewise constant acceleration u.

Assume all variables to be constrained to [−1, 1]. Compute the set A.

Solution to Task 5.15: Using the dynamics and the extreme values x1 = x2 = 1 we obtain

x1(k + 1) = x1(k) + x2(k) + u(k)/2 ≥ 3/2 > 1

for any u ∈ U = [−1, 1]. Hence, such a state is not recursively feasible. Via elementary
computations, we can define

A :=
{

x ∈ R2 | x1 ∈ [−1, 1], x2 ∈ [−1, 1] ∩ [−3/2 − x1, 3/2 − x1]
}

for which the choice

u :=


1, x2 < −1/2

−2x2, x2 ∈ [−1/2, 1/2]

−1, x2 > 1/2

satisfies u ∈ [−1, 1] and f (x, u) ∈ A.

Figure 5.4 illustrates the viability condition (blue) in comparison to the state constraints (black),
where the difference occurs in the encircled regions (red).
In practice, we are interested to compute a feedback which is not only admissible, but also asymp-
totically stabilizes our system.

5.4. Stability conditions

To guarantee stability of the closed loop using the MPC feedback computed via Algorithm 5.9,
there are three different ideas in the literature. Two of them include the usage of so called terminal
conditions, that is conditions imposed to the end point of the open loop prediction horizon used

68

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x1

x 2

Figure 5.4.: Sketch of a viability set

within MPC, and one based on Lyapunov functions. Here, we will not go into details regarding
the specifics of these methods, but discuss them from an application point of view.
Terminal conditions are conditions, which are added to the problem (5.3) at open loop time instant
k = N.

Remark 5.16
Note that as terminal conditions alter the problem, the solutions of the problem are in general

different.

The first approach uses so called terminal constraints:

Definition 5.17 (Terminal constraints).
Consider a digital finite constrained optimal control problem (5.3). Then we call

xu(N, x0) ∈ X0 (5.5)

terminal constraint and X0 ⊂ X terminal constraint set.

The idea of terminal constraints is straightforward: By imposing a terminal constraint set, the set
of admissible pairs is limited, i.e. the set of initial values and controls to be chosen are reduced.
Hence, it is no longer necessary to compute the set A from the viability conditions, but it is
implicitly imposed using the right terminal conditions.

5.4. STABILITY CONDITIONS 69

Remark 5.18
The right choice for terminal conditions can be made using ideas such as linearization around the

operating point x⋆. From Control engineering 2 we then now that there exists a linear feedback

such that the terminal constraint set is recursively feasible.

In fact, we obtain the following restriction:

Definition 5.19 (Feasibility set).
Consider a digital finite constrained optimal control problem (5.3) together with terminal con-
straint (5.5). Then we call

XN :=
{

x0 ∈ X | ∃u ∈ UN(x0) : xu(N, x0) ∈ X0

}
(5.6)

feasible set for horizon N and

UN
XN

(x0) :=
{

u ∈ UN(x0) | xu(N, x0) ∈ X0

}
(5.7)

set of admissible control sequences for horizon N.

Combining terminal constraints and the MPC algorithm, we obtain the following:

Corollary 5.20 (Feasibility).
Consider the MPC Algorithm 5.9. For each x0 ∈ XN we have

f (x, µN(x)) ∈ XN−1. (5.8)

Based on the latter, we directly obtain:

Theorem 5.21 (Recursive feasibility using terminal constraints).
Consider the MPC Algorithm 5.9 with terminal constraint (5.5). Then the MPC Algorithm is

recursively feasible.

If we additionally know that for the region defined by the terminal constraint (5.5) there exists an
asymptotically stabilizing feedback, then the following can be concluded:

70

Theorem 5.22 (Asymptotical stability using terminal constraints).
Consider the MPC Algorithm 5.9. Suppose a terminal constraint (5.5) to be imposed on prob-

lem (5.3) and furthermore an asymptotically stabilizing feedback to exist for all x ∈ X0. Then

the MPC Algorithm is asymptotically stabilizing the system (1.3).

While being simple in usage, the limitations of terminal constraints are the reduction of admissible
controls, which can only be reduced by enlarging the prediction horizon N. Since the latter
induces high computing times, it would be much simpler to increase the size of the terminal
constraints, which stand at the center of the second approach.
Different from terminal constraints, the second approach appends a terminal cost to the cost
function in problem (5.3). The intention is to enlarge the terminal constraints by including costs
arising for the cutoff horizon [N, ∞). These terminal costs are defined as follows:

Definition 5.23 (Terminal costs).
Consider a digital finite constrained optimal control problem (5.3). Then we call a function
L : x → R+

0 terminal cost if it is added to the cost function of problem (5.3)

min J(x0, u) =
N−1

∑
k=0

ℓ(x(k, x0, u), u(k)) + L(xu(N, x0). (5.9)

Again, we obtain asymptotic stability using the existence of an asymptotically stabilizing feed-
back in the terminal constraint set:

Theorem 5.24 (Asymptotical stability using terminal costs).
Consider the MPC Algorithm 5.9. Suppose a terminal constraint X0 and terminal costs L(·) to

be imposed on problem (5.3) and furthermore an asymptotically stabilizing feedback to exist for

all x ∈ X0. Then the MPC Algorithm is recursively feasible and asymptotically stabilizes the

system (1.3).

The last idea to guarantee asymptotic stability of the MPC closed loop utilizes a control-Lyapunov
function based approach. Here, we can directly utilize the MPC formulation to check the require-
ments of Definition 4.12 for practical control-Lyapunov function:

Theorem 5.25 (Asymptotical stability using suboptimality).
Consider the MPC Algorithm 5.9 and suppose the viability condition 5.4 to hold. If there exists

5.4. STABILITY CONDITIONS 71

a function V : X → R+
0 such that there exist functions α1, α2 ∈ K∞ and a constant α ∈ (0, 1]

such that

α1(∥x − x⋆∥) ≤ V(x) ≤ α2(∥x − x⋆∥) (5.10)

V(x) ≥ αℓ(x, µN(x)) + V(f (x, µN(x))) (5.11)

holds, then the MPC Algorithm is recursively feasible and asymptotically stabilizes the sys-

tem (1.3).

The intention of the last approach is to avoid constructing terminal constraints or costs and to
also avoid alteration of the original control problem. While being technically simple to monitor,
conditions (5.10)–(5.11) are very hard to check analytically. For further details, we refer to [2].
From an energy point of view, the conditions of Theorem 5.25 state that energy is continuously
drawn from the system, hence any trajectory is driven towards the operating point x⋆. Yet, it is
not equivalent to the standard notation of Lyapunov, which uses α = 1. The latter parameter can
be interpreted as a measure of suboptimality, i.e. the tradeoff in optimality we have to accept for
cutting the horizon and making the problem to be computationally tractable.

CHAPTER 6

DISTRIBUTED CONTROL

Generated with chatgpt.com

Avoiding complexity reduces bugs.

Linus Torwalds

74 6. DISTRIBUTED CONTROL

So far, we have considered systems and processes that can be governed by a single control unit.
In practical applications, however, this assumption is often violated. One reason is that systems
may be too large or too complex to be handled centrally, making it necessary to decompose
them into smaller, yet possibly interconnected, subsystems. Typical examples include chemical
plants, supply chains, and production lines. Similar challenges also arise on a purely software
level, for instance in robotic process automation, where large workflows must be coordinated
across multiple agents or services. A second class of problems is characterized by an inherent
structural decomposition. Such situations arise when multiple decision-making units operate
within a shared environment and must coordinate their actions. Representative examples range
from autonomous vehicles sharing a common traffic space to robots collaborating in a workspace,
or economic agents interacting in buyer–seller scenarios. In this chapter, we focus on approaches
based on model predictive control (MPC) to address such multi-unit and decomposed control
problems. In particular, we concentrate on three fundamental ideas that allow the control problem
to be split—or, respectively, to preserve an existing decomposition—while still accounting for
the overall system objectives and constraints. As illustrated in Figure 6.1, the coupling between
subsystems is introduced at the MPC level of the problem.

MPC

MPCMPC

Figure 6.1.: Building blocks within the MPC Algorithm 5.9

To this end, we distinguish three basic approaches. The first approach follows a first-come–first-
serve principle, in which one controller determines its strategy first, and the remaining controllers
adapt their decisions based on the residual degrees of freedom. The second approach exploits
structural properties of the system by identifying subsystems that do not mutually interfere, al-
lowing them to operate in parallel, while explicitly coordinating only those subsystems that do
interact. The third and most general approach assumes full parallelization, where all subsystems
solve their MPC problems simultaneously. As will become apparent, these approaches differ sig-
nificantly in their communication requirements as well as in the amount and type of information
that must be exchanged between controllers.

6.1. SEPARATION OF SYSTEMS 75

Remark 6.1
At this point, we emphasize that the present discussion focuses on decompositions in the spatial

or control domain, where the system is split according to states, inputs, or subsystems. An al-

ternative approach to managing complexity is based on a temporal decomposition, in which the

prediction horizon is partitioned rather than the state space. While these decompositions share

conceptual similarities from a systems-theoretic perspective, temporal splitting typically requires

a formulation in terms of partial differential equations.

6.1. Separation of systems

Instead of considering a single system of the form

x(k + 1) = f
(
x(k), u(k), k

)
, x(0) = x0, y(k) = h

(
x(k), u(k), k

)
, (1.3)

we now turn to a setting consisting of multiple interacting subsystems. For the sake of clarity and
without loss of generality for the subsequent developments, we omit explicit time dependence of
the dynamics as well as system outputs, and consider a family of discrete-time systems of the
form

xp(k + 1) = f p(xp(k), up(k), ip(k)
)
, xp(0) = xp

0 . (6.1)

Here, p ∈ P := {1, . . . , P} denotes the index of the corresponding subsystem. The state and
control variables satisfy xp(k) ∈ X p and up(k) ∈ U p where the sets X p and U p may differ
between subsystems. The variable ip(k) ∈ Ip represents the neighboring data associated with
subsystem p. It serves as the interface through which coupling between subsystems is introduced.
Depending on the application, ip(k) may encode, for instance, states or predicted trajectories of
neighboring subsystems, shared resources, or coordination variables. Both the neighboring data
and the corresponding set Ip may depend on the subsystem index p and, in general, on time.
Throughout this chapter, we restrict our attention to decompositions that arise from splitting the
system dynamics. To illustrate the idea, we first consider the following example:

Task 6.2
Reconsider the Example from Task 5.15 with dynamics(

x1(k + 1)
x2(k + 1)

)
=

(
x1(k) + x2(k) + u(k)/2

x2(k) + u(k)

)

76

and split the system into two subsystems using x1 = x1, x2 = x2 and u2 = u.

Solution to Task 6.2: Setting x1 = x1, x2 = x2 and u2 = u and leaving u1 undefined, we
obtain

x1(k + 1) = x1(k) +

from subsystem 2︷ ︸︸ ︷
x2(k) + u2(k) /2

x2(k + 1) = x2(k) + u2(k).

For that choice, subsystem 2 is independent from subsystem 1. However, to evaluate subsys-
tem 1 the information i1(k) is required to evaluate x2(k) and u2(k) from subsystem 2. Note
that the connection depends on how the control input from the overall system is assigned to
the subsystems. Setting u1 = u and leaving u2 undefined, both subsystems depend on each
other.

The objective of a system decomposition is to ensure that, upon recombination of the subsys-
tems defined in (6.1), the original overall system dynamics are recovered. More precisely, the
subsystems are required to jointly represent an overall system of the form

x(k + 1) = f
(
x(k), u(k)

)
, (6.2)

where the global state and control vectors are obtained by concatenation of the local variables
x(k) = (x1(k)⊤, . . . , xP(k)⊤)⊤ ∈ X = X 1 × . . .×X P and u(k) = (u1(k)⊤, . . . , uP(k)⊤)⊤ ∈
U = U 1 × . . . ×U P. Throughout this chapter, we refer to (6.2) as the overall system, to the fam-
ily of systems in (6.1) as the set of subsystems, and to each index p ∈ P as a subsystem. The
neighboring data variables ip(k) introduced earlier serve to ensure that the local subsystem dy-
namics are compatible with the global dynamics when recombined.
As observed in Task 6.2, a consistent decomposition generally requires not only a partitioning of
the state space X , but also of the control space U . In order to formalize such coordinated splits
in a mathematically precise manner, we introduce the notion of projections and decompositions.

Definition 6.3 (Projection).
Let S be a vector space. A linear map π : S → S is called a projection if it is idempotent, that is
π ◦ π = π. In this case, S can be written as the direct sum S = Im(π)⊕ Ker(π) of the image
and the kernel of π and we say that π projects S onto Im(π) along Ker(π).

6.1. SEPARATION OF SYSTEMS 77

Projections allow us to isolate subspaces of interest while ignoring complementary components.
Using a family of such projections, we can define a structured splitting of a vector space.

Definition 6.4 (Decomposition).
Let S be a vector space and let P = {1, . . . , P} where P ∈ N. Consider a family of projections
(πp)p∈P on S where Sp := Im(πp) is a subset of S for all p ∈ P to be given. If we have that

⟨(Sp)p∈P ⟩ = S and Sq ∩ ⟨(Sp)p∈P ,p ̸=q⟩ = {0} for all q ∈ P

hold, then we call the family (Sp)p∈P a decomposition of S.

These conditions ensure that every element of S admits a unique representation as a sum of com-
ponents belonging to the individual subspaces Sp. In the context of distributed model predictive
control, such decompositions provide the mathematical foundation for assigning distinct state
and control components to individual subsystems while preserving a well-defined global system
representation.
Using the notion of decomposition introduced above, we can now rewrite the overall system (6.2)
as a collection of subsystems defined on suitable subspaces. To this end, we require two families
of projections, one acting on the state space and one acting on the control space. More precisely,
for each subsystem index p ∈ P , we introduce

a state projection π
p
X : X → X to split the state set such that Im(π

p
X) = X p, and

a control projection π
p
U : U → U to split the control set such that Im(π

p
U) = U p.

These projections formalize the assignment of global state and control components to individual
subsystems.
In general, however, these projections do not yield a strict separation of the system dynamics. As
already observed in Task 6.2, the evolution of a given subsystem may depend on state or control
variables that are assigned—via the projections—to other subsystems. As a consequence, the
projected dynamics π

p
X ◦ f typically depend on additional variables beyond the local state and

control. To capture this structure, the projection induces, for each subsystem, a classification of
state and control variables into three distinct components.
In particular, the state space X can be decomposed into

(
X p, X̃ p,X p

)
where

xp ∈ X p denotes the local state of subsystem p, i.e. the primary state variables governed
and predicted by the corresponding local controller.

x̃p ∈ X̃ p represents the neighboring states, that is, state components of other subsystems
that are required to correctly evaluate the projected dynamics π

p
X ◦ f .

78

xp ∈ X p
collects all remaining state components that do not influence the projected dy-

namics of subsystem p.

Analogously, the control space U decomposes into
(
U p, Ũ p,U p

)
where

up ∈ U p denotes the local control input computed by subsystem p.

ũp ∈ Ũ p contains the neighboring control inputs, that is, control variables generated by
other subsystems that influence the projected dynamics π

p
X ◦ f .

up ∈ U p
consists of control components that are irrelevant for the projected dynamics of

subsystem p.

Figure 6.2 illustrates these splits.

x ∈ X

u ∈ U

π
p
X

π
p
U

x̃p ∈ X̃ p

(neighboring)

xp ∈ X p

(local)

xp ∈ X p

(independent)

ũp ∈ Ũ p

(neighboring)

up ∈ U p

(local)

up ∈ U p

(independent)

State components

Control components

Figure 6.2.: Decomposition of global state and control variables by the projections π
p
X and π

p
U

Remark 6.5
The control variables ũp ∈ Ũ p are determined by controllers associated with other subsystems.

Consequently, their inclusion in the evaluation of the projected dynamics of subsystem p requires

explicit communication of the corresponding control information.

6.1. SEPARATION OF SYSTEMS 79

By construction, the projected dynamics π
p
X ◦ f are independent of the variables xp ∈ X p

and
up ∈ U p

. For this reason, these variables are referred to as independent states and independent

controls, respectively.

Remark 6.6
From a software and implementation perspective, the variables xp(k) ∈ X p and up(k) ∈ U p

are commonly referred to as local or private variables. In contrast, the variables x̃p(k) ∈ X̃ p,

ũp(k) ∈ Ũ p, as well as the independent state and control components, are typically treated as

interface or public variables.

The sets X̃ p and Ũ p explicitly characterize the information dependencies between subsystems.
In particular, they allow us to identify which subsystems must exchange information in order to
evaluate their respective projected dynamics.
This leads to the following definition.

Definition 6.7 (Neighboring index set).
Consider a decomposition of system (6.2). Then we call I p = {p1, . . . , pm} ⊂ P \ {p} neigh-
boring index set if it satisfies

(X p1 × . . . ×X pm)× (U p1 × . . . ×U pm) ⊃ (X̃ p × Ũ p). (6.3)

In other words, the neighboring index set I p contains exactly those subsystems whose state and
control variables are required to evaluate the local dynamics of subsystem p.
We emphasize that Definition 6.7 permits, in principle, to choose the neighboring index set as
large as I p(k) = P , that is, subsystem p may request information from all other subsystems.
While this choice is always admissible from a modeling point of view, it is typically undesir-
able in practice: communication bandwidth, latency, and reliability constraints motivate to keep
the neighboring index sets as small as possible. In particular, only those subsystems should be
included whose states and/or controls actually influence the projected dynamics of subsystem p.
The information exchanged from these subsystems will be referred to as neighboring data. Con-
ceptually, neighboring data are precisely the variables that are not locally available to subsystem
p, but are required to evaluate its projected dynamics and its MPC prediction model.

Definition 6.8 (Neighboring data).
Let p ∈ P and let I p(k) ⊆ P \ {p} be a neighboring index set of subsystem p at time k. The

80

neighboring data of subsystem p at time k is the set

ip(k) :=
{
(q, kq, xq(·), uq(·))

∣∣ q ∈ I p(k)
}

. (6.4)

Here kq ∈ N0 is a time stamp and the trajectories satisfy

xq(·) ∈ (X q)N+1, uq(·) ∈ (U q)N.

The associated neighboring data set is given by

Ip = Ip = 2Q Q = (P \ {p})× N0 ×X N+1 ×UN,

where 2Q denotes the power set of Q.

To illustrate the latter, Figure 6.3 captures the concept of neighboring data for a fixed subsystem p
at time k.

subsystem p
solves local MPC

ip(k)
set of received tuples

subsystem q1

subsystem q2

(
q1, kq1 , xq

1(·), uq
1(·)

)
(
q2, kq2 , xq

2(·), uq
2(·)

)

Figure 6.3.: Illustration of collecting neighboring data from those subsystems q ∈ I p(k).

Subsystem p shall solve a local MPC problem based on its own state and control variables. How-
ever, due to coupling in the system dynamics, the evaluation of the projected dynamics π

p
X ◦ f

requires additional information from other subsystems.
Using the neighboring index set I p(k), subsystem p identifies exactly those subsystems whose
predicted behavior influences subsystem p. Each neighboring subsystem q ∈ I p(k) transmits
its data tuple. The collection of all such tuples forms the neighboring data set ip(k). This set
constitutes the sole external information required by subsystem p to compute consistent predic-
tions and control actions. In particular, subsystems not contained in I p(k) do not contribute to
the neighboring data and therefore do not need to communicate with subsystem p. Consequently,
the size of the neighboring index set directly determines the communication requirements of the
distributed MPC scheme.

6.1. SEPARATION OF SYSTEMS 81

Task 6.9
Reconsider Task 6.2 and compute neighboring index set and neighboring data.

Solution to Task 6.9: For the chosen split of state and control variables, subsystem 1 depends
on variables of subsystem 2, whereas subsystem 2 does not depend on any other subsystem.
Consequently, the neighboring index sets are given by I1(k) = {2} and I2(k) = ∅. As
shown in the solution of Task 6.2, the evaluation of the projected dynamics of subsystem 1
requires access to the state and control variables of subsystem 2. Hence, the neighboring data
of subsystem 1 at time k is given by i1(k) =

{(
2, k, x2(k), u2(k)

)}
while i2(k) = ∅.

This example illustrates an important distinction: the neighboring data required to evaluate the
instantaneous system dynamics differs from the information required to solve a model predictive
control problem. While a single time instance may suffice to compute the right-hand side of the
dynamics, MPC requires predictions over an entire horizon.
In particular, to generate a predicted state trajectory for subsystem p, the predicted state and
control trajectories of all subsystems in the neighboring index set must be available.

Remark 6.10
For simplicity, we assume throughout this chapter that all subsystems use the same prediction

horizon length N. Under this assumption, the horizon length does not need to be transmitted as

part of the neighboring data. If subsystem-dependent horizons are allowed, the neighboring data

must be extended to include this information, leading to a definition of the form

ip(k) = {(q, kq, Nq, xq(·), uq(·)) | q ∈ I p(k)} ∈ Ip. (6.5)

Although extending the transmitted data is conceptually straightforward, the resulting algorith-

mic modifications — such as horizon alignment and synchronization — as well as the correspond-

ing stability analysis become considerably more involved.

Using the concept of neighboring data, we can now formally relate the overall system dynamics
to the set of subsystem dynamics.

Corollary 6.11 (Equivalent subsystem split).
Suppose an overall system of the form (6.2) is given together with an index set P = {1, . . . , P}
and families of projections

(
π

p
X
)

p∈P ,
(
π

p
U
)

p∈P , which induce decompositions of state and con-

trol spaces ⟨(X p)p∈P ⟩ and ⟨(U p)p∈P ⟩.

82

Then the overall system (6.2) is equivalent to a set of subsystems (6.1), where the dynamics of

subsystem p are given by

f p(xp, up, (x̃p, ũp)) :=[Idnp
x×np

x ; 0(nx−np
x)×np

x] ◦ π
p
X

◦ f (σX p−1(xp, x̃p, 0), σU p−1(up, ũp, 0)) (6.6)

for permutations σX p : X → X p × X̃ p ×X p
satisfying σX p(x) = (xp, x̃p, xp) and σU p : U →

U p × Ũ p ×U p
with σU p(u) = (up, ũp, up) for all p ∈ P .

This result shows that, once neighboring data are introduced, the overall system dynamics can be
represented exactly by a set of coupled subsystems. The coupling is captured by the costate and
cocontrol variables, which correspond to the information exchanged via neighboring data.
Returning to the definition of the neighboring index sets, we observe that the projections are not
uniquely determined. Nevertheless, from both a computational and a communication perspective,
it is advisable to choose them such that the neighboring index sets are as small as possible. At
the same time, the subsystems do not depend on the independent state and control subspaces X p

and U p
. Maximizing these independent subspaces therefore directly reduces the computational

burden of the local MPC problems.
As outlined at the beginning of this section, the projection-based approach is not limited to the
system dynamics, but can be applied analogously to the cost functionals and constraints of the
MPC problem. In the presence of state or control constraints, the projections defining costate
and independent components may depend on the current overall system state x ∈ X . This state
dependence must be taken into account when defining admissible neighboring data and feasible
local optimization problems. Using these projections, we are now in a position to formulate a
projected digital constrained optimal control problem, which serves as the local optimization
problem solved by each subsystem within a distributed MPC scheme.

Definition 6.12 (Projected digital constrained optimal control problem).
Consider a digital constrained optimal control problem (5.3), a set P = {1, . . . , P} as well as
projections

(
π

p
X
)

p∈P ,
(
π

p
U
)

p∈P inducing a decomposition. Then we call

min Jp(xp
0 , up) =

N−1

∑
k=0

ℓp(xp(k, xp
0 , up), up(k)) over all up ∈ U

p,N
X

p
0

(6.7)

subject to xp(k + 1) = f p(xp(k), up(k)), xp(0) = xp
0

xp(k) ∈ Xp, k ∈ [0, N]

a projected digital finite constrained optimal control problem.

6.1. SEPARATION OF SYSTEMS 83

This definition mirrors the standard digital constrained optimal control problem from Defini-
tion5.8 used in standard (or centralized) MPC, with the crucial difference that all quantities are
defined on the projected subsystem dynamics. The state xp(·) and control up(·) represent only
the local components assigned to subsystem p. Coupling to other subsystems enters implic-
itly through the dynamics f p, costs ℓp and constraints Xp, which depend on neighboring data.
Consequently, each subsystem optimizes its own performance criterion while respecting local
constraints, but remains consistent with the overall system through exchanged neighboring data.
The projected optimal control problem defined above forms the computational core of a dis-
tributed MPC scheme. A basic realization of such a scheme is given in Algorithm 6.13. It follows
the standard MPC loop — measure, optimize, apply — but augments it by communication and
coordination steps required to handle subsystem coupling.

Algorithm 6.13 (Basic MPC Algorithm)
For each closed loop time index n = 0, 1, 2 . . .:

(1) For each subsystem p ∈ P

Obtain the state xp(n) ∈ Xp of the system.

(2) For each subsystem p ∈ P

a) Obtain neighboring index set I p(n) and collect data ip.

b) Set xp
0 := xp(n), solve the projected digital finite optimal control problem (6.7) and

denote the obtained optimal control sequence by up,⋆(·) ∈ U
p,N
X

p
0
(xp

0 , ip).

c) Send data (p, xp(·), up(·)) to all subsystems q ∈ P \ {p}.

until up(·) and ip has converged for all p ∈ P .

(3) For each subsystem p ∈ P

Define the MPC feedback µ
p
N(x

p(n)) := up,⋆(0).

Within Algorithm 6.13, Step (1) corresponds to the standard measurement or state-estimation step
of MPC, performed independently by each subsystem. In Step (2), each subsystem identifies the
set of neighboring subsystems that influence its dynamics and collects the corresponding neigh-
boring data. Based on this information, the projected optimal control problem is solved locally.
Since the dynamics depend on neighboring predictions, the optimization problems are generally
coupled; the inner loop therefore iterates until the exchanged trajectories and neighboring data
are consistent across all subsystems. Finally, in Step (3), each subsystem applies only the first
element of its optimal control sequence, yielding a distributed MPC feedback law in receding-
horizon fashion.

84

Algorithm 6.13 serves as a conceptual baseline. The central question addressed in the following
sections is how Step (2) — in particular the exchange and reconciliation of neighboring data
— can be organized efficiently. This leads to different coordination strategies, ranging from
sequential and prioritized schemes to fully parallel and iterative methods.

Remark 6.14
Distributed optimal control problems span a wide range of architectures. At one extreme, a cen-

tralized formulation treats all subsystems as a single large system. At the other extreme, a decen-

tralized formulation assumes complete independence, i.e., all variables of other subsystems are

independent and no communication is required. Between these extremes lie cooperative settings,

where subsystems share identical performance objectives, and noncooperative settings, where

objectives may differ and coordination is required to resolve conflicts.

As in standard model predictive control, all distributed MPC schemes rely on a basic feasibility
assumption. In the present setting, feasibility does not only concern the existence of a locally
admissible control sequence for a given state, but also the existence of consistent neighboring data
such that all local projected optimal control problems can be solved and coordinated successfully.
This requirement is formalized in the following assumption.

Assumption 6.15 (Feasibility)
Given Algorithm 6.13 suppose that for each x(n) =

(
x1(n), . . . , xp(n)

)
obtained in Step 1 there

exists ip(n) for all p ∈ P such that U
p,N
X

p
0
(xp

0 , ip) ̸= ∅ and Step 2 terminates successfully.

Assumption 6.15 ensures that, at every closed-loop time step, each subsystem can construct a fea-
sible local MPC problem once appropriate neighboring data are available. Moreover, it requires
that the coordination procedure in Step 2 of Algorithm 6.13 — including data exchange and pos-
sible iterative reconciliation — terminates in finite time. In other words, feasibility here is a joint
property of the subsystem dynamics, the projection-based decomposition, and the coordination
mechanism.
This assumption is the distributed analogue of the feasibility assumption which we introduced in
Definition 5.13 for standard (or centralized) MPC, where one assumes that, for every admissible
state encountered in closed loop, the finite-horizon optimal control problem admits a feasible
solution.
Under the feasibility assumption, the distributed MPC scheme inherits a fundamental property
known from standard MPC.

6.2. SEQUENTIAL APPROACH 85

Theorem 6.16 (Recursive feasibility of distributed NMPC).
Consider Algorithm 6.13 and suppose Assumption 6.15 to hold. Then the closed loop is recur-

sively feasible.

Recursive feasibility means that, once Algorithm 6.13 is initialized with a feasible state, feasibil-
ity is preserved for all subsequent closed-loop time steps. The proof follows the same high-level
argument as in centralized MPC: at each time step, only the first control input of a feasible se-
quence is applied, and a new feasible solution is assumed to exist at the next time step.
The essential difference to standard MPC lies in the source of feasibility. In centralized MPC,
recursive feasibility is typically established by suitable terminal constraints, terminal costs, or
invariant sets. In the distributed setting, recursive feasibility additionally depends on the existence
of consistent neighboring data and on the successful coordination of subsystem optimizations.
Thus, feasibility is no longer purely a property of the system dynamics and constraints, but also
of the communication and coordination structure.
Unfortunately, Assumption 6.15 cannot be guaranteed in full generality. In particular, the exis-
tence of suitable neighboring data and the convergence of the coordination step may fail if the
coupling between subsystems is strong, if communication is restricted, or if the local constraint
sets are incompatible. For this reason, the remainder of this chapter focuses on specific classes
of distributed MPC schemes and coordination strategies for which recursive feasibility can be
established under additional structural assumptions.

6.2. Sequential approach

The first distributed MPC approach we discuss is based on a temporal decoupling of the coordi-
nation problem. Instead of solving all subsystem optimal control problems simultaneously, the
subsystems are ordered and solved sequentially within each sampling instant. This approach is
commonly referred to as the Richards and How algorithm introduced in [8].
The key idea is to impose a strict order on the subsystems and to propagate information along this
order. Subsystem 1 computes its control first and transmits its predicted trajectory to all remaining
subsystems. Subsystem 2 then computes its control using this information, and so on, until the
last subsystem P has solved its local optimal control problem. The resulting communication
structure is illustrated in Figure 6.4.
Note that the sequence of subsystems is not prescribed by the method, but instead to be chosen
freely. Hence, a good choice of such a sequencing is of great importance and to some extend an
open question. In practice, it is often advantageous to place strongly coupled or safety-critical
subsystems early in the sequence.

86

Subsystem x1

Subsystem x2

...

Subsystem xP

n n + 1

(
1, n, x1(·), u1(·)

)

(
1, n, x1(·), u1(·)

)

(
2, n, x2(·), u2(·)

)
(

P, n, xP(·), uP(·)
)

(
2, n, x2(·), u2(·)

)

(
P, n, xP(·), uP(·)

)

Figure 6.4.: Sequential communication structure of the Richards and How DMPC scheme

From a conceptual point of view, this scheme is closely related to Gauss–Seidel–type iterations
known from numerical optimization: later subsystems profit from the most recent information,
whereas earlier subsystems must rely on outdated predictions of later ones.
As highlighted by the red arrows in Figure 6.4, the utilized sequence induces an inherent informa-
tion delay. Information generated by subsystem xp at time n can only be exploited by subsystems
xq with q < p at the next time instant n + 1. Hence, for some subsystems, the neighboring data
available within the current MPC iteration is incomplete at the end of the prediction horizon. Note
that we have already seen this problem in standard (centralized) MPC during the iteration step:
By shifting the horizon by one step, this lack of information corresponds to the missing time step
at the end of the neighboring trajectories. Depending on the horizon shift strategy, this delay may
be larger or smaller in practice.
To compensate for this missing information and to preserve feasibility of the local optimal control
problems, we introduce the notion of a neighboring data extension.

Definition 6.17 (Neighboring data extension).
Consider a neighboring index set I p(k) of subsystem p ∈ P . We call the set

ĩp(k) = {(q, kq, xq(·), uq(·)) | q ∈ I p(k)} ∈ Ĩp(ip) (6.8)

neighboring data extension if

xq(·) and uq(·) is defined for k = 0, . . . , N − 1 and

6.2. SEQUENTIAL APPROACH 87

for all undefined xq(·) and uq(·) an admissible solution is substituted.

The neighboring data extension fills the gap created by the sequential communication structure.
Whenever predicted trajectories from neighboring subsystems are not available for the full hori-
zon, an admissible continuation is appended. This continuation does not need to be optimal;
it merely has to preserve feasibility of the local projected optimal control problem. There are
multiple options on how to target this continuation. The most simple idea is to copy the last
neighboring data entry. Note that while simple, such a procedure upholds admissibility not in all
cases. Yet we have already discussed the case of terminal conditions. If the system has reached
the desired equilibrium point within the prediction horizon, then we can last state/control entry
may simply be copied.
More generally, such an extension always exists in MPC schemes based on terminal constraints.
The reason for the latter is that the terminal point corresponds to an equilibrium of the subsystem
dynamics, hence applying the control corresponding to the equilibrium points results in vanished
dynamics of the system. For MPC with terminal costs, existence of an extension can be ensured
if the terminal region is chosen such that a Lyapunov based controller can be evaluated for the
linearization of the system. In the distributed case, we additionally require that all trajectories
within this region are independent variables for all other subsystems.
Combining the sequential communication structure from Figure 6.4, the concept of neighboring
data extension, and the basic distributed MPC Algorithm 6.13, we obtain the following scheme.

Algorithm 6.18 (Richards and How Algorithm for Distributed NMPC)
Initialization:

(1) For each subsystem p ∈ P

Obtain the state xp(0) ∈ Xp of the system.

(2) For each subsystem p ∈ P

a) Find control sequences up,⋆(·) ∈ U
p,N
X

p
0
(xp

0) such that the overall system is feasible.

b) Send data (p, xp(·), up(·)) to all subsystems q ∈ P \ {p}.

(3) For each subsystem p ∈ P

a) Define the MPC feedback µ
p
N(x

p(0)) := up,⋆(0).

Feedback loop: For each closed loop time index n = 1, 2 . . .:

(1) For each subsystem p ∈ P

88

Obtain the state xp(n) ∈ Xp of the system.

(2) For each subsystem p ∈ P do sequentially

a) Collect neighboring data ip for all subsystems and extend neighboring data for all
subsystems j > p.

b) Set xp
0 := xp(n), solve the projected digital finite optimal control problem (6.7) and

denote the obtained optimal control sequence by up,⋆(·) ∈ U
p,N
X

p
0
(xp

0 , ip).

c) Send data (p, xp(·), up(·)) to all subsystems q ∈ P \ {p}.

until up(·) and ip has converged for all p ∈ P .

(3) For each subsystem p ∈ P

a) Define the MPC feedback µ
p
N(x

p(n)) := up,⋆(0).

To illustrate the Richards–How algorithm and, in particular, the role of neighboring data and
neighboring data extensions, we now revisit the simple two-dimensional system introduced ear-
lier. Despite its low dimension, this example already exhibits asymmetric coupling between sub-
systems, one-step information delays induced by the computation order, and the necessity of
admissible trajectory extensions.

Task 6.19
Consider the system from Task 6.2. Assume a common prediction horizon N ∈ N and local

constraints x1(·) ∈ X1, x2(·) ∈ X2, u2(·) ∈ U2.

(a) Revisit the subsystem dynamics f 1, f 2 from Task 6.2 in the form

xp(k + 1) = f p(xp(k), up(k), ip(k)), p ∈ {1, 2},

including the minimal choice of neighboring index sets I p(k).

(b) Explain why, under the Richards–How sequential computation order 1 → 2, subsys-

tem 1 requires a neighboring data extension at time n.

(c) Construct one admissible neighboring data extension for subsystem 1 at time n us-

ing the previously transmitted predicted trajectories of subsystem 2 from time n − 1.

Suppose subsystem 2 to have reached an equilibrium within the prediction horizon.

6.2. SEQUENTIAL APPROACH 89

Solution to Task 6.19: (a) By construction, subsystem 2 contains the control input, whereas
subsystem 1 does not. Writing x1 = x1, x2 = x2, u2 = u yields:

x2(k + 1) = x2(k + 1) = x2(k) + u(k) = x2(k) + u2(k).

Hence, subsystem 2 is autonomous w.r.t. other subsystems and we can choose

I2(k) = ∅, i2(k) = ∅,

and

f 2(x2, u2, ∅) = x2 + u2.

Subsystem 1 evolves according to

x1(k + 1) = x1(k + 1) = x1(k) + x2(k) + u(k)/2 = x1(k) + x2(k) + u2(k)/2.

Thus, subsystem 1 requires the neighbor state and control from subsystem 2. A minimal
neighboring index set is therefore

I1(k) = {2}.

In the trajectory-based neighboring-data notation (for MPC), subsystem 1 uses

i1(n) =
{(

2, τ2, x2(·), u2(·)
)}

,

and we may write

f 1(x1, u1, i1) = x1 + x2 + u2/2,

where x2, u2 are taken from the received neighboring data tuple.
(b) In the Richards–How scheme, at closed-loop time n the subsystem problems are solved
sequentially. As subsystem 1 solves first, we obtain that its dynamics depend on the predicted
trajectories x2(·) and u2(·) of subsystem 2 over the horizon. Since subsystem 2 has not been
solved yet at time n, subsystem 1 cannot access the current predictions of subsystem 2.
Instead, it can only use the most recently transmitted prediction from time n − 1, which —
after the horizon shift — typically leaves a missing point near the end of the horizon. This
resembles the „one-step lack“ in neighboring data induced by the sequential order.

90

(c) Suppose that at time n − 1 subsystem 2 transmitted the predicted trajectories

x2
n−1(·) =

(
x2

n−1(0), . . . , x2
n−1(N)

)
, u2

n−1(·) =
(
u2

n−1(0), . . . , u2
n−1(N − 1)

)
.

After the shift from n to n + 1, we require the input from subsystem 2 at k = N − 1 (and the
corresponding terminal state). To this end, we choose the steady state control up,⋆

ũ2(N − 1) = up,⋆,

and define the final state consistently using subsystem 2 dynamics

x2(N) = x2(N − 1).

Since the constraint sets X2 and U2 are satisfied by this continuation, the resulting trajecto-
ries yield an admissible neighboring data extension

ĩ1(n) =
{(

2, n − 1, x2(·), u2(·)
)}

,

which allows subsystem 1 to solve its projected finite-horizon problem at time n despite the
sequential delay.

This asymmetry shown in Task 6.19 is typical for sequential schemes and already suggests
a natural ordering of subsystems. The example also clarifies how recursive feasibility in the
Richards–How algorithm is maintained. As long as the neighboring data extension is admissible
and the local terminal conditions of the subsystems are chosen appropriately, the feasibility of
the projected optimal control problems is preserved. In this sense, the neighboring data extension
plays a role analogous to terminal constraints or terminal costs in centralized MPC: it provides a
structured mechanism to guarantee the existence of feasible continuations.
Note that the tricky part is the initialization phase, which must guarantee that the distributed
MPC loop starts from a globally feasible configuration. Hence, the initial states of all subsystems
must lie in the feasible region of the overall system and, at minimum, the initial state should not
violate any state or coupling constraints outright. Similarly, any shared resource or coupled input
constraint must be satisfied by the initial configuration. While there are several quite involved
schemes to address this issue, one common idea to satisfy this initialization, an equilibrium or
a known safe configuration inside the terminal sets for all subsystem is chosen as initial state.
Hence, the „do nothing“ approach of holding position for all subsystems will do the trick.
During the feedback loop, subsystems are processed sequentially. Each subsystem solves its
projected optimal control problem using the most recent information available and propagates its

6.3. HIERARCHICAL APPROACH 91

updated predictions to all other subsystems. The algorithm thus trades parallelism for simplicity
and robustness.
Regarding recursive feasibility, we can convert out stability results for centralized MPC problems
from Chapter 5 to obtain the following:

Theorem 6.20 (Stability of Richards and How Algorithm).
Consider Algorithm 6.18. If the initialization phase exhibits a solution, then we have

U
p,N
X

p
0
(xp

0 , ip) ̸= ∅ ∀n ∈ N. (6.9)

If additionally the stability conditions from either Theorem 5.22, Theorem 5.24 or Theorem 5.25

hold for each subsystem p ∈ P , then the closed loop of the overall system is asymptotically

stable.

This result shows that the Richards–How scheme effectively reduces the distributed MPC problem
to a sequence of subproblems each resembling a local standard MPC. Stability is inherited directly
from classical MPC theory, provided that each subsystem satisfies the usual terminal conditions.
In this sense, the sequential approach represents the closest distributed analogue to centralized
MPC.
While the Richards and How algorithm is straightforward to implement and analyze, its sequen-
tial nature leads to significant waiting times for subsystems later in the order. This is particularly
inefficient when subsystems are weakly coupled or completely independent. These limitations
motivate the parallel and partially parallel coordination strategies discussed in the following sec-
tions.

6.3. Hierarchical approach

In the previous section, we considered a purely sequential coordination strategy, where subsys-
tems are totally ordered and solved one after another. The hierarchical approach generalizes this
idea by exploiting partial orders induced by the dependency structure of the subsystems. Instead
of enforcing a single chain, subsystems are arranged in a dependency tree (or forest), allowing
subsystems without mutual dependencies to operate in parallel.
The core idea is to decouple communication from dependency. While communication may occur
between many subsystems, only those subsystems whose projected dynamics actually depend on
one another must be ordered. All others may be grouped into the same hierarchy level and opti-
mized concurrently. This separation is illustrated in Figure 6.5: dashed edges represent potential
communication links, while solid directed edges encode true dependencies that impose an order.

92

x1 x2

x3 x4

(
1, n, x1(·), u1(·)

)

(
2, n, x2(·), u2(·)

)

Figure 6.5.: Communication graph (dashed) and dependency graph (solid) in a hierarchical DMPC scheme

The communication graph describes which subsystems may exchange neighboring data. This
graph is typically dense, reflecting physical proximity, shared constraints, or communication ca-
pabilities. The dependency graph encodes which subsystem must be solved before another be-
cause its state or control enters as a costate or cocontrol. This graph is generally much sparser
and may change over time.
Here, the most important point already arises: Only the dependency graph determines the hierar-
chy; communication alone does not enforce ordering.
To make use of this decoupling, we must identify those systems, which are independent from one
another. Using the denomination from our projection, we directly obtain:

Corollary 6.21 (Independence of systems).
Consider a decomposition of system (6.2) using a set of projections (πp)p∈P . Given a current

state of the overall system x ∈ X , then subsystems p and q are independent if

X̃ p = ∅, Ũ p = ∅ and X̃ q = ∅, Ũ q = ∅. (6.10)

Corollary 6.21 provides a precise system-theoretic criterion for parallelism: two subsystems are
independent if neither requires costate nor cocontrol variables from the other. This definition is
deliberately strict—it ensures that parallel optimization does not introduce hidden coupling via
dynamics or constraints.
Using this independence, we know that certain sets of systems may operate in parallel. The
corresponding Definition 6.22 formalizes sets of subsystems that may be optimized in parallel.

6.3. HIERARCHICAL APPROACH 93

Definition 6.22 (List of parallel operational systems).
Consider a decomposition of system (6.2) using a set of projections (πp)p∈P . Then we call the
set of sets L ∈ 2P satisfying

L := {p ∈ P | (6.10) holds} (6.11)

list of parallel operational systems.

Note that multiple such sets may exist, hence additional rules are required to arrive at a unique
and well-defined hierarchy.
Since Definition 6.22 is formulated on the power set 2P , there is, in general, not a unique “best”
choice of a list of parallel operational systems. Indeed, even if independence relations are fixed,
multiple maximal parallel groups may exist.
To see this, consider three subsystems with the dependency pattern “2 depends on 3”, while sub-
system 1 is independent of both. Then subsystem 1 may be placed in the same parallel level
either with subsystem 2 or with subsystem 3. Both choices are admissible, but they lead to differ-
ent execution schedules and different communication patterns. Hence, the power-set formulation
reflects the fact that a hierarchy is not uniquely determined by independence alone; an additional
selection principle is required.
To obtain a well-defined and reproducible schedule, we introduce two operators: one that resolves
ambiguity by selecting an order (priority), and one that removes outdated ordering information
when dependencies may change (deordering).

Definition 6.23 (Priority and deordering rule).
We call the operator Π : 2P → 2P priority rule and the operator ∆ : 2P → 2P deordering rule.

The priority rule serves to impose a deterministic ordering within a set of subsystems that may
operate in parallel. In particular, it resolves ties whenever multiple valid parallel groupings exist
and thereby turns the (potentially non-unique) decomposition into a concise hierarchy suitable
for implementation.

Task 6.24
Give an example of a priority rule.

94

Solution to Task 6.24: The lexicographical order <N is a priority rule that sorts subsystems
according to their index. In addition, it implicitly selects that list of parallel operational
systems for which subsystems are assigned to the lowest possible hierarchy level compatible
with the ordering.

A priority rule resolves the ambiguity arising from multiple admissible parallel groupings. Its
role is purely organizational: it does not alter feasibility or stability, but it ensures that the hierar-
chical structure is uniquely determined and reproducible. In practice, priority rules often encode
engineering preferences, such as favoring safety-critical subsystems, subsystems with faster dy-
namics, or simply lower indices.
The idea of the deordering rule is fundamentally different. Dependencies between subsystems
are not static: they may appear or disappear depending on the current system state, the activity
of constraints, or changes in the operating regime. Whenever a dependency arises, the affected
subsystems must be separated into different hierarchy levels to respect the induced order.
However, when such a dependency ceases to exist, the corresponding ordering should ideally
be revoked to re-enable parallel computation. Unfortunately, this cannot be detected reliably
from the solutions of the local MPC problems alone. The reason is subtle but important: if
a dependency is induced by a constraint, then feasibility of the solution already enforces this
dependency implicitly. As a consequence, the absence of constraint violations does not imply
the absence of a potential dependency — it merely indicates that the current solution satisfies all
constraints.
In other words, we can detect dependencies when they become active, but we cannot safely in-
fer their absence from feasibility alone. For this reason, hierarchical DMPC schemes typically
employ simple and conservative deordering rules that periodically remove assumed dependencies
and force the hierarchy to be rebuilt.

Task 6.25
Give an example of a deordering rule.

Solution to Task 6.25: The operator ∆(L) = ∅ is a deordering rule. It removes all pre-
viously assumed dependencies, thereby forcing the hierarchy to be reconstructed before the
next optimization step.

Note that fully discarding all structure may be counterproductive as cycles could occur such as
identical but mirrored hierarchies for opposing subsystem. Hence, a more structure-preserving

6.3. HIERARCHICAL APPROACH 95

alternative may be applied by removing only a single dependency, for example chosen at ran-
dom. Such partial deordering rules may reduce unnecessary reordering at the expense of slower
adaptation to changing dependencies.
Combining the priority and deordering rules with Algorithm 6.13 yields the hierarchical DMPC
scheme stated in Algorithm 6.26.

Algorithm 6.26 (Hierarchical DMPC Algorithm)
For each closed loop time index n = 0, 1, 2 . . .:

(1) For each subsystem p ∈ P

Obtain the state xp(n) ∈ Xp of the system.

(2a) Deordering
For each j from 2 to P

For k from 1 to #Lj

i. Set I p
k(n) := ∆(I p

k(n))

ii. If I p
k(n) = ∅ remove pk from Lj and set L1 := (L1, pk)

Else if m̃ = mink∈Lm,pk∈I p
k(n) m < j, remove pk from Lj and set Lm̃ :=

(Lm̃, pk)

a) Set xp
0 := xp(n), solve the projected digital finite optimal control problem (6.7) and

denote the obtained optimal control sequence by up,⋆(·) ∈ U
p,N
X

p
0
(xp

0 , ip).

b) Send data (p, xp(·), up(·)) to all subsystems q ∈ Lk with k > j.

(2b) Priority
For each j from 1 to P do

a) If #Lj ∈ {0, 1} goto Step 3. Else sort index via Lj := Π(Lj).

b) Collect neighboring data ip for all subsystems.

c) For k from 2 to #Lj do

If pk exhibits costate/cocontrol of pk, k < k, set Lj+1 := (Lj+1, k) and Lj :=
Lj \ Lj+1

d) Solve the projected digital finite optimal control problem (6.7) and denote the obtained
optimal control sequence by up,⋆(·) ∈ U

p,N
X

p
0
(xp

0 , ip).

e) Send data (p, xp(·), up(·)) to all subsystems q ∈ Lk with k ≥ j.

(3) For each subsystem p ∈ P

Define the MPC feedback µ
p
N(x

p(n)) := up,⋆(0).

96

The algorithm alternates between two conceptually distinct phases.

Step 2a (Deordering): This phase removes outdated or potentially obsolete dependencies.
Subsystems are promoted to lower hierarchy levels whenever no current dependency justi-
fies their previous ordering. Information is only transmitted to strictly higher levels, since
dependencies within the same level are still under assessment.

Step 2b (Priority): This phase reconstructs a consistent hierarchy. Subsystems within the
same level are ordered using the priority rule, and any newly detected costate or cocontrol
dependencies trigger promotion to higher levels. Neighboring data are now transmitted to
subsystems on equal or higher levels, reflecting the fact that dependencies within the same
level have been resolved by ordering.

We like to stress that in Step 2b, neighboring information is sent to subsystems on equal or
higher hierarchy levels, whereas in Step 2a only higher levels are addressed. This distinction
is essential: in order to establish the dependency graph correctly, a subsystem must be able to
determine whether another subsystem on the same level induces a costate or cocontrol. If such a
dependency is detected, the priority rule enforces a promotion to a higher level, thereby restoring
a valid hierarchy.
The hierarchical approach aims to increase parallelism by exploiting independence between sub-
systems. However, its effectiveness is fundamentally limited by the structure of the underlying
system. If subsystems remain persistently dependent on one another — due to strongly coupled
dynamics or permanently active coupling constraints — the hierarchy may collapse into a chain.
In this case, the hierarchical DMPC scheme degenerates to a purely sequential approach, and no
parallelism can be achieved.
This observation motivates the consideration of fully parallel coordination strategies, which aim
to handle persistent dependencies without imposing a strict hierarchy.

6.4. Parallel approach

A fundamentally different way of decoupling subsystems is to remove constraints and couplings
from the problem formulation by incorporating them into the cost functional. The resulting prob-
lem is formally unconstrained and can then be decomposed additively. This idea underlies a broad
class of methods commonly referred to as dual decomposition or Lagrangian-based distributed
optimization.
In contrast to the sequential and hierarchical approaches, where feasibility is enforced explicitly
at every step, the parallel approach allows all subsystems to compute their control inputs simulta-
neously, at the price of introducing an additional coordination variable: the Lagrange multiplier.

6.4. PARALLEL APPROACH 97

This multiplier is updated by a central entity (server) and steers the subsystems toward consensus
and constraint satisfaction.
As a consequence, the communication structure is qualitatively different and is no longer acyclic.
Instead, several rounds of communication between subsystems and the server are required within
a single closed-loop time step. The corresponding structure is illustrated in Figure 6.6.

Central entity
(dual update)

Subsystem x1

Subsystem x2

n n + 1

inner iterations j

(
1, x1(·), u1(·)

)

(
1, x2(·), u2(·)

)

(
1, x1(·), u1(·)

)

(
1, x2(·), u2(·)

)

(
λj)

(
λj)

(
λj+1)

(
λj+1)

Figure 6.6.: Communication schedule for dual decomposition

Within Figure 6.6, blue arrows represent so-called primal information, that is, neighboring data in
the form of predicted state and control trajectories exchanged by the subsystems. Red arrows rep-
resent the newly introduced dual information, namely the Lagrange multipliers that encode global
consistency and constraint satisfaction. In contrast to the sequential and hierarchical schemes,
all subsystems communicate symmetrically with a central entity, and no direct subsystem-to-
subsystem ordering or dependency structure is required.
Beyond the introduction of a central entity, the communication pattern also differs fundamentally
in its temporal structure. While sequential and hierarchical approaches typically require exactly
one exchange of neighboring data per closed-loop time step, the parallel approach relies on mul-
tiple communication rounds within each closed-loop step. In particular, predicted trajectories are
repeatedly sent from the subsystems to the server, and updated Lagrange multipliers are broad-
cast back to the subsystems until a termination criterion is met. Hence, coordination is achieved
through iteration rather than ordering.
To formalize this idea, we reinterpret constraints and dynamics as penalties in the cost functional.
The key ingredient enabling this reformulation is the following operator.

98

Definition 6.27 (Cost operator).
Consider a control problem (5.3) with n constraints given by state constraints, control constraints
and dynamics. Then we call an operator Γ : X × U → Rnx+n a cost operator if it satisfies

Γ(x, u) = 0 (6.12)

iff the conditions

x(k + 1) = f (x(k), u(k), k), x(0) = x0 (6.13)

x(k) ∈ X, k ∈ [0, N] (6.14)

hold.

The cost operator provides a unified representation of all constraints of the original optimal con-
trol problem. Instead of enforcing these constraints explicitly, the operator measures their viola-
tion. In particular, Γ(x, u) = 0 characterizes exactly the set of admissible state–control trajecto-
ries.

Task 6.28
Reconsider the system from Task 6.2. Define a cost operator Γ that encodes these coupling

constraints.

Solution to Task 6.28: A suitable cost operator penalizing violation of the coupling dynamics
is

Γ(x, u) = x1(k + 1)− x1(k)− x2(k)− u2(k)/2.

The operator satisfies Γ(x, u) = 0 if and only if the coupling dynamics are fulfilled.

Using this operator, we can apply the Lagrangian principle and obtain the augmented cost func-
tional

L(x0, u, λ) := JN(x0, u) + λ⊤ · Γ(x0, u) (6.15)

where λ denotes the vector of Lagrange multipliers associated with the constraints. The dual
function g(λ) = argminu∈U L(x0, u, λ) corresponds to the dual of the original constrained
optimal control problem (5.3).

6.4. PARALLEL APPROACH 99

The decisive advantage of this reformulation is that the Lagrangian (6.15) decomposes additively
with respect to subsystems. As a result, for fixed Lagrange multipliers, each subsystem can solve
its own optimal control problem independently. Global consistency and constraint satisfaction
are enforced only through updates of the multipliers, which motivates the parallel primal–dual
algorithm introduced next.

Task 6.29
Reconsider the system from Task 6.2. Write down the local Lagrangian cost functionals for

subsystems 1 and 2 and explain why both subsystems can be optimized in parallel for a fixed

Lagrange multiplier.

Solution to Task 6.28: Introducing a Lagrange multiplier λ(j), the Lagrangian splits addi-
tively into

L1(x0, u, λ) =
N−1

∑
k=0

(
∥x1(k)∥2 + λ(j) x1(k + 1)

)
,

and

L2(x0, u, λ) =
N−1

∑
k=0

(
∥x2(k)∥2 + ∥u2(k)∥2 − λ(j)

(
x2(k) + u2(k)/2

))
.

Thus, the multiplier couples the subsystems only through the cost. Hence, for a fixed multi-
plier sequence λ(·), the two Lagrangian subproblems are independent. Hence, subsystems 1
and 2 can be optimized fully in parallel, with consistency enforced only through updates of
the Lagrange multiplier by a central entity.

Now, we can additively distribute the Lagrangian problem (6.15), which leads to the following
algorithm.

Algorithm 6.30 (Dual decomposition)
For each closed loop time index n = 0, 1, 2 . . .:
At subsystem:

(1) For each subsystem p ∈ P

Obtain the state xp(n) ∈ Xp of the system and set λ0 = 0 and j = 0.

(2) For each subsystem p ∈ P do

100

(2a) Collect data (0, n, λj).

(2b) Compute a minimizer for the Lagrangian (6.15) and denote the solution by up
n(·).

(2c) Send data
(

p, n, xp
0 , up,j+1(·)

)
to central entity.

At central entity:

(2a) Collect neighboring data ip for all subsystems.

(2b) Update Lagrange multiplier

λj+1 := λj + ρj · Γ(x0, uj, λj)

(2c) Send Lagrange multiplier (0, n, λj+1) to all subsystems p ∈ P . Set j := j + 1 and go
to (2) unless a termination criterion is satisfied.

At subsystem:

(3) For each subsystem p ∈ P

a) Define the MPC feedback µ
p
N(x

p(n)) := up,⋆(0).

The principal advantage of Algorithm 6.30 lies in its remarkable generality. By reformulating
constraints and coupling relations via the Lagrangian, the algorithm can be applied to essentially
any finite-horizon optimal control problem, independent of the structure of the system dynamics
or the form of the constraints. In particular, the decomposition of the problem into subproblems
is no longer tied to a specific partitioning of the state or control variables. Instead, the split may
be chosen freely, for example according to computational resources, communication architecture,
or organizational boundaries, rather than along dynamical or constraint-based interfaces.
This flexibility distinguishes the parallel approach fundamentally from the sequential and hierar-
chical schemes discussed earlier. In those approaches, the admissible decompositions are dictated
by the dependency structure of the dynamics and constraints, and feasibility must be enforced
explicitly at every closed-loop step. In contrast, dual decomposition shifts the burden of coor-
dination entirely to the cost functional: coupling is not eliminated but rather handled implicitly
through the Lagrange multipliers.
The price to be paid for this generality is twofold. First, the algorithm requires a central en-
tity that collects primal information from all subsystems, updates the Lagrange multipliers, and
broadcasts them back to the subsystems. While this entity may be lightweight from a computa-
tional perspective, its existence breaks full decentralization and introduces a potential single point
of failure. Moreover, the communication pattern is inherently iterative: within each closed-loop

6.4. PARALLEL APPROACH 101

time step, multiple rounds of message exchange between subsystems and the central entity are
typically required.
Second, feasibility and consistency are no longer guaranteed at intermediate iterations. The iter-
ation index j in Algorithm 6.30 emphasizes that convergence toward constraint satisfaction and
optimality is achieved only asymptotically. During the intermediate primal–dual iterations, the
computed trajectories may violate constraints or coupling relations. Consequently, practical im-
plementations must carefully balance the number of iterations against real-time requirements,
often terminating the inner loop early and accepting a suboptimal or partially infeasible solution.
The update of the Lagrange multipliers plays a crucial role in this trade-off. The factor ρ acts as
a step size or line-search parameter in the dual ascent method. If chosen too large, the multiplier
updates may lead to oscillations or divergence; if chosen too small, convergence becomes pro-
hibitively slow. Adaptive or diminishing step-size strategies are therefore commonly employed to
stabilize the iteration and accelerate convergence. The selection of ρ thus directly influences both
the numerical performance of the algorithm and its suitability for real-time control applications.
In summary, dual decomposition provides maximal flexibility and parallelism at the expense of
guaranteed feasibility, strict decentralization, and predictable convergence speed. It is particularly
attractive for large-scale systems with complex coupling structures, where structural decomposi-
tions are difficult to identify, but where sufficient communication bandwidth and computational
time are available to accommodate iterative coordination.

CHAPTER 7

CONTROL BARRIER FUNCTIONS

Generated with chatgpt.com

To enjoy freedom we have to control ourselves.

Virginia Woolf

104

In many control systems, admissibility conditions must be rigorously maintained—particularly in
safety-critical applications where specific state constraints must never be violated during opera-
tion. These constraints can pertain to states, inputs, or outputs. Representative examples include
maintaining a safe following distance in adaptive cruise control systems, ensuring that robotic
manipulators remain within their joint limits, or preventing overflow in chemical process tanks.
In previous chapters, such constraints were incorporated into the optimal control framework.
While this inclusion is analytically sound, the numerical methods used to solve these problems
do not inherently guarantee constraint satisfaction in closed-loop execution, especially in the
presence of modeling inaccuracies, disturbances, or numerical solver tolerances.
To address this gap, we introduce the concept of forward invariance in Section 7.1, and its system-
atic enforcement via Control Barrier Functions (CBFs) in Section 7.2. CBFs provide a rigorous
framework to guarantee that system trajectories remain within predefined safe sets over time, by
encoding safety requirements as inequality constraints on the control input.
Conceptually related to Lyapunov functions, CBFs act as safety certificates: while Lyapunov
functions ensure convergence, barrier functions prevent unsafe behavior by repelling the state
from constraint boundaries. Integrating these conditions into the control law provides formal
safety guarantees.
Although the structure of CBF resembles MPC in many ways — particularly in the use of con-
straints – we initially present these functions as a complementary paradigm focused on real-time
constraint enforcement. This approach does not rely on the solution of a full trajectory optimiza-
tion problem, but instead enforces safety at each time step using local information. Later, in
Section 7.3, we combine both approaches to balance safety and performance.
Throughout this chapter, we focus on discrete-time nonlinear control-affine systems of the form

x(k + 1) = f0(x(k)) + f (x(k))u(k), (7.1)

where x(k) ∈ X is the state and u(k) ∈ U the control input. The control-affine form is gen-
eral enough to capture many relevant mechanical and robotic systems, while enabling tractable
mathematical analysis using Lie derivative techniques introduced in the next sections.

7.1. Forward invariance

As sketched before, we want to generate a setting for an MPC such that constraint satisfaction is
always guaranteed. The latter is requires since MPC is fundamentally horizon-limited: constraint
satisfaction is only guaranteed along the planned trajectory, not necessarily for all future time.
This motivates a control concept that ensures constraint satisfaction independently of horizon
length and reference changes.

7.1. FORWARD INVARIANCE 105

The notion of forward invariance provides exactly this property.

Definition 7.1 (Forward invariance).
A set H ⊂ X is called forward invariant for the system (7.1) under a feedback law u = µ(x) if

∀x0 ∈ H : x(k) ∈ H ∀k ≥ 0 (7.2)

holds true.

Breaking down the latter definition, a forward invariant set H states that if a system is evolving
from within H, then it will never leave this set given the applied control law. Unlike the Defi-
nition 5.13 of MPC feasibility, which is evaluated over a finite horizon, forward invariance is a
time-unbounded property similar to our Theorem 5.14 on recursive feasibility.

Remark 7.2
Forward invariance differs fundamentally from stability. While stability concerns convergence to

a specific set or equilibrium, invariance concerns the impossibility of leaving a prescribed set.

Task 7.3 (Adaptive cruise control)
Consider the system

x1(k + 1) = x1(k) + (v − x2(k))−
1
2

u(k),

x2(k + 1) = x2(k) + u(k)

resembling a simple adaptive cruise control (ACC) scenario for a vehicle following a lead

vehicle. Here, x1(k) denotes the gap between the follower and the lead car at time k, and

x2(k) represents the velocity of the follower car. Assume the lead vehicle travels at a constant

velocity v. Then we obtainwith input acceleration u(k). Define a safety constraint as a

forward invariant set.

Solution to Task 7.3: A possible safety constraint is that the gap x1k should never become
negative (or zero), to avoid collision. Thus we define H = R+ × R.

As forward invariance expresses the requirement that we want to enforce, we are now looking for
a constructive way to obtain a respective set. To this end, we utilize the concept of safe sets.

106

Definition 7.4 (Safe set).
Let h : X → R be a continuously differentiable function. Then we call a

H := {x ∈ X | h(x) ≥ 0}. (7.3)

safe set and denote its boundary and interior by

∂H := {x ∈ X | h(x) = 0}, int(H) := {x ∈ X | h(x) > 0} (7.4)

respectively.

Now, the idea is to derive the function h(·) from the dynamics (7.1). Forward invariance holds
true particularly if the evolution of h(x) is restricted such that it cannot become negative. Here
f0(x) + f (x)u denotes the next state x(k + 1) given current state x = x(k) and input u = u(k).
Intuitively, this means for any safe state, there is at least one control option that keeps h(x(k+ 1))
non-negative at the next step, thus preventing the state from leaving H.

Task 7.5 (Adaptive cruise control)
Given the example from Task 7.3, derive a function h : X → R defining the safe set.

Solution to Task 7.5: We can choose h(x) = x1 to describe the forward invariant set.

The key idea is to enforce a one-step condition from x(k) to x(k+ 1) that is sufficient to guarantee
forward invariance for all future time. In discrete time, the latter is achieved by enforcing an
inequality of the form

h(x(k + 1))− h(x(k)) ≥ −α(h(x(k))) (7.5)

via a comparison function α ∈ K∞. The inclusion of α introduces a safety margin that pre-
vents h(x) from dropping to zero in one step when starting positive. Essentially, α(h(x(k))) <
h(x(k))) for h(x(k)) > 0, so the next state’s value h(x(k + 1)) cannot decrease by the full
amount of h(x(k)) and therefore no jump from a positive h(x(k)) to a negative h(x(k + 1)) is
possible. In other words, α limits how fast the system can approach the boundary ∂H, providing
a buffer against uncertainties from digitalization, numerics or modeling. Figuratively, including
an α function is analogous to requiring a car to slow down as it approaches a stop sign.

7.2. CONTROL BARRIER FUNCTIONS 107

7.2. Control barrier functions

We are particularly interested in ensuring that the system state x(·) does not cross the zero of our
function h(·). We can track the latter using the gradient ∇h(x), but also need to cover for the
dynamics of the system. This can be done using so called Lie derivatives.

Definition 7.6 (Lie derivative).
Consider a control affine system (7.1) and let h : X → R be continuously differentiable. The Lie

derivative of h along f0 is defined as

L f0 h(x) := ∇h(x)⊤ f0(x) ∈ R. (7.6)

Moreover, we call

L f h(x) := ∇h(x)⊤ f (x) ∈ U⊤ (7.7)

Lie derivative of h(·) along f .

Now, we can utilize these Lie derivatives to quantify how this margin evolves since

L f0 h(x) describes the change of h(·) due to the autonomous system behavior, i.e. inertia,
damping, gravity, thermal dynamics, or other unforced effects, and

L f h(x)u describes the change of h(·) induced by the control input, i.e. how actuators can
increase or decrease the constraint margin.

This allows us to derive so called control barrier functions.

Definition 7.7 (Control barrier function).
Consider a control affine system (7.1) and let H be a safe set as defined in (7.3). Then we call a
continuously differentiable function h : X → R a control barrier function for system (7.1) on H
if there exists α ∈ K∞ such that

sup
u∈U

[
L f0 h(x) + L f h(x)u + α(h(x))

]
≥ 0 (7.8)

holds for all x ∈ H. In the autonomous case f (x) ≡ 0 the latter simplifies to

L f0 h(x) ≥ 0 (7.9)

for all x ∈ H and h(·) is called a barrier function.

108

Here, we like to point out that due to continuity the supremum supu∈U is equivalent to the
existence of such a control u.
We like to point out that it is also possible to introduce control barrier functions without the Lie
derivatives. We include this to highlight the relation between CBFs and Lyapunov functions.

Definition 7.8 (Control Barrier Function).
Consider a control affine system (7.1) and a continuously differentiable function h : X → R

defining the safe set H according to (7.3). Then we call a continuously differentiable function
B : H → R a control barrier function for system (7.1) on H if there exist class K∞ functions α1,
α2, and α3 such that the conditions

1
α1(h(x))

≤ B(x) ≤ 1
α2(h(x))

(7.10)

∃ u ∈ U : B(f (x)u)− B(x) ≤ α3(h(x)) (7.11)

hold for all x ∈ H.

Task 7.9 (Adaptive cruise control)
Given the example from Task 7.3, derive a control barrier function.

Solution to Task 7.9: The one-step change in h is

h(x(k + 1))− h(x(k)) = x1(k + 1)− x1(k)

= (v − x2(k))−
1
2

u(k).

To enforce forward invariance, we impose control barrier function condition

(v − x2(k))−
1
2

u(k) ≥ −α(h(x(k))),

with α ∈ K∞. Rearranging the latter yields an upper bound on the admissible control via

u(k) ≤ 2 [v − x2(k) + α(x1(k))] .

This constraint ensures that the control input u(k) prevents the barrier function from de-
creasing too rapidly, thereby enforcing safety of the inter-vehicle distance over time. Then, a

7.3. INTEGRATION OF CBF IN MPC 109

natural choice for the barrier function is

B(x) :=
1
x1

.

For this choice, we can identify α1(s) = α2(s) = s revealing

1
α1(h(x))

=
1
x1

= B(x) =
1

α2(h(x))

Moreover, we can choose α3(s) = γs with some constant γ > 0 and obtain

1
x1 + v − x2 − 1

2 u
− 1

x1
≤ γx1.

Here, condition (7.10) ensures that B(x) grows unbounded as x approaches the boundary of the
safe set H. In particular, since α1(0) = 0 and α2(0) = 0, the inequalities in (7.10) imply that if
h(x) → 0+ (state x gets arbitrarily close to ∂H from the safe side), then B(x) → ∞. In other
words, B(x) acts as a barrier.
Condition (7.11) is a inequality constraint on the evolution of B(x) under the system dynamics.
It requires that for each state x ∈ H, there exists at least one control input u that makes the
increment of B(x(k)) from x(k) to the next state x(k + 1) bounded by α3(h(x(k))). Thus,
(7.11) ensures that when the state is close to the boundary (small h(x)), the controller can be
chosen to prevent B(x) from increasing too much (since the right-hand side α3(h(x)) will be
small). This condition effectively limits how much closer to the boundary ∂H the state can move
in one time-step, by restricting the growth of the barrier function B. The existence of such a
control input u for every x ∈ H means we can always make a control choice that satisfies this
safety constraint on B.
In the following, we want to make use of the control barrier functions to strengthen our MPC.

7.3. Integration of CBF in MPC

The key idea is to show that that as long as there always exists a control input satisfying this
constraint at each state x(k) ∈ H, we know that the system remains within a predefined safe set
over all time. For our MPC framework, this would allow us to go from feasibility to recursive
feasibility also in the distributed context.
As a first step, we utilize the construction of the control barrier function h(·) to re-obtain forward
invariance of the set H.

110

Theorem 7.10 (Forward invariance via CBF).
Suppose a control affine system (7.1) to be given with control barrier function h : X → R. If the

control input u(·) satisfies

L f0 h(x(k)) + L f h(x(k))u(k) ≥ 0 ∀k ≥ 0, (7.12)

then the set H ⊂ X is forward invariant.

Proof. If x(k) reaches the boundary ∂H, then (7.12) implies that h(x(k + 1))− h(x(k)) ≥ 0.
Hence, h(x(k)) cannot decrease below zero and trajectories cannot leave H.

Safe set H

x(k)
valid u(k)

x(k + 1)
invalid u(k)

x(k + 1)

L f0 h(x(k)) + L f h(x(k))u(k) ≤ 0

Figure 7.1.: Illustration of forward invariance via CBF

Similarly, Definition 7.8 can be imposed to derive forward invariance.

Theorem 7.11 (Safety Guarantee via CBF).
Suppose B : X → R is a control barrier function for a control affine system (7.1) on the safe set

H with corresponding class K∞ functions α1, α2, α3 as in Definition 7.8. If x0 ∈ int(H), then

there exists a sequence of control inputs u(k) such that the state remains in H for all k ∈ N and

H is forward invariant.

Proof. The proof proceeds by induction on the time step k. At time k = 0, we have x0 ∈ H
by assumption. For the induction assume x(k) ∈ H. Hence, by (7.11) there exists at least one
control u(k) ∈ U satisfying (7.11). Since h(x(k)) ≥ 0 we have α3(h(x(k)) is a finite, non-
negative number and hence B(x(k + 1)) ≤ B(x(k)) + α3(h(x(k))). Since B(x(k)) is finite,
B(x(k + 1)) must also be finite.
Now suppose x(k + 1) ̸∈ H, i.e. h(x(k + 1)) < 0. Since B(x) would be required to be at least

1
α1(h(x))

, it follows that B(x) would tend to +∞ for x approaching the barrier from within H. As

7.3. INTEGRATION OF CBF IN MPC 111

we already found B(x(k + 1) to be bounded, this contradicts the assumption and the assertion
follows.

Task 7.12 (Adaptive cruise control)
Given the example from the previous Task 7.9 show the safety implications of the CBF.

Solution to Task 7.12: We can solve

1
x1 + v − x2 − 1

2 u
− 1

x1
≤ γx1.

for u to obtain

u ≤
2[γx3

1 + γx2
1(v − x2)− (x2 − v)]
1 + γx2

1

From this expression, we observe the following two extreme cases:

If x1 is very small (the follower is dangerously close), the numerator γx3
1 + · · · will

be dominated by the term −(x2 − v) since x3
1 and x2

1 terms become negligible. Thus,
the control approximately reduces to u ≲ −2(x2 − v), which is negative if x2 > v. In
other words, if the follower is too close and moving faster than the leader, the condition
essentially requires a negative acceleration (braking) proportional to the closing speed.
This ensures the follower slows down.

If x1 is large (the follower is far behind), the terms with x1 will dominate. Hence, u can
be positive and large without violating the inequality. In fact, as x1 → ∞, the bound
tends to u ≲ 2γ−1x1, which grows with x1. Thus, far from the leader, the follower is
free to accelerate more aggressively (since safety is not at risk).

Now we are in a position to formally integrate control barrier functions into the digital constrained
optimal control framework of Definition 5.8.

Definition 7.13 (MPC problem with Control Barrier Function).
Suppose a control affine system (7.1) and a control barrier function h : X → R to be given with
corresponding safe set H = {x ∈ X | h(x) ≥ 0}. Then we call the problem

min J(x0, u) =
N−1

∑
k=0

ℓ(x(k, x0, u), u(k)) over all u ∈ UN (7.13)

112

subject to:

x(k + 1) = f0(x(k)) + f (x(k))u(k), x(0) = x0

x(k) ∈ X, u(k) ∈ U , ∀k ∈ [0, N − 1]

L f0 h(x(k)) + L f h(x(k))u(k) ≥ 0 ∀k ∈ [0, N − 1].

a digital finite constrained optimal control problem subject to control barrier functions or
MPC/CBF open loop problem.

The final constraint in equation 7.13 stipulates the control barrier function condition at each pre-
diction step. Given the condition’s affine nature in the control input u(k), its imposition as a
linear inequality in optimization-based controllers is a viable approach.
This local condition guarantees that each predicted state is in accordance with the forward in-
variance condition of the safe set H. That is to say, provided the CBF constraint is satisfied at
each stage of the prediction horizon, all subsequent states will remain within the safety region.
Therefore, the safety constraint stays recursively feasible under prediction during optimization.
In the literature, this formulation is often referred to as

CBF-constrained MPC, or

safety-augmented MPC, or

constrained CBF-QP (when quadratic cost functions are used).

The problem structure unifies optimality and safety in a principled fashion, particularly suited to
real-time control of safety-critical systems such as autonomous vehicles, industrial manipulators,
and collaborative robots.
Control barrier functions are inherently state-local constraints, meaning they are imposed at indi-
vidual time steps based on the instantaneous system state and model. This time-step-wise nature
finds congruence with the structure of MPC, which computes a control sequence based on the
system’s evolution over a finite prediction horizon. The CBF constraint functions as a stage con-
straint, analogous to input or state bounds, and can be enforced at each node of the prediction.
Furthermore, in contrast to formulations of global reachability or safety, the CBF condition neces-
sitates only forward invariance over a single step, a property that renders it both computationally
tractable and numerically efficient for incorporation into real-time MPC schemes. This local
structure renders CBFs particularly attractive and compatible within the MPC framework.

BIBLIOGRAPHY

[1] ANDERSON, B.D.O. ; MOORE, J.B.: Optimal control: linear quadratic methods. Courier
Corporation, 2007

[2] GRÜNE, L. ; PANNEK, J.: Nonlinear Model Predictive Control: Theory and Algorithms. 2.
Springer, 2017

[3] HINRICHSEN, D. ; PRITCHARD, A.J.: Mathematical system theory I: Modeling, state space

analysis and robustness. Springer, 2010

[4] ISIDORI, A.: Nonlinear Control Systems. 3rd edition. Springer, 1995

[5] KALMAN, R.E. u. a.: Contributions to the theory of optimal control. In: Bol. soc. mat.

mexicana 5 (1960), No. 2, pp. 102–119

[6] LJUNG, L.: System Identification: Theory for the User. Pearson Education, 1998

[7] RAWLINGS, J.B. ; MAYNE, D.Q. ; DIEHL, M.: Model predictive control: theory, computa-

tion, and design. Second. Nob Hill Publishing Madison, WI, 2017

[8] RICHARDS, A. ; HOW, J.: A Decentralized Algorithm for Robust Constrained Model Pre-
dictive Control. In: Proceedings of the American Control Conference, 2004, pp. 4241–4266

[9] SKOGESTAD, S. ; POSTLETHWAITE, I.: Multivariable feedback control: analysis and

design. John Wiley & Sons, 2005

[10] SONTAG, E.D.: Mathematical Control Theory: Deterministic Finite Dimensional Systems.
Springer, 1998. – 531 S.

Jürgen Pannek
Institute for Intermodal Transport and Logistic Systems
Hermann-Blenck-Str. 42
38519 Braunschweig

During winter term 2025/26 I give the lecture to the module Control Engineering 3
(Regelungstechnik 3) at the Technical University of Braunschweig. To structure the lec-
ture and support my students in their learning process, I prepared these lecture notes.
The aim of the lecture notes is to provide participating students with knowledge of ad-
vanced control methods, which extend the range of control engineering. The students
shall be enabled to list modern control methods and recall their properties. Moreover,
students shall be able to apply these methods in simulation experiments and assess
respective results.

	Contents
	List of figures
	List of definitions and theorems
	1 Stability and Observability
	1.1 System
	1.2 Stability
	1.3 Observability

	I Linear systems
	2 Optimal stabilization
	2.1 Linear quadratic regulator — LQR
	2.2 H2 control
	2.3 H control

	3 Optimal observation
	3.1 Recursive estimation
	3.2 Transformation of dynamics
	3.3 Kalman filter

	II Nonlinear systems
	4 Digitalization
	4.1 Zero order hold
	4.2 Practical stability
	4.3 Existence of stabilizing feedback
	4.4 Intersample behavior

	5 Model predictive control
	5.1 Introduction of constraints
	5.2 MPC approach
	5.3 Recursive feasibility
	5.4 Stability conditions

	6 Distributed control
	6.1 Separation of systems
	6.2 Sequential approach
	6.3 Hierarchical approach
	6.4 Parallel approach

	7 Control Barrier Functions
	7.1 Forward invariance
	7.2 Control barrier functions
	7.3 Integration of CBF in MPC

	Bibliography

