
Automation Engineering
(Automatisierungstechnik)

Lecture Notes

Jürgen Pannek

January 8, 2026

Jürgen Pannek
Institute for Intermodal Transport and Logistic Systems
Hermann-Blenck-Str. 42
38519 Braunschweig

FOREWORD

During the winter term of 2025/26, I am teaching the Automation Engineering module at the
Technical University of Braunschweig. These lecture notes have been prepared to structure the
lecture and facilitate my students’ learning process. Furthermore, regular updates are made to
ensure the latest notes are available for the winter term.
The objective of this module is to provide students with a comprehensive foundation in the terms
and methods relevant to automation engineering. Students will be able to reproduce, describe,
and apply these concepts, and explain the modeling, classification, control, and coupling of tech-
nical processes using basic examples. They will also be able to analyze information handling
and transfer in technical processes. Furthermore, students will be capable of determining the or-
ganizational, distribution, and communication structures of automation systems for simple case
studies. Additionally, they will be able to describe the fundamental aspects of modularization,
standardization, and automation. Students will gain an understanding of digitization topics such
as the industrial internet, cloud computing, and cyber-physical systems. As a result, they will
be able to reproduce approaches to knowledge management, industrial big data, and decision
support.
To this end, we discuss

Aim of automation engineering

Basics, tasks and methods of automation

Coupling and hierarchies of systems

Information and information management

Control, modularization and standardization in automation

Digitalization for industrial internet, industrial could and CPS

II

Basics of industrial big data, knowledge management and GraphRAGs

within the lecture and support understanding and application within the tutorial and laboratory
classes. The module itself is accredited with 5 credits with an add-on of 2 credits if the require-
ments of the laboratory classes are met.
An electronic version of this script can be found at

https://www.tu-braunschweig.de/en/itl/teaching/lecture-notes

Literature for further reading

Automation engineering basics

LUNZE, J.: Automatisierungstechnik. 5. Auflage. DeGruyter, 2020. http://dx.
doi.org/10.1515/9783110465624

PLENK, V.: Grundlagen der Automatisierungstechnik kompakt. Springer, 2019. http:
//dx.doi.org/10.1007/978-3-658-24469-9

Networks

ERLEBACH, T. ; BRANDES, U.: Network analysis: Methodological foundations.
Springer, 2005. http://dx.doi.org/10.1007/b106453

NEUMANN, K. ; MORLOCK, M.: Operations Research. Hanser, 2002. http://

dx.doi.org/10.1002/zamm.19940740918

EMMONS, S. ; KOBOUROV, S. ; GALLANT, M. ; BÖRNER, K.: Analysis of Network
Clustering Algorithms and Cluster Quality Metrics at Scale. In: PLOS ONE 11 (2016),
pp. 1–18. http://dx.doi.org/10.1371/journal.pone.0159161

Digitalization, CPS and high level automation

LAI, C.: Intelligent Manufacturing. Springer, 2022. http://dx.doi.org/10.
1007/978-981-19-0167-6

LANGMANN, C. ; TURI, D.: Robotic process automation – Digitalisierung und Au-

tomatisierung von Prozessen. Springer, 2020. http://dx.doi.org/10.1007/
978-3-658-34680-5

STJEPANDIC, J. ; SOMMER, M. ; DENKENA, B.: DigiTwin: An approach for pro-

duction process optimization in a built environment. Springer, 2022. http://dx.
doi.org/10.1007/978-3-030-77539-1

https://www.tu-braunschweig.de/en/itl/teaching/lecture-notes
http://dx.doi.org/10.1515/9783110465624
http://dx.doi.org/10.1515/9783110465624
http://dx.doi.org/10.1007/978-3-658-24469-9
http://dx.doi.org/10.1007/978-3-658-24469-9
http://dx.doi.org/10.1007/b106453
http://dx.doi.org/10.1002/zamm.19940740918
http://dx.doi.org/10.1002/zamm.19940740918
http://dx.doi.org/10.1371/journal.pone.0159161
http://dx.doi.org/10.1007/978-981-19-0167-6
http://dx.doi.org/10.1007/978-981-19-0167-6
http://dx.doi.org/10.1007/978-3-658-34680-5
http://dx.doi.org/10.1007/978-3-658-34680-5
http://dx.doi.org/10.1007/978-3-030-77539-1
http://dx.doi.org/10.1007/978-3-030-77539-1

Contents

Contents iv

List of tables vi

List of figures ix

List of definitions and theorems xiii

1 Intension, concept and aims 1
1.1 Intension . 2

1.2 Concept . 6

1.3 Aims . 15

I Planning and specification 21

2 System planning 23
2.1 Interested parties, perspectives and requirements 24

2.2 Concepts of modeling . 27

2.3 Description methods . 31

2.4 Petri Networks . 33

2.4.1 Reachability and coverability . 40

2.4.2 Liveness . 43

2.4.3 Safeness . 46

3 Separation 49
3.1 Modularization . 50

3.2 Standardization . 58

3.3 Lean planning . 64

4 Information and communication 69
4.1 Information processing . 71

IV CONTENTS

4.2 Transmission networks and communication structures 76
4.3 Open system interconnection . 79
4.4 Network access . 83

5 Control 89
5.1 Feedforward and feedback control . 92

5.1.1 PID control . 94
5.1.2 Stability . 96

5.2 Prefilter and precontrol . 98

II Integration, optimization and leading 103

6 Networking 105
6.1 Decoupling . 107

6.1.1 Decoupling of states and outputs . 109
6.1.2 Decoupling of time . 110
6.1.3 Decoupling of control . 111

6.2 Digital twin . 115
6.3 Cyber physical systems . 122
6.4 Industrial cloud platform . 127
6.5 Industrial internet . 129

7 Optimization and leading 131
7.1 Industrial big data . 132

7.1.1 Retrieval-Augmented Generation . 133
7.1.2 Data processing . 134
7.1.3 Data query . 135

7.2 Knowledge Graphs and Knowledge Management 138
7.2.1 Graph Retrieval-Augmented Generation 139
7.2.2 Semantics and Ontology . 141
7.2.3 Reasoning . 143
7.2.4 Graph Management . 145

Appendices 147

A GraphRAG example 149

Bibliography 158

List of Tables

1.1 Decomposition and measurement of key target capabilities 5

2.1 Relevant perspectives and features in automation 27

2.2 List of description methods . 31

2.3 List of Petri-Net symbols . 34

3.1 Advantages of standardization for users and manufacturers 63

3.2 Disadvantages of standardization for users and manufacturers 63

4.1 Steps of signal processing . 73

4.2 Properties of communication topologies . 77

4.3 Properties of communication media . 78

4.4 Layers in the OSI reference - Please Do Not Throw Salami Pizza Away 82

4.5 Deterministic network access methods . 84

4.6 Probabilistic network access methods . 85

5.1 Advantages and disadvantages of feed forward and feedback 94

6.1 Advantages and disadvantages of output decoupling 110

6.2 Advantages and disadvantages of time decoupling 111

6.3 Properties of P and V canonical structure . 112

6.4 Advantages and disadvantages of control decoupling 115

6.5 Advantages and disadvantages of SysML based digital representations 122

6.6 Advantages and disadvantages of cyber physical systems 126

6.7 Advantages and disadvantages of industrial cloud 129

6.8 Advantages and disadvantages of industrial internet 130

7.1 Advantages and disadvantages of big data . 138

7.2 Advantages and disadvantages of graph RAGs 146

A.1 GraphRAG example – vehicles . 149

A.2 GraphRAG example – features . 149

A.3 GraphRAG example – sensors . 150

VI LIST OF TABLES

A.4 GraphRAG example – actuators . 150
A.5 GraphRAG example – Taxonomy . 151
A.6 GraphRAG example – Vehicle features . 151
A.7 GraphRAG example – Feature requiring sensor 151
A.8 GraphRAG example – Feature requiring actuator 152

List of Figures

1.1 Integrated implementation path of automation 3

1.2 Derivation of strategies and goals from vision 4

1.3 Sketch of an agentic AI cyber-physical system — generated with chatgpt.com . . 5

1.4 Sketch of a jobshop — generated with chatgpt.com 7

1.5 Sketch of a system according to DIN IEC 60050-351 (2014) 8

1.6 Sketch of system and process according to DIN IEC 60050-351 (2014) 8

1.7 Sketch of system, process and signal according to DIN IEC 60050-351 (2014) . . 9

1.8 System theoretic depiction of DIN IEC 60050-351 (2014) 9

1.9 Terms of a system and a process . 10

1.10 Structure and process of automated systems . 11

1.11 Dimensions of model characteristics . 13

1.12 Simple feed forward . 14

1.13 Simple feedback . 14

1.14 ACC and melting pot illustrations — generated with chatgpt.com 16

2.1 Integrated implementation path of automation 24

2.2 Interested parties . 26

2.3 Modeling as cognition method . 28

2.4 Robot arm in real and model area . 28

2.5 Planning approaches in engineering . 29

2.6 Sketch of a robot arm . 33

2.7 Simple Petri-Net . 34

2.8 Simple Petri-Net with markings and multiplicities 37

2.9 Petri-Net of gearbox and motorbox assembly 42

2.10 Example of a dead Petri-Net . 44

2.11 Example of a quasi-live Petri-Net . 44

2.12 Example of a live Petri-Net . 45

2.13 Example of a live and safe Petri-Net . 47

3.1 Integrated implementation path of automation 50

VIII LIST OF FIGURES

3.2 Example of the Tram Network Plan for Braunschweig 51

3.3 Cluster of a network . 54

3.4 Structure of the standardization process . 59

3.5 Multi-layer Cluster map using standardization 61

3.6 „DOWNTIME“ — 8 types of waste, generated with chatgpt.com 65

3.7 Innovation and stage of development from [30] 66

4.1 Information in the integrated implementation path of automation 70

4.2 Exemplary topology of in-vehicle network topology in 2016 [32] 72

4.3 Examples of data streams for a production system 73

4.4 Illustration of sensing, transducing, converting and coding, generated with chat-
gpt.com . 74

4.5 Standard sensor configuration . 75

4.6 Integrated sensor . 75

4.7 Intelligent sensor . 75

4.8 Examples of fully connected and completely disconnected networks 76

4.9 Different network topologies . 77

4.10 Structure of the standardization process . 80

4.11 Transforming network communication to bits 86

4.12 CAN bus frame [31] . 87

5.1 Information in the integrated implementation path of automation 90

5.2 Illustration of feedforward and feedback in production and automotive, generated
with chatgpt.com . 91

5.3 Simple feed forward . 92

5.4 Simple feedback . 92

5.5 Illustration of shortcomings of pure feedforward and pure feedback in driving,
generated with chatgpt.com . 94

5.6 Illustration of inverted pendulum on a cart, generated with chatgpt.com 97

5.7 Structure of a precontrol . 98

5.8 Structure of a prefilter . 99

5.9 Structure and process of automated systems . 101

6.1 Information in the integrated implementation path of automation 106

6.2 MIMO system with two inputs and two outputs 109

6.3 Canonical structures of MIMO systems with two inputs and two outputs 112

6.4 Decoupling structure of MIMO system with P canonical structure 114

6.5 Elimination of coupling . 115

LIST OF FIGURES IX

6.6 Diagram taxonomy for systems (according to SysML) 117
6.7 Comprehend the difference between digital model/shadow/twin 118
6.8 Illustration for digital representations in production, generated with chatgpt.com . 118
6.9 Working layers for digital representations . 119
6.10 Abstraction levels for digital representations, generated with chatgpt.com 120
6.11 Generic sketch of a CPS structure . 124
6.12 Possibilities for cyber physical system components 125
6.13 Structure levels of cyber physical systems . 126
6.14 Visual model of industrial cloud . 128

7.1 Information in the integrated implementation path of automation 132
7.2 Query for RAG . 133
7.3 Query for Graph RAG . 139
7.4 Knowledge graph of an automotive example . 140
7.5 Use of semantics in knowledge graph . 141
7.6 Use of ontology for tracing in knowledge graph 142
7.7 Inference in knowledge graph to identify sensors per vehicle type 144
7.8 Knowledge management and query for Graph RAG 146

List of Definitions and Theorems

Definition 1.4 System and process . 8
Definition 1.5 Time set . 11
Definition 1.6 State . 12
Definition 1.7 State space – continuous time system 12
Definition 1.10 Feed forward . 14
Definition 1.11 Feedback . 14
Definition 1.13 Key performance criterion . 16
Definition 1.14 Constraints . 17
Definition 2.3 Object . 32
Definition 2.5 Network . 33
Definition 2.7 Incidence matrix . 35
Definition 2.10 Configuration . 36
Definition 2.12 Petri-Net . 37
Definition 2.13 Flow relation . 38
Definition 2.14 Preset and postset . 38
Definition 2.16 Enabling and firing . 39
Definition 2.18 Path and circuit . 39
Definition 2.19 Petri-Net incidence matrix . 40
Definition 2.20 Cost function for networks . 40
Definition 2.22 Reachability set . 42
Theorem 2.24 Coverability . 43
Theorem 2.25 Reachability . 43
Definition 2.26 Liveness . 44
Theorem 2.27 Liveness conflicts . 45
Definition 2.29 Safeness / 1-boundedness . 46
Theorem 2.30 Sufficient conditions for a safeness . 46
Theorem 2.31 Necessary conditions for safeness . 47
Definition 3.1 Clustering/Modularization . 52
Definition 3.2 Un-/directed networks . 52
Definition 3.3 Modularity measure . 52

XII LIST OF DEFINITIONS AND THEOREMS

Definition 3.4 Modularity measure for directed networks 53

Definition 3.6 Conductance of undirected network . 54

Definition 3.7 Conductance of directed network . 55

Definition 3.9 Coverage . 56

Definition 3.14 Standardization . 60

Definition 3.17 Requirement . 61

Definition 3.20 Waste . 64

Definition 4.1 Signal processing . 72

Definition 4.5 Network medium . 77

Definition 4.7 Layer . 80

Definition 4.8 OSI network . 81

Definition 4.10 Network access . 83

Definition 4.11 Deterministic network access . 84

Definition 4.12 Probabilistic network access . 84

Definition 5.1 Reference . 92

Definition 5.4 PID control . 95

Definition 5.6 Operating point . 95

Definition 5.8 Stability and Controllability . 96

Theorem 5.15 Equivalency precontrol and prefilter 100

Definition 6.1 MIMO system . 108

Definition 6.2 P canonical structure . 111

Definition 6.3 V canonical structure . 112

Theorem 6.4 Equivalence P and V canonical structure 113

Definition 6.5 Decoupling control . 113

Theorem 6.6 Decoupling condition . 114

Definition 6.7 Data element . 116

Definition 6.8 Digital representation . 116

Definition 6.9 Systems modeling language (SysML) 116

Definition 6.10 Digital model/shadow/twin . 117

Definition 6.14 Cyber physical system . 122

Definition 6.15 Cost function . 123

Definition 6.16 Cost functional . 123

Definition 6.18 Optimal control problem . 123

Definition 6.19 Interface . 127

Definition 6.20 Service . 127

Definition 6.21 Industrial cloud platform . 127

Definition 6.25 Industrial internet . 130

LIST OF DEFINITIONS AND THEOREMS XIII

Definition 7.2 Traditional data processing methods 134
Definition 7.3 Big data . 134
Definition 7.4 Generic big data set . 136
Definition 7.5 Statistics set . 136
Definition 7.6 Set of admissible models . 136
Definition 7.7 Descriptive analytics . 136
Definition 7.8 Diagnostic analytics . 137
Definition 7.10 Predictive analytics . 137
Definition 7.11 Prescriptive analytics . 137
Definition 7.14 Knowledge graph . 140
Definition 7.16 Semantics . 141
Definition 7.17 Ontology . 141
Definition 7.19 Graph Query . 142
Definition 7.21 Graph-Based Inference . 143
Definition 7.22 Knowledge Graph Evolution . 145
Definition 7.23 Knowledge Management . 145

CHAPTER 1

INTENSION, CONCEPT AND AIMS

Generated with deepai.org

The discipline of automation engineering pertains to the domain of monitoring and control of
systems or processes. Conventionally, the latter pertains to physical activities such as mechanical
processes involving machines and robots or process technology including bio- and chemical sys-

2

tems. In the context of contemporary automation, the automation of software processes assumes
significant importance. Indeed, the physical and cyber worlds have become increasingly inter-
twined. The development of ecosystems driven by AI methods for intelligent outcomes is merely
the latest of these aspects. Such approaches have been documented in both literature and practice
since the 1970s and were designated as expert systems.

1.1. Intension

As previously stated, the discipline of automation engineering is concerned with the monitoring
and control of processes. Conversely, the objective of the latter is to enhance or supplant a specific
task. It is a common criticism of automation that it merely substitutes labour, yet this is not an
entirely accurate assessment. Whilst the improvement or substitution of tasks has been shown
to reduce the required workforce for the task itself, new tasks arise in areas such as integration,
control and maintenance.
In history, automation engineering has gone through different stages:

Approximately 800 B.C., the ancient Greek word automaton was first mentioned dealing
with devices like automatically driving tripods or automated doors of temples. While these
were implemented as feed forward, the first known feedback device is the water clock of
Ctesibius (285 –222 B.C.). His invention remained the most accurate time measurement
device until Huygens (1629 – 1695) invented the pendulum clock. Moreover, the first steam
engine was developed by the Hero of Alexandria (10 – 70). Other basic examples can be
found, e.g., in the Middle East, China, and Mayan cultures.

The period we call the First Industrial Revolution (1760 – 1840) started with the re-invention
of the steam engine (respectively its governor) by Watt (1736 – 1819) with improvements
by Siemens (1823 – 1883) and the programmable loom by Jacquard (1752 – 1834). The fi-
nal step in this period was the development of a formal description for controlling a process
by Maxwell (1831 – 1879). This period is also called the mechanical revolution.

Being able to design machines, the Second Industrial Revolution (1870 – 1915) was driven
by the development of electricity and electric devices. Here, the focus moved from single
machines to efficient manufacturing methods such as production lines and the complete
work split called Taylorism. The period is also called the electrical revolution.

The Third Industrial Revolution started around 1950 and focused on complex processes and
digitalization. Considering automation, the programmable logic controller (PLC) was the
major step in implementing advanced control methods industrially. This technical invention
was backed up by theoretical innovations from Kolmogorov (1903 – 1987) on complexity,

1.1. INTENSION 3

Kalman (1930 – 2016) on observers, and Bellman (1920 – 1984) on optimization. Addi-
tionally, the concept of a robot was introduced. As computers characterize it, this phase is
also called the digital revolution.

Lately, the Fourth Industrial Revolution is postulated, which utilizes interconnected and
self-functioning systems.

Remark 1.1
Note that the above interpretation is focused on automation. Other classifications are used for

different topics, such as transport, capitalism or social development.

Nowadays, automation systems are components of enterprise resource planning (ERP) tools, still
combining information for monitoring and control. Figure 1.1 shows a current default path of
automation. It includes the steps taken in the Second Industrial Revolution (standardization and

Planning System planning Lean planning

Normal Modularization Standardization Automation

Integration Industrial cloud Industrial internet CPS

Optimization Industrial big data Knowledge management

Leading AI Ecosystem

Capacity planning
Process optimization

Waste elimination

Path planning

Standard interface Digital drive

Interfacing Unit integration

Fusion Modeling

Interconnection System integration

Emergence Decision support

Chain integration

Figure 1.1.: Integrated implementation path of automation

modularization) and the Third Industrial Revolution (automation and lean). We like to point out
that the layers integration, optimization, and leading also existed and were managed before the
Forth Industrial Revolution. Yet now, the quantification of the five management tasks

planning

organizing

staffing

leading

controlling

may be done much more accurately.

4

The fundamental question that must be addressed is the rationale behind the necessity of automa-
tion. The U.S. National Institute of Standards and Technology asserts that companies can adopt
two distinct strategies in order to compete for market shares: the so-called cost leadership strat-
egy and the differentiation strategy. These strategies are derived from the company vision and
address the market segment. Consequently, alternative strategies have been developed to address
the remaining enterprise components.
As demonstrated in Figure 1.2, the strategies can be categorised into four overarching goals:
agility, quality, productivity and sustainability.

Vision

Differentiation Cost leadership Other

Agility Quality Sustainability Productivity

Vision

Strategy

Goals

Figure 1.2.: Derivation of strategies and goals from vision

Remark 1.2
It is important to note that strategies vary significantly on a global scale. The availability of skills

in different regions of the world is a fundamental driver of these trends.

In the United States, a significant number of prominent information technology companies

are headquartered, and the National Manufacturing Innovation Network is engaged in the

development of strategies that leverage artificial intelligence and substantial data sets.

The Japanese Industrial Value Chain employs a CPS-based approach, leveraging its exten-

sive history and expertise in robotics.

The Chinese 2025 program leverages its substantial workforce to achieve cost leadership

and promote continuous quality enhancement.

The Chinese program may be found to be closely associated with the German Industrie 4.0

initiative, which emphasizes the utilization of advanced manufacturing techniques and the

cultivation of a skilled workforce.

In contrast to the Japanese and US programs, which initiate the process from AI to production,

the Chinese and German programs commence at the level of production and proceed to AI.

1.1. INTENSION 5

Figure 1.3.: Sketch of an agentic AI cyber-physical system — generated with chatgpt.com

In order to be successful, we need to balance these four goals. To this end, we have to define each
goal’s measures, which allows us to define SMART projects (specific, measurable, ambitious,
realistic, terminated) and avoid waste or failure in architecture and implementation. The following
Table 1.1 gives some examples of possible performance criteria.

Table 1.1.: Decomposition and measurement of key target capabilities

Strategy Goals Capability decomposition Performance measurements

Cost leadership Productivity ◦ Production capacity ◦ Output per unit

◦ Overall equipment effec-
tiveness

◦ Availability · performance ·
quality

◦ Mat./energy efficiency ◦ Usage per unit output

Continued on next page

6

Table 1.1 – continued from previous page

Strategy Goals Capability decomposition Performance measurements

◦ Labor efficiency ◦ Labor hours per unit

Differentiation Agility ◦ Response speed ◦ Response time, transaction
cycle

◦ On time delivery ◦ On time delivery rate

◦ Fault recovery ◦ Downtime rate during oper-
ation

Quality ◦ Product quality ◦ Return/rejection rate

◦ Innovation ◦ Innovation cycle time

◦ Service ◦ Customer evaluation

◦ Diversity ◦ Product family and person-
alization options

Sustainability ◦ Product ◦ Recyclability, energy effi-
ciency, lifetime, reusability,
manufacturability

◦ Process ◦ Energy use, CO2 footprint

◦ Logistics ◦ Transport energy

Remark 1.3
For other KPIs, we refer to ISO 22400 [14], which is typically applied in the production context.

Having clarified the intention of automation, we next connect these to actual tasks.

1.2. Concept

The discipline of automation engineering is concerned with the design and implementation of
systems and processes. It is important to note that a process can be defined as the manner in
which a task is executed in its entirety.

1.2. CONCEPT 7

Figure 1.4.: Sketch of a jobshop — generated with chatgpt.com

In contrast, a system can be understood as the network of interconnected components that col-
lectively facilitate the execution of a specific task. In many cases, these two terms can be used
interchangeably.
In the literature [3], we see the following description for a system (translated from German):

A system is a set of interrelated elements that are viewed as a whole in a partic-
ular context and considered as distinct from their environment.

DIN IEC 60050-351 (2014)

Building on this description, a process is given as follows (translated from German):

A process is the entirety of relations and interacting elements in a system through
which matter, energy or information is transformed, transported or stored.

DIN IEC 60050-351 (2014)

Within a process, we narrow down on elements within a system, which are connected via signals
(translated from German):

8

Environment

Boundary

System

Figure 1.5.: Sketch of a system according to DIN IEC 60050-351 (2014)

Environment

Element

Relation

Boundary

System

Figure 1.6.: Sketch of system and process according to DIN IEC 60050-351 (2014)

A signal is a physical quantity that conveys information about one or more vari-
able quantities using one or more of its parameters.

DIN IEC 60050-351 (2014)

More formally, we define the following:

Definition 1.4 (System and process).
Consider two sets U and Y . Then a map Σ : U → Y is called a system, and the application of
this map to an input u ∈ U to obtain an output y = Σ(u) ∈ Y is called a process.

Note that we extend the notion of a system by the interdependence of systems with their environ-
ments by so called inputs and outputs.

1.2. CONCEPT 9

Environment

Element

Relation

Boundary

System

Figure 1.7.: Sketch of system, process and signal according to DIN IEC 60050-351 (2014)

This general form enables the treatment of a system as a black box, i.e. a system in which input
and output are not fully understood. It should be noted that the present study does not specify
whether the subject under discussion is an electric circuit, a robot, a production system or an
entire circular supply chain. Concurrently, no statements are made regarding temporal parame-
ters or sequences; consequently, the possibility of a delay between the insertion and extraction of
units remains unresolved. It is evident that both an instantaneous analogue reaction to an electric
current and a manufacturing delay resulting from sequential utilization of the machine are encom-
passed within the scope of consideration. Furthermore, the nature of the processes involving the
entry and exit of materials remains ambiguous. This could potentially signify the movement of
steel into the facility and automobiles out of it, akin to the process in automotive manufacturing.
Alternatively, it may denote the flow of energy and information into the facility and its subsequent
output, analogous to the dynamics observed in information systems.

Environment

Element

Relation

Boundary

System

Input

Output

Figure 1.8.: System theoretic depiction of DIN IEC 60050-351 (2014)

Abstracting from Figure 1.8, a visual representation of both system and process is given in Fig-

10

ure 1.9.

System Σ

u1
u2

...
unu

y1
y2

...
yny

Process

Figure 1.9.: Terms of a system and a process

More formally, the sets U and Y are called input and output sets. An element from the input set
u ∈ U is called an input, which acts from the environment to the system and is not dependent on
the system itself or its properties. We distinguish between inputs, used to specifically manipulate
(or control) the system, and inputs, not manipulated on purpose. We call the first ones control or

manipulation inputs, and we refer to the second ones as disturbance inputs. An element from the
output set y ∈ Y is called an output. In contrast to an input, the system generates the output and
influences the environment.

Link: For further details on how to design inputs/controls such that system properties re-
garding outputs can be generated, we refer to the lectures Control Engineering 1 & 2.

In order to comprehend and utilize a system or process, it is necessary to possess a model of
it. It is important to note that models are only able to represent reality to a certain extent on a
one-to-one basis. Should a model be employed, it is to be noted that discrepancies may emerge
between the model’s prediction and the actual outcome, particularly in the context of extended
time horizons. The rationale underlying this phenomenon can be articulated as follows: In the
field of modeling, the emphasis is placed on the aspects that are deemed to be of interest, with the
objective being to provide a concise representation of the subject matter. Hence, the problem is
split into two parts,

the model, which describes what we are interested in,

the environment, which contains everything else.

It is not possible to provide any meaningful insight into the environment, as it has not been
modelled. Consequently, any interactions between the model and the environment can only be
interpreted as disturbances.

1.2. CONCEPT 11

SystemActuators Sensors

Environment

Monitoring & Control

OperatorObjectives

DisturbanceDisturbance

Disturbance

Figure 1.10.: Structure and process of automated systems

To utilize the term system and get to the standard concept of automated systems sketched in
Figure 1.10, we first need to clarify basic terms.
The first of these is the notion of time.

Definition 1.5 (Time set).
A time set T is a subgroup of (R,+).

This definition is quite abstract, yet very generic. It allows us to use the concept of continuous
time, discrete time and event time.

Continuous time can be applied to systems operating in a continuous flow, e.g. pipelines,
melting pots or biochemical reactors.

Sensors and actors are typically not modeled in continuous, but in discrete time. As such,
they follow a fixed routine as to when they send data regarding measurements or apply
forces or rotate into certain positions.

Last, event time is used to reduce the number of measurements, e.g. data is sent whenever
a level rises above or falls below a certain threshold as in chemical reactors or heating
systems.

Next, we introduce the so called state of a system.

12

Definition 1.6 (State).
Consider a system Σ : U → Y . If the output y(t) uniquely depends on the history of inputs u(τ)
for t0 ≤ τ ≤ t with t0, τ, t ∈ T and some x(t0), then the variable x(t) is called state of the
system and the corresponding set X is called state set.

Note that a state is not necessarily an output. It refers to an internal element, that can be affected
by inputs and other states, and may influence outputs. Examples range from velocity of a vehicle
as a state, which is influenced by the input acceleration and directly connected to the output
position of the vehicle. However, it may also be a state of a finite automata, e.g. the payment
status of ticket machine.
In continuous time, that is T = R, we obtain the standard description of a state space system:

Definition 1.7 (State space – continuous time system).
Consider a system Σ : U → Y in continuous time T = R satisfying the property from Defini-
tion 1.6. If X is a vector space, then we call it state space and refer to

ẋ(t) = f (x(t), u(t), t), x(t0) = x0 (1.1a)

y(t) = h(x(t), u(t), t). (1.1b)

as continuous time system. Moreover, u, y and x are called input, output and state of the system.

Generally speaking, the (mathematical) description of models varies depending on the considered
time, space and amplitude properties. Figure 1.11 provides a rough overview on these character-
istics.

Remark 1.8
Regarding time, static models are characterized by the fact that inputs, outputs, and measure-

ments of the system are available. In contrast to that, continuous time models exhibit data streams

being received continuously. Discrete-time models differ from that by the availability of data,

which is received at certain, not necessarily equidistant time instances. Last, event-triggered

models require issues to trigger receiving data.

Regarding space, models may vary from a simple connection to complex systems.

Regarding amplitude, models may differ regarding continuous spaces e.g., mass, and discrete

spaces such as gear shifts.

As described before, the input to a system splits into two parts U1,U2 ⊂ U with U1 ∪ U2 = U
and U1 ∩ U2 = ∅, that is

1.2. CONCEPT 13

Time

Space

static continuous time discrete time event triggered

0 D

1 D

2 D

n D

Amplitude

continuous

discrete

Figure 1.11.: Dimensions of model characteristics

1. the externally adjustable part u ∈ U1 called control or actuator, and

2. the not influencable part u ∈ U2 termed disturbance.

Since sensors and actuators are also modeled, unmodeled parts may enter the overall scheme via
these components. Similarly, any monitoring and control device based on a computer is also
subject to idealization, e.g., via using floating point approximations of numbers. Hence, another
source of disturbances exists via this component.

Remark 1.9
Formally, each block within Figure 1.10 is a system in the sense of Definition 1.4.

The last two components, which we did not discuss so far, are monitoring and control and op-

erator. The component monitoring and control is a system representing the inverse of the chain
actuator – system – sensor, which is modified by the objectives and interacts with operators. Sim-
ilar to the system itself, the monitoring and control system may exhibit an internal state. This
block is typically implemented using computers or other devices such as PLCs. In the literature,
the two following descriptions are found most regularly:

A control is a process in a system in which one or more variables as input vari-
ables influence other variables as output variables due to the laws peculiar to the
system.

DIN IEC 60050-351 (2014)

14

A control is a process in which a variable, which is to be controlled, is con-
tinuously recorded, compared with another variable, the reference variable, and
influenced in the sense of an adjustment to the reference variable.

DIN IEC 60050-351 (2014)

The difference between these two descriptions is given by their purpose: While both aim to
influence the output, the first feeds the output from outside the system, but the second uses an
external reference to feed the output back to that reference. For this reason, the first is called feed
forward, and the second is feedback. More formally:

Definition 1.10 (Feed forward).
If an input is defined by a function u : T → U , then we call it to feed forward.

Definition 1.11 (Feedback).
If an input is defined by a function u : X → U , then we call it state feedback. It is called output

feedback if it is defined as a function u : Y → U .

Control
t Systemu y

Figure 1.12.: Simple feed forward

Control
w +

Systemu y

−

Figure 1.13.: Simple feedback

Control structures may be much more complex than the illustrated feed forward and feedback
versions. Still, these are the only two main structures. A feed forward is typically used for
planning, e.g. route generation using a navigational system in a car. Such a plan is idealistic,
and on operational level needs to be adjusted to reality by feeding back sensor data to update the
taken actions, i.e. a feedback structure implemented by a driver (or an AD system) in a car.

1.3. AIMS 15

Last, the operator represents the human in the loop. The operator interacts with the monitoring
and control system via a human-machine interface (HMI), which provides two key functions for
the human: information and manipulation. In the literature [16], we find the following descrip-
tion:

A user interface is all an interactive system’s components (software or hardware)
that provide information and controls for the user to accomplish specific tasks
with the interactive system.

ISO 9241 (2019)

Typical examples range from touchscreen interfaces of machines or in cars to light bulbs at pro-
duction machines.
After introducing all relevant components within the automation structure of Figure 1.10, we can
now look into details regarding the aims of automation.

1.3. Aims

In particular, we need to understand what is meant by automation. In the literature [2], we see the
following definition (translated from German):

Automation is equipping a device so that it works as intended, in whole or in
part, without human intervention.

DIN 19233 (1998)

Within this definition, we observe several components:

1. Intend: Each automation requires one or more criteria to assess whether or not it works as
intended; see Table 1.1 for the derivation of such criteria.

2. Extend: Each automation requires a system boundary, that is, which parts of a system
or process are automated and which are not. Moreover, it requires explicitly modeling
the interfaces between automated and non-automated parts. These can be physical, like
handovers from machines to storage or workers, or information to and from an operator, cf.
Figure 1.10.

16

3. Attend: Each automation requires components to execute the monitoring and control tasks,
that is, sensors, actuators, communication, and logic, cf. Figure 1.10 and Definitions 1.10,
1.11.

Remark 1.12
Note that extend is not restricted to the machine level but is more commonly found on the integra-

tion, optimization, and leading level in Figure 1.1.

Regarding intent, that is performance measurements as outlined in Table 1.1 or in ISO 22400 [14],
we are going to use the term a key performance criterion throughout the lecture:

Definition 1.13 (Key performance criterion).
A key performance criterion is a function J, which measures defined information retrieved from
the system against a standard.

The definition is abstract in nature and does not reflect the functionality of the system. In the
event of an adaptive cruise control system (ACC), the vehicle’s measurements are considered,
including its speed. These are then compared to a standard speed of 50 km/h, which has been
defined a priori. In the context of a heating system, a predefined temperature, for example for
the melting of copper, can be established and subsequently compared to the temperature of the
melting pot. The result is an offset.

Figure 1.14.: ACC and melting pot illustrations — generated with chatgpt.com

In instances where multiple criteria are employed, they are consolidated into a single outcome.
It is important to note the absence of any specification concerning the calculation of the output,

1.3. AIMS 17

whether through the utilization of the Euclidean distance, the 1-norm, or the infinity-norm, as
well as the manner in which the output should be processed.
Considering extension, we utilize the concept of constraints. The idea of constraints is to retrieve
a set of conditions that must be upheld such that the system must be enabled to continue, i.e., the
system must not come into a stage in which it terminates itself. These circumstances are typically
modeled via sets:

Definition 1.14 (Constraints).
We call a subset X ⊂ X state constraint set and U ⊂ U control constraint set.

Examples of constraints in the case of the adaptive cruise control (ACC) include the vehicle’s
capacity to accelerate or decelerate. In the case of a car, constraints may also be road limitations.
In the context of the melting pot, the extent to which the cooper can be heated and the rate at
which it can be heated are both subject to limits.

Here, we like to note that each block within Figure 1.10 needs to provide features to ensure
the safety and security of the overall system for both accidental and malicious mistakes. More
precisely:

Safety is defined as the freedom from unacceptable risk of physical injury.

IEC 61508 (2010)

As such, safety does not mean that a system or process must be monitored and controlled so that
no risks exist. Instead, the standard [10] defines that any safety-related system must either work
correctly or fail in a predictable (safe) way. In other words, actions need to be taken such that
the probability of a safety-related system satisfactorily performing the required safety functions
under all the stated conditions within a stated period of time can be guaranteed.
Using the adaptive cruise control (ACC) system again, the latter does not preventing hazardous
situations from occurring, the primary safety objective of the system is to design it such that any
potential failure leads to a controlled and predictable outcome. In the event of a failure in the
radar sensor or control logic, the system is required to ensure that it does not abruptly accelerate
or decelerate. Instead, it is expected to undergo a graceful deactivation process, with the objective
of transferring control back to the driver, ideally accompanied by a warning signal. It can thus be
concluded that the system does not entirely eliminate all risk; however, it does guarantee that any
residual risk is recognized, contained, and can be managed effectively.
Considering the melting pot example, the pot itself cannot prevent high temperatures or chemical
reactions from occurring — risks are inherent in its operation — but it is engineered to contain

18

and direct those forces safely. In the event of a partial failure (e.g. a malfunctioning tempera-
ture sensor or a cooling issue), the design ensures that heat dissipation and containment prevent
catastrophic outcomes. In a similar vein, a safety-related automation system is not expected to
guarantee absolute absence of risk; rather, it is expected to ensure predictable, safe degradation
of function when limits are exceeded.

Security, on the other hand, deals with information security.

Information security risks relate to the loss of confidentiality, integrity and avail-
ability of data within the scope of the information safety management system.

ISO/IEC 27032 (2022)

In a similar vein, it should be noted that security is not synonymous with the absence of threats.
Conversely, the ISO/ICE 27032 [18] standard stipulates that an information security management
system must ensure that risks to the confidentiality, integrity, and availability of information are
identified, assessed, and treated in a systematic and proportionate manner. Consequently, security
is not the absence of vulnerabilities; rather, it is the presence of controlled defences, detection
mechanisms, and recovery measures that ensure risk remains within acceptable limits.
Using again the adaptive cruise control (ACC) system extended by vehicle-to-cloud services,
the latter does not offer an absolute guarantee of protection against cyberattacks. Instead, the
ISO/ICE 27032 [18] standard places a greater emphasis on the implementation of security con-
trols, including encrypted communication, authentication protocols, and anomaly detection. These
measures are designed to ensure that any attempt at a breach is detected, isolated, and mitigated.
In the event of a compromise to a sensor data channel by an attacker, the system should be de-
signed to revert to a degraded but secure state. This can be achieved by disabling automated
distance control and notifying the driver, rather than acting on potentially falsified data.
With regard to the melting pot, the process cannot be made immune to heat loss, contamination,
or intrusion. However, safeguarding is achieved through layered barriers, such as temperature
monitoring, controlled access, and containment. A breach of one protective layer should not lead
directly to a meltdown; instead, it triggers alarms and fallback measures. Conversely, the field
of information security emphasizes defense in depth and controlled response, with the objec-
tive of ensuring that incidents are predictable, contained, and recoverable, as opposed to being
completely preventable.

The overarching objectives of the fourth industrial revolution centre on the realisation of smart
production methods. This refers to the integration of information and communication technolo-

1.3. AIMS 19

gies in technical systems, particularly manufacturing systems, through the development of Cyber-
Physical Systems (CPS). The overarching objective of Industry 4.0 is to facilitate the development
of digitally advanced, customised, and eco-friendly manufacturing facilities. This transformation
is designed to facilitate flexible production and interconnect all stages of the manufacturing pro-
cess. In this particular context, related terms include the industrial internet of things (IIoT) and
edge-cloud-control (ECC). These technological innovations have the potential to impact entire
processes, thereby posing challenges in the areas of organisation, strategy and engineering. As
Giangi et al. [8] demonstrate, these principles are essential for the successful integration of novel
and disruptive technologies. The lecture discusses leadership aspects that are necessary for en-
suring efficient operation of new or modified systems for the customer. To master these aspects,
certain skills are required to an automation engineer:

Leadership: In projects, an automation engineer has to make technical decisions to make
sure that systems work well together in the mechanical, electrical and digital areas so that
the client’s needs are met.

Innovation: To improve automated processes and increase productivity, it is important to
stay connected to engineering networks, to watch the development of important technolo-
gies, and to look for more information to improve the quality of plans.

Programming: Since a human may not be there to control the systems manually, coding
of software solutions or programming physical machines like robotic assembly lines is a
necessary skill of automation engineers.

Mechanical knowledge: Understanding mechanical systems enables automation engineers
to align logic with physical constraints such as kinematics, tolerances, and wear.

Communication: Automation engineers must understand and apply communication models
to ensure reliable, secure, and interoperable data exchange across all network layers.

Flexibility: Rapidly changing technologies, standards, and project conditions require adapt-
ability to new tools, domains, and problem-solving approaches.

In the following chapters, we will introduce and discuss the fundamentals of the standard automa-
tion structure from Figure 1.10 along the automation path illustrated in Figure 1.1.

Part I.

Planning and specification

CHAPTER 2

SYSTEM PLANNING

Generated with chatgpt.com

The first rule of any technology used in a business is that automation applied to
an inefficient operation will magnify the inefficiency.

Bill Gates

24

In this chapter, we will look at the first layer of automation, the planning layer. At this initial
level, everything starts with an idea of what shall be realized regarding automation. In the past,
the typical mistake at that stage was to think of a replacement instead of renewal (or re-thinking).
Most automation cases involve digitization in terms of process information. This means gathering
information about a running process. So we’ve got operational data and flow charts, which we
need for automation. But this isn’t enough on its own. Coming back to the overall path of
automation, Figure 2.1 displays the content of the present chapter.

Planning System planning Lean planning

Normal Modularization Standardization Automation

Integration Industrial cloud Industrial internet CPS

Optimization Industrial big data Knowledge management

Leading AI Ecosystem

Capacity planning
Process optimization

Waste elimination

Path planning

Standard interface Digital drive

Interfacing Unit integration

Fusion Modeling

Interconnection System integration

Emergence Decision support

Chain integration

Figure 2.1.: Integrated implementation path of automation

Here, we will discuss the perspectives and interests placed upon planning. To do this, we combine
systems and processes into a network, which can be analyzed. The importance of these properties
depends on the peer group assessing the network. Here, we first discuss these groups. After that,
we focus on modeling concepts and respective description methods. We will use the latter to
derive digital models, which we will extend to a digital shadow and digital twin in Chapter 6.

2.1. Interested parties, perspectives and requirements

Automation follows the strategies of cost efficiency or differentiation, cf. Figure 1.2. And in fact,
any of the following ideas are not sufficient and, in some cases, have even shown catastrophic
results:

Automation is not a purpose. Automation is a means to achieve or improve on KPIs, yet it
shouldn’t be implemented blindly, e.g., because others introduce it.

2.1. INTERESTED PARTIES, PERSPECTIVES AND REQUIREMENTS 25

Automation is not an ideology. It should be carefully checked whether the system or pro-
cess at hand can be improved or if automating a system/process improves connected sys-
tems/processes. One solution here is to consider connected systems/processes.

Automation is not a whitewashing instrument. If KPIs are chosen or designed to improve a
system or process which is economically, ecologically or socially unsuitable, it will cause
degradation and magnify inefficiency at the cost of marketing. In such a case, constraints
are much more suitable than KPIs for automation.

Having discussed what is insufficient, we consider necessary input for planning next. Here, we
must distinguish between interested parties and their perspectives. In the common literature, an
interested party is most commonly referred to as a stakeholder, yet formally the norm [15] defines
the following:

An interested party can be a stakeholder, person, or organization that can affect,
can be affected by, or perceive itself to be affected by a decision or activity.

ISO 9001 (2015)

Hence, this gives us limits to what needs to be included in modeling a system or process, cf.
Definition 1.4. Examples of interested parties can include (but are not limited to):
ISO 9001 [15] states that one must consider those interested parties, which are relevant for the
system/process. For these parties, requirements need to be identified and monitored or reviewed,
which are given in [17].

A requirement is defined as an expression, in the content of a document, that
conveys objectively verifiable criteria to be fulfilled and from which no deviation
is permitted if conformance with the document is to be claimed.

ISO/IEC Directives 2 (2021)

So, the requirements give us a design space that we must guarantee. In a model, this will be
given by constraints, as explained in Definition 1.14. If the design space is empty, this means
that the requirements exclude each other. Otherwise, we have a certain amount of freedom for
our task. This is the part where we need to consider the different views of the interested parties.
This is where we can make things better, make choices or find ways to improve in terms of a KPI

26

System or
process

Supplier

Customers

Partners

Employees

UnionsInvestors

Owners

Bankers

Opposing
groups

Competitors

Regulatory
bodies

Society

Figure 2.2.: Interested parties

(Definition 1.13). Here, the norms falls short on a proper definition of what is usually termed
needs and expectations. Need is used to mean requirement, while expectation is used to mean
perspective. Here, we apply the following:

An expectation is a strong believe that something will happen or be the case.

The following Table 2.1 provides an overview on the most common expectations.

2.2. CONCEPTS OF MODELING 27

Table 2.1.: Relevant perspectives and features in automation

Expectation Feature

Performance and quality Performance, time/space sampling

Input Operational area, industrial sector, context, qualifications

Reliability (RAMS) Dependability, accessibility, maintainability, safety

Physics Composition, dimensions, interfaces, implementation, materials

Ecology EM, climate, energy, geometry, stress

Legal Norms, regulations, conventions, laws, admission

Economic Life cycle cost, initial/running cost, disposal cost, return on invest

Due to these diverse perspectives within the automation domain, the respective modelers tend to
concentrate on the needs, terminology, and objectives of their own peer group. As a result, they
often develop models that reflect discipline-specific assumptions, abstractions, and constraints,
which quite likely leads to diverging system representations, inconsistent data structures, and
limited model interoperability across the automation life cycle.

2.2. Concepts of modeling

As previously discussed, multiple factors can lead to divergence among models—ranging from
sector-specific modeling objects and domain-dependent programming languages to differences in
organizational culture and cognitive framing. To better understand these sources of variation, we
take a step back and revisit the fundamental concept of modeling itself—its underlying purpose
being to create a coherent and holistic representation of a system or process.
Modeling, as a cognitive method, comprises several interrelated components, as illustrated in
Figure 2.3. The model can exist on various levels and degrees of detail, depending on its in-
tended purpose and the physical phenomena it aims to represent. For instance, the robot arm
illustrated in Figure 2.4 can be abstracted to its main physical components—such as links, joints,
and actuators—forming a kinematic chain that describes the system’s geometry and motion con-
straints. On a deeper physical level, the same system can be modeled dynamically, capturing
forces, torques, masses, friction, and inertia to simulate its motion behavior according to Newto-
nian or Lagrangian mechanics. Even further, electromagnetic effects in the actuators or material

28

System

Signal

Sensor Actuator Tool

Cognition Mental model Expression Model

Reference Ontology

Learning

Mental area

Memory

Real area Model area

Figure 2.3.: Modeling as cognition method

elasticity under load can be incorporated to reflect energy transformations and structural defor-
mations.

l1 φ
1

l2

φ2

l3
φ

3

Figure 2.4.: Robot arm in real and model area

Such layered modeling—from abstract kinematics to detailed physical representation—enables
engineers to balance computational complexity with model fidelity, depending on whether the
focus lies on control design, structural analysis, or system-level optimization.

2.2. CONCEPTS OF MODELING 29

However, all of these layers can be described via, e.g., a set of differential equations

ẋ(t) = f (x(t), u(t), t), x(t0) = x0

y(t) = h(x(t), u(t), t),

which need to be parameterized and identified. The layer or respectively the level of detail should
depend on the purpose of the model and how it shall be used.
In contemporary engineering practice, two predominant planning paradigms can be distinguished.
The first follows the classical V-model, whereas the second adopts an agile development ap-
proach. Both paradigms incorporate modeling activities within their respective process phases
(see Fig. 2.5). Although these approaches differ fundamentally in their structure and progression,
they share comparable requirements and expectations concerning the use of models.

Requirements

Architecture

Specifications

Implementation

Unit Test

Integration Test

System Test

Verification

Validation

(a) Engineering V-model

(b) Agile planning in DevOps loop

Figure 2.5.: Planning approaches in engineering

30

Link: For further details on planning approaches, we refer to the lectures on Project man-

agement.

Here, we start of with the process requirements, that is working principles within any modeling
process. These requirements are a state-of-the-art list, which is commonly used as a convention
and not as a definition.

Convention 2.1 (Process requirements of modeling)
During the modeling process, six principles need to be met:

1. Principle of Correctness: A model needs to present the facts correctly regarding structure
and dynamics (semantics). Specific notation rules have to be considered (syntax).

2. Principle of Relevance: All relevant items have to be modeled. Non-relevant items have to
be left out, i.e. the value of the model doesn’t decline if these items are removed.

3. Principle of Cost vs. Benefit: The amount of effort to gather the data and produce the model
must be balanced against the expected benefit.

4. Principle of Clarity: The model must be understandable and usable. The required knowl-
edge for understanding the model should be as low as possible.

5. Principle of Comparability: A common approach to modeling ensures future comparability
of different models that have been created independently from each other.

6. Principle of Systematic Structure: Models produced in different views should be capable
of integration. Interfaces need to be designed to ensure interoperability.

Similarly, any concept of modeling should satisfy the following functional requirements:

Convention 2.2 (Functional requirements of modeling)
For any modeling concept, the alignment of methods, tools, and implementation is essential to
ensure consistency and applicability across development stages.

Consider, for instance, the modeling of a robotic arm in an automated production line. The cho-
sen method must support modern software development practices, analytical soundness, and the
ability to represent, compose, and simulate systems — capturing both deterministic motion con-
trol and stochastic disturbances such as sensor noise — while maintaining vertical and horizon-
tal consistency across abstraction levels. The supporting tools, such as modeling environments

2.3. DESCRIPTION METHODS 31

or simulation platforms, must offer portability, compatibility, and usability to facilitate efficient
integration with existing design and testing workflows. Finally, the implementation must prove
viable within software and hardware constraints, ensuring that models can be deployed, validated,
supported and even reverse-engineered during later system updates.
Based on the latter, we now outline different description methods to approach the goal of a digital
model.

2.3. Description methods

As outlined in the previous section, it is essential to minimize model divergence, particularly on
the information layer, to ensure a consistent and integrated system understanding. Depending on
the intended purpose and level of abstraction, a wide range of modeling methods may be em-
ployed—spanning conceptual representations, behavioral descriptions, and physical simulations.
Table 2.2 organizes these methods according to their primary area of application and degree of de-
tail. The arrangement follows a top-down logic, reflecting the typical engineering sequence when
deriving and implementing automation for a given process: starting from high-level functional
descriptions, progressing through control and logic modeling, and eventually reaching executable
and hardware-related specifications. In an ideal implementation, a structured utilization of these
methods supports traceability across levels and facilitates the alignment between conceptual de-
sign and technical realization.

Table 2.2.: List of description methods

Class Example

Abstraction oriented Verbal description, algebra, proposition logic, predicate logic

Structure oriented Sequential logic system, combinatorial logic

Implementation oriented Logic plan, function plan, contact diagram, structure diagram,
timing diagram, instruction list, gantt chart

State oriented Decision table, transition table, state diagram, state graph,
Karnaugh-Veitch diagram

Technology oriented Flow chart, switching plan, computer aided design (CAD)

Continued on next page

32

Table 2.2 – continued from previous page

Class Example

Method oriented Network diagram, Nassi-Schneidermann diagram, unified mod-
eling language (UML), structure-analysis-real-time (SA/RT) dia-
gram

Mathematical Boolean algebra, differential/difference equations, Markov chains

It should be emphasized that the described methods cannot be regarded as self-contained; they
require a top-down specification to ensure conceptual coherence and a bottom-up connection to
maintain consistency with implementation details. One of the fundamental elements common
to all categories in Table 2.2 are networks, objects, and ontologies, which serve as structural
backbones for integrating diverse modeling perspectives. Within this lecture, we focus on net-
works and objects as the primary modeling paradigms. These approaches are well aligned with
modern computer science principles such as object orientation, while simultaneously supporting
mathematical representations like discrete-event or event-triggered dynamical systems.
To illustrate, consider the example of an industrial robot integrated into an automated production
cell as illustrated in Figure 2.6. From a top-down perspective, the robot is defined as an object with
specific properties (e.g., kinematic configuration, payload, and control interfaces) and behavioral
models that describe its interaction with the production process. Bottom-up, sensor networks and
actuator connections provide concrete data that link the abstract model to the physical system.
In this way, object- and network-based modeling enable both a compact and hierarchical system
description, as well as horizontal integration across disciplines—ranging from mechanical design
to software control—thereby ensuring that the model remains consistent across all abstraction
levels and descriptions (cf. Table 2.2 and Figure 1.11).
More formally, we define the following.

Definition 2.3 (Object).
A set of objects O = A∪M consists of definable parts called attributes A, and reasoning parts
called methods M.

Reconsidering the robot in the above setting of Figure 2.6, we could define the three attributes
robot arm, conveyor and package, and a possible method could be putting a package on the
conveyor.

2.4. PETRI NETWORKS 33

l1

φ1

l2

φ2

l3 φ3

v

Figure 2.6.: Sketch of a robot arm

Remark 2.4
Note that Definition 2.3 does not require all parts or methods to be defined. This is in accordance

with our concept of a model, for which specific parts are modeled and the remainder is considered

as a disturbance.

Next, we will use the introduced objects to derive a coherent and linked system description by
applying the so-called Petri Network method, which allows us to formally represent dynamic
interactions, concurrency, and event-driven behavior within the modeled automation process.

2.4. Petri Networks

In the general context of automation, an object may range from a parameter in a program to the
program itself, the machine controlled by that program, a screw within the machine, or up to the
entire supply chain of a company and its surrounding economy. These objects may be connected,
which leads us to the definition of a network.

Definition 2.5 (Network).
Let O = A ∪M be a set of objects and E ⊂ A ×M∪M×A be a set of pairs of objects.
Then we call E the set of edges and the tuple N = (O, E) a network.

One such network, which can be used as a description method, is the so-called Petri-Net. Within
a Petri-Net, attributes are represented by circles, methods by blocks, and edges by directed arcs.
Moreover, the denomination extended in Table 2.3 is used.

34

Table 2.3.: List of Petri-Net symbols

Symbol Meaning
p1

Attribute/ place

t1

Method/ transition

Edge

p1 t1

Pre-edge

p1t1

Post-edge
p1 p2t1

Relation

p1 t1

or

p1 t1

Communication/test edge

p1 t1

or

p1 t1

Inhibition edge

In this context, a pre-edge is a requirement for a method, while a post-edge is the result of a
method. In Table 2.3, we drew both pre-edge and post-edge as a 1-1 connection, yet 1-n connec-
tions are possible as well. A simple Petri-Net is illustrated in Figure 2.7.

a1

a2 a4

a3 a5

a6m1

m2

m3

m4

Figure 2.7.: Simple Petri-Net

Petri-Nets are ideal to model parallelism, resource allocation, state-based and event-driven sys-
tems. However, as every model is an abstraction of specific system property, Petri-Nets lack of

2.4. PETRI NETWORKS 35

the ability to model properties, such as timing dependencies. This leads to a freedom in imple-
mentation but also to erroneous assumptions. To surmount such limitations, extensions such as
colored or timed Petri-Nets were proposed. Nonetheless, the complexity can easily increase to a
confusing and unclear level.

Remark 2.6
In the computer science or mathematics literature, a network is also called a graph, for which the

set of objects is typically referred to as a set of nodes. Also different connections between objects

are considered, i.e. aggregation (one object consists of . . .) or abstraction (one object is a . . .).

In the process automation literature, attributes are also called places indicating the physical

position of an object. Methods, on the other hand, are also called transitions, i.e. transportation

from start to destination or modifications from initial to the target property.

The edge structure itself must also be stored and may be used for certain computations. To cover
both aspects, the network or graph can be summarized in the so called incidence matrix.

Definition 2.7 (Incidence matrix).
For any network N = (O, E), we call

I =
[
Ijk
]

where Ijk :=


1 if ∃ edge connecting mj ∈ M and ak ∈ A

−1 if ∃ edge connecting aj ∈ A and mk ∈ M

0 else

(2.2)

incidence matrix of the network.

Given the network from Figure 2.7, we obtain the incidence matrix

I =



a1 a2 a3 a4 a5 a6 m1 m2 m3 m4

a1 0 0 0 0 0 0 −1 0 0 0
a2 0 0 0 0 0 0 0 −1 0 0
a3 0 0 0 0 0 0 0 0 −1 0
a4 0 0 0 0 0 0 0 0 0 −1
a5 0 0 0 0 0 0 0 0 0 −1
a6 0 0 0 0 0 0 0 0 0 0
m1 0 1 1 0 0 0 0 0 0 0
m2 0 0 0 1 0 0 0 0 0 0
m3 0 0 0 0 1 0 0 0 0 0
m4 0 0 0 0 0 1 0 0 0 0



36

Remark 2.8
The incidence matrix can be written in a more condensed form if we utilize the methods as

columns and attributes as rows only.

The incidence matrix provides a compact and formal representation of a network, capturing the
relationships between places (states) and transitions (events). Beyond its descriptive role, it serves
as a computational tool for analyzing system behavior. In particular for assessing risks, we can
utilize the matrix by applying it repeatedly to a given initial condition, i.e. a vector describing the
initial condition of the system. This allows us to check whether certain attributes are necessary/-
sufficient or may ever be reached.

Remark 2.9
In the context of an FMEA (failure mode and effects analysis), assessing if and with what prob-

ability a risk case may occur is a common question. For such questions, a Petri-Net model can

provide a direct answer.

Considering our simple Petri-Net from Figure 2.7 as a flow of products between workstations
as methods and storage area as attributes, the split at method m1 may result in 1 unit moving to
attribute a2 while 2 units are shifted to attribute a3. If the joint at method m4 uses only 1 unit
from attributes a4 and a5, then a stockpile will be rising up unboundedly at attribute a5.
In most cases, we are interested in parts of a system/process only. To cut these free from the rest
of the system/process, we apply the concept of so called configurations.

Definition 2.10 (Configuration).
Consider a network N = (O, E) with O = A ∪ M. Then any subset C ⊆ A is called a
configuration. We call the tuple (N , C) an elementary network.

Hence, a configuration is a subnet within a network, that is a use case which we are interested in.
Note that since the configuration is a subnet, it may interact with the rest of the network. For a
configuration, however, we are only interested in answers for this specific subnet.

Remark 2.11
Loosely speaking, if the entire world were represented as a network, then a configuration is a

model of a process/system which interacts with its surroundings and is disturbed by it.

Before we can properly formulate the questions introduced above, it is necessary to introduce
a few additional technical details. In a Petri-Net, the notion of a configuration is extended by

2.4. PETRI NETWORKS 37

the concepts of markings and multiplicities (cf. Fig. 2.8). A marking represents the current dis-
tribution of tokens within the network and can be interpreted as the number of available units
associated with a specific attribute — for instance, the number of motors waiting to be installed
into cars. Multiplicities, on the other hand, define how many such units are required for a given
method, such as the number of gears needed to assemble a complete gearbox. Together, mark-
ings and multiplicities allow us to quantify system states and resource requirements, forming the
foundation for analytical reasoning within the Petri-Net framework.

a1

a2 a4

a3 a5

a6m1

2

m2 2

m3

m4

2

3

Figure 2.8.: Simple Petri-Net with markings and multiplicities

More formally, we define the following:

Definition 2.12 (Petri-Net).
Consider a network N = (O, E) with O = A∪M. Moreover, let

CA : A → NA
0 , CA(a) = # (a) ∀a ∈ A (2.3)

CE : E → NE
0 , CE (e) = # (e) ∀e ∈ E (2.4)

be multisets. Then the triple (N , CA, CE) is called a Petri-Net. The maps CA and CE are called
marking and multiplicity.

Hence, markings can be considered as storage, whereas multiplicities represent performance re-
quirements for methods/tasks. Here, we already obtain the first interesting questions:

reachability: Can all markings be set? Which markings can be set?

coverability: Can specific markings be set?

Continuing, we are interested in how the system/process evolves over time and what are the
requirements for such a flow. This leads us to the so-called flow relation.

38

Definition 2.13 (Flow relation).
Given a Petri-Net (N , CA, CE). Then we call the set

F := {e ∈ E | CE (e) > 0} (2.5)

a flow relation.

The flow relation says that certain values of attributes are required in order for edges to be exe-
cutable. This points in the direction of the questions

liveness: Is a process/system deadlock-free, can all attributes be marked and unmarked?

consistency: Will all markings be set uniquely?

boundedness: Will all markings stay bounded?

Regarding these questions, special attention must be paid to inhibitor edges. In this context, a
flow is inhibited if the inhibited attribute is marked. This directly leads us to the requirements and
results of the methods.

Definition 2.14 (Preset and postset).
Consider a Petri-Net (N , CA, CE) with flow relation F . For any edge e ∈ F , we call the set

•m := {a ∈ A | CE (a, m) > 0} (2.6)

preset of a method m ∈ M and the set

m• := {a ∈ A | CE (m, a) > 0} (2.7)

postset of a method m ∈ M.

Preset and postset can be interpreted as input and output of a method, cf. Figure 1.9 where the
system corresponds to a method block in the Petri-Net.

Remark 2.15
As stated before, inhibitor edges are somewhat different. These edges enter the set definition (2.6)
with a negation, which can be simplified to CE (a, m) = 0 if e = (a, m) is an inhibitor edge.

2.4. PETRI NETWORKS 39

Following the input/output idea, a method can only be executed if all requirements are satisfied.
This allows us to check whether or not a method will ever by applied (e.g., in an FMEA). Apart
from that, the presets identify the required chain of methods/attributes, which are elementary for
the application of the method under consideration. In the context of Petri-Nets, the application is
typically referred to as firing.

Definition 2.16 (Enabling and firing).
Given a Petri-Net (N , CA, CE). If

∀a ∈ •m : CA(a) ≥ CE (a, m) (2.8)

holds, then a method m ∈ M is enabled.
If a method m ∈ M is enabled, then firing of m is possible i and leads to updating the markings
according to

CA(a) =


CA(a)− CE (a, m), ∀a ∈ •m

CA(a) + CE (m, a), ∀a ∈ m•

CA(a), else.

(2.9)

Remark 2.17
Sometimes a method is called enabled if additionally to (2.8) the postset is clear, i.e.

∀a ∈ m• : CA(a) = 0.

What makes Petri-Nets particularly interesting is that we can check what will happen when meth-
ods may continually fire in arbitrary order. Note that we never mentioned anything about time,
sequence, order, etc. Hence, the stated questions can be analyzed without knowledge of time.
This holds particularly true for paths, circuits, and deadlocks.

Definition 2.18 (Path and circuit).
Consider a Petri-Net (N , CA, CE) with flow relation F .

we call a sequence a1, . . . , an ∈ A a path if the sequence is finite, nonempty and respective
edges are elements of the flow relation F .

A path is called a circuit if a1 = an and additionally from aj = ak we have j = k for all
1 < j, k < n.

40

Paths and circuits can be obtained directly by the incidence matrix for Petri-Nets. Here, it is
common to separate between the preset and postset incidence matrix. The preset one allows
seeing circuits, which may get lost if the complete incidence matrix is computed.

Definition 2.19 (Petri-Net incidence matrix).
For any network Petri-Net (N , CA, CE), we call I = I− + I+ with

I− =
[
Ijk
]

where Ijk :=

−CE (aj, mk) aj ∈ •mk

0 else
(2.10)

I+ =
[
Ijk
]

where Ijk :=

CE (mk, aj) aj ∈ mk•

0 else
(2.11)

incidence matrix of the Petri-Net.

The incidence matrix is a central tool for computing the properties of networks and initial mark-
ings. To qualify such a network, we adapt the definition of a key performance indicator (Defini-
tion 1.13) to the network setting.

Definition 2.20 (Cost function for networks).
Consider a network (O, E). Then we call J : I × I2 → R+

0 cost function.

While Definition 2.20 is generic, the following indicators specify the idea of qualifying a network
in practical terms.

2.4.1. Reachability and coverability

Regarding our question on uniqueness, it is already evident that the resulting marking in a Petri-
Net depends on the specific sequence of transition firings; consequently, uniqueness of the result-
ing state cannot generally be expected. Different firing sequences may lead to distinct but valid
markings, even if they start from the same initial configuration. This non-uniqueness reflects the
inherent concurrency and nondeterminism within distributed systems modeled by Petri-Nets.
Nevertheless, the concept of markings allows us to systematically investigate two fundamen-
tal properties: reachability and coverability. Reachability describes whether a particular mark-
ing can be obtained from the initial marking by some sequence of method firings. Coverabil-
ity, in contrast, asks whether a marking can be reached that equals or exceeds another marking
component-wise — i.e., whether a desired or critical system state can ever occur. For example,
in a manufacturing Petri-Net, one might ask whether a state in which multiple assembly stations

2.4. PETRI NETWORKS 41

are simultaneously occupied is reachable, or whether a situation representing resource overload
(e.g., too many motors waiting in a buffer) is coverable.
To check for a specific marking (i.e. conditional state of a production system) with regards to
reachability and coverability, we can apply the following algorithm:

Algorithm 2.21 (Coverability and reachability)
Consider a Petri-Net (N , CA, CE) together with an initial marking c0 ∈ NA

0 and a terminal
marking c ∈ NA

0 to be given.

1. For each a ∈ A with c0(a) > 0

Set R(c0) := R(c0) ∪ {a}.

2. While there exists a fireable method m do

a) For each method m ∈ M

i. If m is fireable as defined in (2.8)

A. Update marking CA according to (2.9)

B. Set R(c0) := R(c0) ∪ {a} for all a ∈ m•

b) If CA ≥ c, then c is coverable and stop.

3. If CA ̸≥ c, then c is not coverable.

Within Algorithm 2.21, the set R(c0) denotes all markings that can be reached from the ini-
tial marking c0 through any valid sequence of method firings. In the context of the production
Petri-Net introduced earlier, this set represents all possible configurations of the manufacturing
process that can arise from the initial availability of components — for instance, different combi-
nations of motors, gears, and partially assembled powertrains. Each element of R(c0) therefore
corresponds to a feasible production state, such as „motors installed but gearbox incomplete“
or „assembly finished and awaiting quality check“. Determining this reachable set allows us to
analyze whether critical states — e.g., resource shortages, buffer overflows, or deadlocks — can
occur during operation, thereby supporting the verification of process robustness and resource
allocation strategies.
If we consider the production system given in Figure 2.9, we observe that for the given tokens c0

we can produce either one assembled gearbox or one assembled motorbox.
Hence, if we want to check

if c = {a4}, then c is covered,

if c = {a5}, then c is covered,

42

a1

Gearboxes

a2

Gears

a3

Motorboxes

a4

Assembled gearboxes

a5

Assembled motorboxes

m11

5

1

m27

1

1

Figure 2.9.: Petri-Net of gearbox and motorbox assembly

if c = {a4, a5}, then c is not covered,

but R(c0) = {a1, a2, a3, a4, a5}.

From this, we obtain that R(c0) is something different than the covered set. It combines all
possibilities to the so called reachability set.

Definition 2.22 (Reachability set).
For a Petri-Net (N , CA, CE) with given initial marking c0 ∈ NA

0 we call R(A) reachability

set of the Petri-Net if it is maximal and for each attribute a ∈ R there exists a path within the
flow relation F . We call R(c0) reachability set of the initial marking if it is the maximal set of
attributes a such that there exists a path within the flow relation F and each method along this
path is enabled.

In the production Petri-Net, the reachability set R(A) includes all markings that can be reached
from the initial marking c0 ∈ NA

0 by firing any sequence of methods. Each marking represents
a possible configuration of the production process, showing how many components are available,
being processed, or completed at a given time.
For instance, in our example network from Figure 2.9 if the initial marking indicates that mo-
torboxes, gearboxes and gears are available but only either gearboxes and motorboxes can be
assembled, then R(A) still contains all states that can result from executing process methods. In
this way, the reachability set describes the dynamic evolution of the manufacturing system and
all achievable combinations of partial and completed assembly stages.

2.4. PETRI NETWORKS 43

Remark 2.23
Note that the reachability set depends on the initial marking. Moreover, not the entire coverability

search must be executed to check if a specific attribute can be reached.

A short way to compute whether or not a marking is coverable is given by the incidence matrix.

Theorem 2.24 (Coverability).
Consider a Petri-Net (N , CA, CE) together with an initial marking c0 ∈ NA

0 and a terminal

marking c ∈ NA
0 to be given. Then c is coverable iff

∃x ∈ NE
0 : c = c0 + I · x. (2.12)

From equation (2.12) we directly obtain that a marking is coverable if

x = I−1 (c − c0)

is solvable. The result corresponds a sequence of methods m ∈ M which need to be fired
resulting in a path of intermediate attributes.
To further answer the question which attributes can be set, i.e. what is reachability set of a initial
marking, we directly obtain that it is identical to the maximal coverable set. Hence, we have the
following:

Theorem 2.25 (Reachability).
For a Petri-Net (N , CA, CE) and an initial marking c0 ∈ NA

0 , the reachability set is given by

max
c∈NA

0

c : ∃x ∈ NE
0 : x = I−1 (c − c0) . (2.13)

2.4.2. Liveness

Having answered the questions regarding reachability and coverability, we next address liveness.
The latter is a property that expresses whether the system modeled by a Petri-Net can continue to
operate indefinitely without entering a deadlock or a terminal state. In other words, no method
becomes permanently disabled. Hence, a Petri-Net is live if, from every reachable marking, it is
always possible — through some sequence of method firings — to eventually enable any method
in the network.

44

Definition 2.26 (Liveness).
Consider a Petri-Net (N , CA, CE) and an initial marking c0 ∈ NA

0 . Then we call a method
m ∈ M

dead if no path exists such that m can be fired,

quasi-live if m can be fired at least once in a path,

live if it is quasi-live for every marking c ⊂ R(c0).

The first case is self-speaking and illustrated in Figure 2.10. Here, since it is not possible to
provide a token to attribute a1 we have that method m2 is dead.

a1 a2 a3 a4m1

1

1
m2

1

1

Figure 2.10.: Example of a dead Petri-Net

The other two cases show a fundamental difference. While quasi-live means that the method
may be executed but is potentially not executed, live means that the Petri-Net is deadlock-free
independent of the choice of the path/firing sequence. To illustrate this, we modify the previous
example slightly to Figure 2.11.

a1 a2 a3 a4m1

1

1
m3

1

1
m2

1

1

Figure 2.11.: Example of a quasi-live Petri-Net

For this example, we have that all methods are quasi-live for c = {a1}, but not live if c ⊂
A \ {a1}. In the latter case, it is not possible to fire method m1.
A typical structure to obtain a live Petri-Net is to create a circle as sketched in Figure 2.12.
By having such a circle, it is ensured that any attribute a ∈ A may be set by some sequence
of method firing, even if methods are added which range outside the circle such as attribute a7

in the example setting. Practical applications of such circles are routines that sequentially check
whether subprocesses are still operational
To achieve such a property in general, the following two cases must at least be avoided such that
the system does not get stuck:

2.4. PETRI NETWORKS 45

a1 a2

a3

a4a5

a6

a7 a8m1

1

1

m21

1

1

m3

1

1m4 1

1

m5

1

1

m6

1

1

m7

1

1

Figure 2.12.: Example of a live Petri-Net

Theorem 2.27 (Liveness conflicts).
Consider a Petri-Net (N , CA, CE). Then the network is live if no directional conflicts exist

•m1 ∩ •m2 = ∅, (2.14)

m1 • ∩m2• = ∅. (2.15)

Remark 2.28
Note that conditions (2.14), (2.15) are necessary only.

A conflict in predecessor attributes, i.e., a violation of (2.14), may occur when an attribute is
required by multiple methods, but its marking is insufficient to satisfy the multiplicities of all
requesting methods. In the context of the production Petri net, such a situation arises when a
limited number of motors or gears are simultaneously needed for different assembly steps. For
instance, if both the install motor and mount gearbox methods require access to the same set of
motors, but only one token (motor) is available, a resource conflict occurs, preventing one of the
methods from firing.
Similarly, a conflict in successor attributes, corresponding to a violation of (2.15), may occur
when the firing of one method blocks another method by occupying or exhausting a shared out-
put attribute. In the production Petri net, this could happen if the storage area for completed
powertrains has limited capacity. When the finish assembly method fires and places a token into

46

this storage attribute, the space may become full, preventing the install motor method (and there-
fore subsequent assembly processes) from proceeding.
Both types of conflicts reduce the liveness of the system, as they create conditions where certain
methods become permanently disabled due to resource competition or capacity constraints. An-
alyzing these conflicts helps identify potential bottlenecks in production and supports the design
of balanced workflows and resource management strategies.

2.4.3. Safeness

Finally, we address the property of boundedness, which is closely related to the concept of safe-
ness in Petri nets. Boundedness ensures that the number of tokens in each place remains within a
finite limit for all possible firing sequences, thereby guaranteeing that the modeled system cannot
overflow or accumulate resources without bound. A Petri net is called k-bounded if no place ever
contains more than k tokens in any reachable marking.
In the context of the production Petri-Net, boundedness means that storage areas, buffers, or
resource pools — such as bins for gears or waiting zones for assembled powertrains — have
finite capacities that are never exceeded, regardless of how methods (e.g., install motor, mount
gearbox, finish assembly) are fired.
For ease of exposition, we consider the simplest case of 1-boundedness1 here:

Definition 2.29 (Safeness / 1-boundedness).
A Petri-Net (N , CA, CE) with initial marking c0 ∈ NA

0 is 1-bounded or safe if

∀c ∈ R(c0) : c(a) ≤ 1 ∀a ∈ A. (2.16)

Basically, this definition says that each attribute may at most have one marking. We then directly
obtain the following:

Theorem 2.30 (Sufficient conditions for a safeness).
A Petri-Net (N , CA, CE) is safe iff c0 has at most one unit element. A live network is safe iff c0

has exactly one unit element.

In the first part, this results says that a Petri-Net is safe if the initial marking c0 assigns at most
one token to each attribute — that is, no place can contain more than one unit at any time. This
condition ensures that the modeled production system behaves realistically, without multiple over-
lapping resources or process instances occupying the same logical position. For example, if each

1also referred to as safeness

2.4. PETRI NETWORKS 47

place in the Petri-Net represents a physical location or a resource — such as motor available, gear
ready, assembly station occupied, or powertrain stored — then safeness guarantees that there is
never more than one motor in a single availability slot or more than one powertrain in the same
storage area. This prevents unphysical states like multiple assemblies sharing one workstation
simultaneously.
The second part of the definition specifies that a live and safe Petri-Net requires exactly one
token in each initially marked attribute. In the production context, this means the process begins
with precisely one available unit per required resource — for example, one motor, one gear, and
one free assembly station. This configuration ensures that every method (such as install motor,
mount gearbox, or finish assembly) can eventually fire, keeping the system operational without
deadlocks.
In summary, safeness ensures that the production Petri-Net respects physical and logical resource
limits, while liveness ensures that the process continues indefinitely. A live and safe production
system thus corresponds to a balanced process where resources circulate correctly and no step
ever exceeds its designed capacity, cf. Figure 2.13 for an example.

a1 a2

a3

a4a5

a6

m1

1

1

m21

1

m3

1

1m4 1

1

m5

1

1

m6

1

1

Figure 2.13.: Example of a live and safe Petri-Net

While Theorem 2.30 states sufficient conditions, also necessary conditions are available:

Theorem 2.31 (Necessary conditions for safeness).
Given a Petri-Net (N , CA, CE), there exists a safe and live marking iff N is strongly connected.

In the production context, strong connectivity implies that all process stages and resources are
mutually reachable through some sequence of methods. For example, tokens representing motors,

48

gears, or assembled powertrains can circulate through the entire network — from component
availability, through assembly, to storage, and back to resource release — without any isolated
subprocess. If this connectivity is broken (e.g., one assembly line or buffer is disconnected),
tokens can become trapped in a subsystem. In such a case, certain methods — like install motor
or finish assembly — would eventually be disabled because the necessary resources or outputs
can no longer be reached. The system would then lose liveness, and the disconnected part might
accumulate tokens, violating safeness.
The ability to check safeness is one of the major applications, for which Petri-Nets are used in
industrial practice. Yet, respective algorithms require an in-depth connection between the safety
property and the incidence matrix, which is outside the scope of this lecture. For further details,
we refer to the work of Murata [25].

In the upcoming chapter, we will apply the idea of configurations to split the system/process into
smaller parts. The idea behind the latter is to derive standardized parts with defined interfaces,
for which conditions such as safeness have already been shown. Such parts will then allow us to
build up more complex systems.

CHAPTER 3

SEPARATION

Generated with chatgpt.com

Modularity is a chunky word for the elegant idea of big things made from small
things.

Bent Flyvbjerg

50

In the past chapter, we discussed networks to represent systems and processes. Networks are a
very general tool to indicate connection and evaluate systemic properties such as reachability,
liveness, and safeness. In the set used here, it is particularly difficult to add time. While the
latter can be done, it may not be in the user’s best interest to do so as the description becomes
more complex. Instead, in this chapter we discuss the idea to further reduce complexity via a
divide–and–conquer strategy. In particular, our aim is to generate modules, which can be used
in various settings or applications, and which provide a standard interface. Regarding the latter,
we are interested in interfaces, which are simple, i.e. a low number of edges connecting mod-
ules. Reconsidering our overall path of automation, Figure 3.1 indicates the focus of the present
chapter.

Planning System planning Lean planning

Normal Modularization Standardization Automation

Integration Industrial cloud Industrial internet CPS

Optimization Industrial big data Knowledge management

Leading AI Ecosystem

Capacity planning
Process optimization

Waste elimination

Path planning

Standard interface Digital drive

Interfacing Unit integration

Fusion Modeling

Interconnection System integration

Emergence Decision support

Chain integration

Figure 3.1.: Integrated implementation path of automation

To this end, we first discuss modularization, i.e., how to precisely cut down the system/process
into smaller ones and what is a good cut [5, 22]. In the second step, we consider the interfaces
between these modules and how these can be standardized. Note that an interface can be with
respect to information, energy, goods, and people. Both standardization and modularization need
to be considered from a global perspective to generate efficiency and avoid waste. These aims
stand at the core of lean planning, which we discuss at the end of this chapter.

3.1. Modularization

As outlined, the aim of modularization is to divide the system/process into smaller parts. We
will use the network description derived in the previous chapter to identify similar objects. In
network theory, these are known as clusters or communities, and similarity is based on topology,

3.1. MODULARIZATION 51

i.e. connectedness.
We would like to point out that modularization is not only applicable to mechanical systems, as
illustrated by the introductory picture in this chapter. This idea can also be applied to systems
such as the Braunschweig Tram System (see Figure 3.2). In this example, attributes represent
stations and edges represent rail tracks.

Stadium
Siegfriedstraße

Volkmarode

Main station

Broitzem
Heidberg

Weststadt

Rühme

Stöckheim

Wenden

Gliesmarode

Figure 3.2.: Example of the Tram Network Plan for Braunschweig

If such a system should be operated by two different companies, we would be interested in a
suitable cut, which allows a good cooperation between the companies and good transfer of people.
Abstracting from this idea, modularization bears a variety of advantages:

Complexity: If only a module needs to be treated, the overall system complexity can be
reduced drastically, resulting in lower costs and faster development cycles.

Replacement: If modules can be exchanged, cross usage (like cross products) can be ap-
plied to assure quality or accelerate technical iteration/innovation.

Diversity: As modules may be substituted, this leads to diverse/customizable solutions.

52

However, compared with integrated architecture, on a management level, modular architectures
often lack overall coordination and performance optimization. Hence, its weak link is often found
in the interface between modules.
In order to modularize a system/process, we first introduce the concept of a cluster, which is
basically an intersection free coverage of the network by subsets of it. More formally:

Definition 3.1 (Clustering/Modularization).
Consider a network (O, E). Then we call S = {S1, . . . , S#S} a clustering or modularization if

Sj ̸= ∅ ∀j ∈ {1, . . . , #S}
Sj ∩ Sk = ∅ ∀j, k ∈ {1, . . . , #S} (3.1)

#S⋃
j=1

Sj = O.

The first part essentially means that no part of a clustering, i.e. a module, shall be empty. The
second part calls for a division between each pair of modules; in other words, no attribute can
be part of more than one module. The final part shows that all attributes must be covered by the
clustering; that is, each attribute must be an element of a module.
To derive clusters, we need to consider several quality measures, which will be our key perfor-
mance criterion (see Definition 1.13). To describe a network topology, we first need to distinguish
between undirected and directed ones.

Definition 3.2 (Un-/directed networks).
Suppose a network (O, E) to be given. Then we call the network to be directed if the edges
e = (e1, e2) ∈ E are directed, i.e. e1 ∈ O is the starting point and e2 ∈ O is the endpoint of the
edge.

In terms of drawing, the difference between undirected and directed networks simply reduces
to adding an arrow to an edge in the directed case. Therefore, in the undirected case, an edge
represents two arrows, a fact that will be important for us when counting connections later on.
In the undirected case, we then obtain the feature of modularity via the following:

Definition 3.3 (Modularity measure).
Given a network (O, E) where e ∈ E are undirected, let S be a clustering of it. Then we call

JModularity(S) :=
#S

∑
j=1

(
P(Sj | Sj)− P(Sj | O)2

)
(3.2)

3.1. MODULARIZATION 53

the modularity of a clustering S where P(Sj | Sj) denotes the probability of intra-cluster edges
e = (e1, e2) in cluster Sj, that is

P(Sj | Sj) :=
#
{
(e1, e2) | e1 ∈ Sj, e2 ∈ Sj

}
#E (3.3)

and P(Sj | O) the probability of either an intra-cluster edge in cluster Sj or of an inter-cluster
edge incident from cluster Sj, i.e.

P(Sj | O) :=
#
{
(e1, e2) | e1 ∈ Sj, e2 ∈ O

}
#E (3.4)

Similarly, in the directed case, modularity reads

Definition 3.4 (Modularity measure for directed networks).
Suppose an directed network (O, E) to be given an let S be a clustering of it. Then modularity of
clustering S is given by

JModularity(S) :=
#S

∑
j=1

(
P(Sj | Sj)− P(Sj | O)P(O | Sj)

)
(3.5)

where the probability of either an intra-cluster edge in cluster Sj or of an inter-cluster edge inci-
dent from cluster Sj is given by

P(Sj | O) :=
#
{
(e1, e2) |

(
e1 ∈ Sj, e2 ∈ O

)}
#E (3.6)

P(O | Sj) :=
#
{
(e1, e2) |

(
e1 ∈ O, e2 ∈ Sj

)}
#E (3.7)

reflecting both inbound and outbound edges.

Modularity is a value (or score), which can be used to assess clustering. It formalizes the intuitive
idea that good clusters contain more internal edges than expected in a comparable random graph.
In terms of modularity, we are interested to identify a clustering S such that the links between
clusters are minimized, that is each cluster Sj is more or less self-contained. The idea behind
self-containedness is to allow us to treat such a cluster as standalone or embedded, i.e., to treat
it separately from the remaining network. Hence, a clustering S is considered to be good if the
value of a given metric J(S) is maximized (and at best 1).

54

Task 3.5
Consider the network given in Figure 3.3. Compute modularity of the clustering S =

{{a, b, c}, {d, e, f , g}, {h, i}}.

a b

c

d

e

f

g

h i

Figure 3.3.: Cluster of a network

Solution to Task 3.5: We obtain

JModularity(S) =

(
6

24
−
(

7
24

)2
)
+

(
10
24

−
(

13
24

)2
)
+

(
2

24
−
(

4
24

)2
)

≈ 0.34.

A different measure is the so called conductance, which is a measure to check whether a network
has a bottleneck. Conductance captures how „tight“ or „leaky“ a cluster is. Instead of comparing
the cluster to a null model (like modularity), conductance uses a boundary-to-volume ratio: few
boundary edges relative to internal total degree imply strong structure.

Definition 3.6 (Conductance of undirected network).
Given a undirected network (O, E) let S be a clustering of it. Then we call

JConductance(Sj) :=
Q(Sj, Sj)

min{Q(Sj,O), Q(Sj,O)}
(3.8)

conductance of a cluster Sj where Sj = O \ Sj and

Q(Sj, Sj) = #
{
(e1, e2) | e1 ∈ Sj, e2 ∈ Sj

}
denotes the quantity of edges connecting the cluster Sj to its network complement Sj,

Q(Sj,O) = #
{
(e1, e2) | e1 ∈ Sj, e2 ∈ O

}

3.1. MODULARIZATION 55

denotes the quantity of edges within and connecting the cluster Sj to its network complement,
and

Q(Sj,O) = #
{
(e1, e2) | e1 ∈ Sj, e2 ∈ O

}
denotes the quantity of edges outside and connecting the cluster Sj to its network complement.
Moreover, we call

JConductance(S) := 1 − 1
#S

#S

∑
j=1

JConductance(Sj) (3.9)

conductance of a clustering S.

Similarly, we obtain the following for a directed network.

Definition 3.7 (Conductance of directed network).
Suppose a directed network (O, E) with clustering S to be given. Then conductance of a cluster
Sj is given by (3.8) where Sj = O \ Sj and

Q(Sj, Sj) = #
{
(e1, e2) |

(
e1 ∈ Sj, e2 ∈ Sj

)
∨
(
e1 ∈ Sj, e2 ∈ Sj

)}
denotes the quantity of edges entering and leaving the cluster Sj,

Q(Sj,O) = #
{
(e1, e2) |

(
e1 ∈ Sj, e2 ∈ O

)
∨
(
e1 ∈ O, e2 ∈ Sj

)}
denotes the quantity of edges within as well as entering and leaving the cluster Sj, and

Q(Sj,O) = #
{
(e1, e2) |

(
e1 ∈ Sj, e2 ∈ O

)
∨
(
e1 ∈ O, e2 ∈ Sj

)}
denotes the quantity of edges outside and entering/leaving the cluster Sj.

The idea of detecting bottlenecks is totally different from separability/embeddedness. Here, we
are interested to identify those cuts, which put a limit on the flow of goods/information/peo-
ple/energy within the network. To similarly be able to assess the network in terms of required
flow, conductance is inverted in Equation (3.9), again resulting in a maximization problem with
aim 1.

56

Task 3.8
Reonsider the network given in Figure 3.3. Compute conductance of the clustering S =

{{a, b, c}, {d, e, f , g}, {h, i}}.

Solution to Task 3.8: For S1 = {a, b, c}, S2 = {d, e, f , g}, S3 = {h, i}, we obtain

JConductance(S1) =
1
7

, JConductance(S2) =
3

11
, JConductance(S3) =

2
4

and

JConductance(S) = 1 − 1
3
·
(

1
7
+

3
11

+
2
4

)
≈ 0.69.

Finally, the coverage of a network is also typically considered a marker for modularization. Here,
coverage differs from coverability, which we considered in Chapter 2 to be the ability to set
certain attributes. Coverage describes the property of subsets within a network; in particular, it
quantifies the proportion of edges within clusters rather than between them.

Definition 3.9 (Coverage).
Given a network N = (O, E) and a clustering S of it, the quotient

JCoverage(S) :=

#S
∑

j=1
Q(Sj, Sj)

#E (3.10)

is called coverage of a cluster Sj where

Q(Sj, Sj) = #
{
(e1, e2) | e1 ∈ Sj, e2 ∈ Sj

}
denotes the quantity of edges inside of cluster Sj.

Coverage is a simple, edge-based KPI. Unlike modularity, it does not use a probabilistic null
model, and unlike conductance, it does not use a boundary-to-volume ratio. Instead, it simply
counts how many edges the clustering preserves internally. This makes it easy to interpret, but
also limits its usefulness (it may reward overly coarse clusterings).
Therefore, coverage tells us what percentage of edges are contained within the clustering and what
percentage are neglected. Therefore, it is irrelevant whether we consider directed or undirected

3.1. MODULARIZATION 57

networks; the aim is to maximize this number to 1. However, over-optimisation of this metric is
not useful, as the optimal result is to define the cluster as identical to the set of objects O.

Task 3.10
Reconsider the network given in Figure 3.3. Compute coverage of the clustering S =

{{a, b, c}, {d, e, f , g}, {h, i}}.

Solution to Task 3.10: We obtain

JCoverage(S) =
6 + 10 + 2

24
= 0.75.

Remark 3.11
In the literature, additional metrics like information recovery or normalized mutual information

are considered as well, which are outside the scope of this lecture, cf., e.g., [5].

One method to derive a clustering that (approximately) maximizes any of the above metrics is
the so-called Louvain algorithm. The central idea of this method is to approximate a maximum
through an iterative procedure in which the chosen metric is repeatedly evaluated to determine
whether relocating an object (i.e., a node) from one cluster into another yields an improvement.
Each node is considered individually, and the algorithm examines whether moving it to the com-
munity of one of its neighbors increases the clustering quality measure (e.g., modularity, cover-
ability or coverage). Nodes are reassigned greedily to the cluster that provides the highest positive
gain. Once no further improvement can be achieved through local movements, the resulting clus-
ters are collapsed, thereby producing a reduced network in which edges represent aggregated
connectivity patterns. The algorithm then repeats the same local reassignment procedure on this
smaller graph. This hierarchical process effectively builds a tree-like structure and reveals clus-
ters at different resolutions. However, due to its greedy nature and the absence of a global search
mechanism, the resulting solution is only locally optimal and may depend on the order in which
nodes are processed [1].

Algorithm 3.12 (Louvain algorithm for clustering)
Consider a network (O, E).

1. For j = 1, . . . , #O set Sj = {Oj}

58

2. Compute metric (modularity (3.2) or conductance (3.9) or coverage (3.10))

3. Do

a) For j = 1, . . . , #O

i. For each edge (j, k) or (k, j) of object Oj with k ∈ Ok, Oj ̸= Ok

Remove Oj from its cluster and add it to cluster of Ok

Recompute metric

If metric not improved, revert move of Oj

ii. Remove empty clusters

while metric is improved

Having the possibility to cluster a system/process at hand, the question is which clustering is
appropriate regarding the strategy and goals of the system/process.

3.2. Standardization

As we have seen in Table 1.1, there are two main strategies: cost leadership and differentia-
tion. Regarding cost leadership, standardization aims to develop components, subassemblies,
processes, structures, types, units, goods, services, or programs that can be interchanged. A typi-
cal example is the use of a common vehicle platform in the automotive industry, where multiple
car models share the same chassis, battery pack geometry, or sensor architecture. Such a stan-
dardized module can then be produced in high volumes, reducing unit costs. Reconsidering the
previous Section 3.1, this corresponds directly to applying modularity: modules are designed to
be internally coherent but externally decoupled, allowing reuse across product variants. In a net-
work sense, this is the opposite of customization, which is the aim of the differentiation strategy
and corresponds to maximizing coverage. For instance, offering individualized interior configu-
rations, multiple motor options, or customer-specific software packages increases the number of
edges within variant-specific sub-networks and decreases interchangeability.

Remark 3.13
Note that in the context of customization, alternatives are treated as a different set of sub-

networks, which all need to be present in the network. For example, if a product family supports

three different types of charging interfaces, the complete network must maintain three distinct

interface branches, even though each customer only uses one of them.

3.2. STANDARDIZATION 59

Since standardization can only provide a cost advantage if options are dropped or consolidated,
both strategies naturally work against one another. A company cannot simultaneously maximize
shared components and maximize customer-specific differentiation; increasing one reduces the
other. For example, a smartphone manufacturer could standardize its camera module across all
models to reduce cost, but this directly limits the degree of differentiation it can offer between
entry-level and premium products.
An essential component of meaningful standardization is the definition of module interfaces. To
enable flexible reuse, the interfaces must be as independent as possible from special customer
requirements and from the internal implementation of each module. A classical example is the
standardized USB-C port: regardless of the device it is embedded in, the interface remains identi-
cal, allowing modules (cables, chargers, peripheral devices) to be interchanged freely. Similarly,
in software architectures, a clean API allows internal components to change without affecting
downstream modules.
The standardization procedure typically consists of the three steps shown in Figure 3.4.

Standardization

Analysis of network Design of interfaces Implementation

Figure 3.4.: Structure of the standardization process

For example, in the automotive context, these steps may involve:

Identifying similarities across product variants (e.g., shared mounting points for traction
motors).

Defining standardized modules (e.g., a universal inverter module with a fixed mechanical
and electrical interface).

Eliminating redundant variant-specific designs (e.g., reducing five brake-controller versions
to two standardized ones).

This process ensures that modules remain interchangeable, production complexity decreases, and
economies of scale can be exploited—while still allowing a controlled degree of differentiation
through combinable modules.
In the previous Section 3.1, we discussed ideas and methods for how to modularize a network.
Now, our task is the proper integration of the criteria and requirements put to a modularization to
be optimized/satisfied, which is termed standardization.

60

Definition 3.14 (Standardization).
Consider a network (O, E). We call a clustering S a standardization if

S is optimal with respect to a defined metric J(·), and

S satisfies all constraints defined by requirements.

Task 3.15
Reconsider the network from Figure 3.3. Suppose we require object f to be held singularly in

one cluster. Plot the standardization by adapting the clustering S from Task 3.5 respectively.

Solution to Task 3.15: Results are given in Figure 3.5 with

JModularity(S) =

(
6

24
−
(

7
24

)2
)
+

(
6
24

−
(

10
24

)2
)

+

(
0

24
−
(

3
24

)2
)
+

(
2
24

−
(

4
24

)2
)

≈ 0.24

Remark 3.16
Note that constraints can also be put on edges and are not restricted to objects.

The main idea we can take from Task 3.15 is that requirements (as they represent restrictions)
will lead to a reduction in optimality. In other words, every requirement imposes a constraint on
the design space, thereby limiting the degree to which an architecture, product, or system can be
optimized with respect to performance, cost, or modularity. Fixed interfaces are a particularly
influential type of requirement, because once an interface is defined, it restricts the allowable
variation of the connected modules. Hence, special attention must be paid to how these interfaces
are defined and which degrees of freedom remain.
On an exemplary basis, we can consider a modular drivetrain in which different battery packs and
motors should be combinable. If the mechanical interface between battery and inverter is fixed
prematurely — e.g., specifying a certain bolt pattern or connector geometry — then any alterna-
tive component that does not satisfy this exact interface must either be redesigned or excluded.
This restricts the range of feasible configurations and may reduce the achievable modularity or
cost savings. Again, the approach is not limited to the physical world. In software systems, fixing

3.2. STANDARDIZATION 61

a

b

c

d
e

f
g

h

i

S1

S2

S3

S4

Figure 3.5.: Multi-layer Cluster map using standardization

an API too early may prevent later design choices that would have provided better performance,
security, or maintainability.
Considering the definition of a requirement from [17], we can formalize the following:

Definition 3.17 (Requirement).
Suppose a network (O, E) to be given. Then the conditions

⋃
j∈I

Oj ∈ Sk (Union) (3.11)

Oi ∈ Sj ∪Ok ∈ Sl (Split) (3.12)

(e1, e2) ∈ E : (e1, e2) ∈ Sj (Containment) (3.13)

(e1, e2) ∈ E : e1 ∈ Sj ∧ e2 ∈ Sk (Interface) (3.14)

can be used to impose requirements on a clustering S. The set of requirements is denoted by R.

Within the Louvain Algorithm 3.12, these conditions can be integrated easily in the greedy strat-

62

egy by checking whether or not a requirement needs to be enforced.

Algorithm 3.18 (Louvain algorithm for clustering with requirements)
Consider a network (O, E) and requirements R.

1. For j = 1, . . . , #O set Sj = {Oj}

2. Compute metric (modularity (3.2) or conductance (3.9) or coverage (3.10))

3. Do

a) For j = 1, . . . , #O

i. For each edge (j, k) or (k, j) of object Oj with k ∈ Ok, Oj ̸= Ok

If Oj can be removed from Sj and added to Sk according to R

Remove Oj from its cluster and add it to cluster of Ok

Recompute metric

If metric not improved, revert move of Oj

ii. Remove empty clusters

while metric is improved

Remark 3.19
Note that internal interfaces can be set freely and should be designed to have no impact on the

optimality of the clustering given a defined metric. External interfaces on the other hand are sub-

ject to negotiation. A quantification of optimality degradation is given by so-called Lagrangian

variables, also called shadow prices, which are beyond the scope of this lecture. For details, we

refer to [27].

Still, standardization (of modules) offers a number of advantages for both users and manufactur-
ers, cf. Table 3.1.

3.2. STANDARDIZATION 63

Table 3.1.: Advantages of standardization for users and manufacturers

User Manufacturer

• Becomes more transparent and easier to use • Fulfills requirements of existing users

• Reduces error sources by using proven mod-
ules

• Allows maintenance and expanding com-
petitiveness

• Minimizes effort for creation and commis-
sioning

• Increases engineering efficiency

• Simplifies diagnosis and troubleshooting • Simplifies management of component vari-
ants (flexibility)

• Clarifies documentation of modules and be-
havior

• Allows division of tasks into work packages

• Defines interfaces • Allows virtual commissioning (digital twin)

On the other hand, disadvantages arise in particular for the differentiation strategy. In production,
the latter is also called mass customization. In particular, we see the following:

Table 3.2.: Disadvantages of standardization for users and manufacturers

User Manufacturer

• Increases wait time from order placement to
shipment

• Renders forecasting of trends/spikes diffi-
cult

• Inhibits innovation outside standard ranges • Increases cost to maintain variety of ma-
chinery/tools

• Affects flow of supply chains with partners • Makes build-up of stock impossible

• Renders tracking of orders/projects difficult • Increases complexity for returned compo-
nents

Requirements for standardization may arise from different sources and are sector-specific. Exam-
ples of sector-specific norms are ISO/IEC 81346 [12] for an industrial plant or IEC 61512 [9] for

64

batch processes. Here, we focused on the general setting of requirements and how these impact
planning.

Link: For further details on standardization in production, we refer to the lecture Computer

Integrated Manufacturing.

In the following Chapters 4 and 5, we additionally consider the information (IEC 61131 [11]) and
control aspect (DIN IEC 60050-351 [3]). Before coming to that, we next consider waste within
the planning and how waste may be identified.

3.3. Lean planning

So far, we have examined the objectives of modularization, conductance, coverage and standard-
ization. While all of these aspects are fundamental to breaking down a specific work task, for
example by structuring the system, grouping related elements, defining reusable modules or re-
ducing unnecessary variation, lean planning takes an additional conceptual step. Rather than just
optimizing how the work is divided, it also questions whether each part of the task is necessary.
The primary objective of lean planning is to identify and reduce waste, i.e. any activity, process or
structural element that does not contribute to value creation. This approach shifts the focus from
organizing complexity to eliminating it altogether. Unlike modularization or standardization,
which reorganize or simplify the system, lean planning fundamentally questions the necessity of
certain tasks, dependencies, or interfaces. By thinking in terms of networks (Definition 2.5) and
key performance indicators (Definition 2.20), waste can be reinterpreted as a structural property
of the network itself. Nodes or edges that do not contribute to the intended objective — for exam-
ple, redundant process steps, unnecessary interactions, excessively tightly coupled components,
or rarely used variant-specific branches — represent waste from the perspective of lean planning.
Thus, in the network-theoretic framework used throughout this chapter, waste can be defined as
follows:

Definition 3.20 (Waste).
Given a network (O, E) together with a key performance criterion J : I × I2 → R+

0 . We call
any object Oj or edge Ek waste if the condition

J(O \Oj, E \ Ek) ≤ J(O, E) (3.15)

holds.

3.3. LEAN PLANNING 65

On the planning level, our task is to quantify elements with respect to their impact on the consid-
ered key performance indicator. Here, the latter definition says that an object or an edge exhibits
a neutral or negative contribution toward the key performance criterion. If these objects or edges
are not necessary within the network, they should be removed.
Waste is typically characterized by the word „DOWNTIME“, which assembles different types of
waste illustrated in Figure 3.6.

Figure 3.6.: „DOWNTIME“ — 8 types of waste, generated with chatgpt.com

In industrial practice, waste is only one indicator, yet it may already reveal an unwanted interplay
between product innovation and process innovation. For instance, an organization that invests
heavily in product innovation may introduce highly sophisticated features, novel materials, or
cutting-edge technologies. While these innovations may improve performance or differentiation,
they often require new manufacturing capabilities, tighter tolerances, or specialized suppliers. As
a consequence, production costs may increase substantially, making the product economically
unattractive despite its technical superiority. Conversely, focusing too strongly on process in-
novation may lead to streamlined, highly optimized production workflows — such as extensive
automation, reduced variant diversity, or rigidly standardized work sequences. Although this im-
proves efficiency and reduces waste, it can also constrain the design space for new products. Over
time, the organization may become locked into its existing processes, making it difficult to intro-
duce radical product innovations. This may result in products that are reliable and inexpensive to

66

manufacture but technologically outdated or insufficiently differentiated in the market. A typical
example is a company that prioritizes stable, high-volume manufacturing and therefore postpones
or avoids adopting new technologies such as advanced sensors or digital services. As illustrated
in Figure 3.7, this tension shows that innovation in either dimension can have unintended con-
sequences if pursued in isolation. Product innovation that outpaces process flexibility leads to
inefficiencies and cost overruns, whereas process innovation that becomes too rigid suppresses
the organization’s ability to adapt its products to changing market demands.

High

R
at

e
of

in
no

va
tio

n

Uncoordinated process
Product performance max

Systemic process

Product cost min

Product innovation

Process innovation

Figure 3.7.: Innovation and stage of development from [30]

Apart from avoiding waste, other measures can be taken, including:

Align all tasks with customer needs

Focus on strengths

Optimize processes/networks

Improve quality continuously

Implement costumer centric company principle

Strengthen self responsibility, empowerment, and team work

Implement decentralized and costumer focused structures

3.3. LEAN PLANNING 67

Live leadership as service for coworkers

Implement open information and feedback processes

Improve culture and attitude within the company

Most of the latter are qualitative and not engineering-related issues. In order to lead a compa-
ny/process, it is still necessary to be familiar with these tasks but outside the scope of this lecture.

Link: For further details on lean planning considering management and human resource
tasks, we refer to the lecture Operations Management.

While waste can easily be quantified for a given setting/network, finding an improved one is much
more involved and will be the content of Chapter 7 focusing on optimization and leading.

CHAPTER 4

INFORMATION AND COMMUNICATION

Generated with chatgpt.com

Effective teamwork begins and ends with communication.

Mike Krzyzewski

70 4. INFORMATION AND COMMUNICATION

Coming back to the network of systems and processes discussed in Chapter 2, we observe that
the links connecting these systems/processes may consist of matter, energy, or information (cf.
Definition 1.4 of a process in [3]). Material flows could be physical goods moving through a
production line, energy flows could represent electrical or thermal power, and information flows
describe data exchanged to coordinate the system’s behavior. Since our overarching aim is au-
tomation, the present chapter focuses specifically on the information flow required to operate
and steer the system. The question of how such information is later processed, interpreted, and
transformed into control actions will be addressed in Chapter 5.
In industrial practice, such an information network can consist of a wide variety of heterogeneous
elements: software programs running on different platforms, distributed computers, communica-
tion lines, machine controllers, sensors, actuators, and supervisory systems. Each of these com-
ponents may use its own protocols, data formats, and communication standards. The intention
of this chapter is therefore to illustrate how these diverse objects — each with their own „lan-
guage“ — can be integrated into a coherent communication structure. To achieve this, we adopt
the principle of modularization and apply it to communication itself. Just as modularization in
product design separates functions into interoperable modules, modularization in communication
separates the information exchanged into well-defined, interchangeable interfaces. This reduces
complexity, increases flexibility, and supports scalability in automated environments. Reconsid-
ering our overall path of automation, Figure 4.1 shows the position of the present chapter within
that trajectory. We transition from understanding what information is present in the system to
structuring and exchanging it in a modular, consistent way—an essential step before employing
the control mechanisms introduced in the subsequent chapter.

Planning System planning Lean planning

Normal Modularization Standardization Automation

Integration Industrial cloud Industrial internet CPS

Optimization Industrial big data Knowledge management

Leading AI Ecosystem

Capacity planning
Process optimization

Waste elimination

Path planning

Standard interface Digital drive

Interfacing Unit integration

Fusion Modeling

Interconnection System integration

Emergence Decision support

Chain integration

Figure 4.1.: Information in the integrated implementation path of automation

4.1. INFORMATION PROCESSING 71

We first address what should be understood by the term information. Subsequently, we move
towards different transmission networks and communication structures before actually modular-
izing the information transfer itself. After that, we swiftly address the ideas of channel access
and message formats. This structure lays the foundation for the idea of actually controlling the
system/process/network at hand in the following chapter.

4.1. Information processing

As outlined earlier, information is one of the fundamental linking components among systems,
processes, and networks. However, in Chapter 1, our discussion referred only to the term signal
as defined in DIN IEC 60050-351 (2014) [3]. Recall the definition:

A signal is a physical quantity that conveys information about one or more vari-
able quantities using one or more of its parameters.

DIN IEC 60050-351 (2014)

This definition underlines that a signal is merely the carrier of information—a physical phe-
nomenon such as voltage, current, pressure, displacement, optical intensity, or electromagnetic
radiation. In network terminology, a signal corresponds to an edge that provides a channel through
which something can be transmitted. The signal itself does not guarantee meaning; it simply
enables transport. By contrast, information has no universal formal definition, and its interpreta-
tion varies across disciplines such as information theory, computer science, linguistics, cognitive
science, and systems engineering. Nevertheless, several properties commonly attributed to infor-
mation include:

Reduction of uncertainty (the information changes what we believe about a system)

Relevance (the information is meaningful in a given context)

Redundancy (the information may contain repeated or unnecessary parts)

Freeness (ease of access or sharing)

Newness (the degree to which the information adds something not previously known)

In practice, information is not identical to raw data. Information emerges only when:

1. context is known, and

72

2. primary signals are processed and interpreted.

Raw data such as the voltage output of a temperature sensor, the torque reading of an electric
motor, or pixel values from a camera is not inherently meaningful. It becomes information only
once it is evaluated in relation to a model or purpose.
In practice, information is gained by knowledge of context and respective processing of the pri-
mary signal, i.e., raw data from objects such as sensors. Hence, information stands between data
and knowledge. Formally, we define the following:

Definition 4.1 (Signal processing).
Reconsider a system

ẋ(t) = f (x(t), u(t), t), x(t0) = x0

y(t) = h(x(t), u(t), t)
(1.1)

with output y. Let D denote the set of output data. Then any map/method m : D → I is called
signal processing with I denoting the information set.

Examples of data streams in the realms of vehicles and production are given in Figure 4.2 and
4.3, respectively. As we can see, the means of transfer and the context of data streams in an
application may vary significantly.

Figure 4.2.: Exemplary topology of in-vehicle network topology in 2016 [32]

4.1. INFORMATION PROCESSING 73

Figure 4.3.: Examples of data streams for a production system

In applications, signal processing consists of several steps and depends on what information is
used. The basic step is always to measure with some sensing equipment. Using mechanics only,
such a signal can already be used to take action on the process. This was the standard approach
in the first industrial revolution, e.g., via the steam engine governor; see again Chapter 1. The
mechanical signal can also be transduced, i.e., pushed into an electric form. This allows for
monitoring processes, as in the second industrial revolution. The third step is to apply a converter
and shift the signal into digital form, which already allows to apply logic units to it (third industrial
revolution). Last, coding reveals state information, which can be included in higher computing
tasks.
The following Table 4.1 captures these steps.

Table 4.1.: Steps of signal processing

Attribute Method Attribute

State of system/process Sensing Measurement signal (arbitrary form)

Measurement signal Transducing Electric continuous signal

Electric continuous signal Converting Electric digital form

Electric digital signal Coding System/process state information

74

Figure 4.4.: Illustration of sensing, transducing, converting and coding, generated with chatgpt.com

Task 4.2
An example of such signal processing is a gyro, a device nowadays found in almost any

smartphone or motion platform. Assign the object’s amplifier, stator, A/D converter, and

Kalman filter in the correct sequence for a signal processing unit.

Solution to Task 4.2: The gyro sensor is built up as stator → amplifier → A/D converter →
Kalman filter.

Remark 4.3
Note that the reverse path from gathered system/process information to influencing the sys-

tem/process is equivalent but inverted in its sequence.

In today’s practice, various sensors can be found, which may to some extend already integrate all
of the steps above. In particular, we distinguish between

a sensor, which is a basic device that measures a physical quantity and outputs a raw signal

4.1. INFORMATION PROCESSING 75

without any internal processing. It performs only the transduction step by converting a
physical phenomenon into an electrical signal.

an integrated sensor, which includes not only the sensing element but also basic signal
conditioning electronics – typically amplification, filtering, linearization, and sometimes
normalization. It still does not „understand“ the process, but it provides a clean, ready-to-
use signal, and

an intelligent sensor, which integrates the sensing element, signal conditioning, and embed-
ded microelectronics for data processing, communication, and self-diagnostics. As such, it
generates information, not just conditioned signals.

These three types are schematically sketched in Figures 4.5–4.7.

Sensor Signal processing Processor

Meas. unit Sensor unit

Figure 4.5.: Standard sensor configuration

Integrated sensor Processor

Sensor Signal processing

Figure 4.6.: Integrated sensor

Intelligent sensor

Integrated sensor Processor

Figure 4.7.: Intelligent sensor

The choice of sensor depends on how deeply the underlying process is to be integrated into
higher-level management or supervisory systems. If a control system is intended to access not
only a particular machine or subsystem but a broader segment, then sufficiently rich and structured
information about the respective object must be available to the control layer. This requirement
naturally leads to the question of how such information can be transmitted, both reliably and in a
form that remains meaningful across different levels of the automation hierarchy.

76

4.2. Transmission networks and communication

structures

In the previous Chapter 2, we have already seen how edges in a network can connect objects.
While in that chapter, we thought of networks more in a physical way, i.e., goods to be transported
or tasks to be done, networks for information focus on the transmission of data/information.

Remark 4.4
Data and information are regularly used equivalently, although they are not. This confusion stems

from the problem that information gained from a single system/process, i.e., on a low level, may

only be primary data for the integration of systems/processes, i.e., on a higher level. Hence, the

same object is information for a control engineer on an operational (machine) level but data for

a planner on a tactical (layout) level or information for a planner but data for a data scientist on

a strategic (leading) level.

By definition of a network (cf. Definition 2.5), the connection of objects by edges depends on the
application to be modeled. There exist two trivial cases as shown in Figure 4.8:

1. If the network exhibits zero edges, then the network is completely disconnected.

2. If for each pair of distinct objects Oj, Ok with Oj ̸= Ok there exists an edge e = (Oj,Ok),
then the network is fully connected.

Figure 4.8.: Examples of fully connected and completely disconnected networks

In between these two extreme cases, a wide variety of possible topologies exist, which exhibit
certain advantages and disadvantages when it comes to the transmission of data/information.
Prototypes of such topologies are given in Figure 4.9.
Regarding practically relevant topologies, we obtain the (dis-)advantages shown in Table 4.2.

4.2. TRANSMISSION NETWORKS AND COMMUNICATION STRUCTURES 77

(a) Line (b) Bus

(c) Ring (d) Star (e) Meshed (f) Bus

Figure 4.9.: Different network topologies

Table 4.2.: Properties of communication topologies

Topology Advantages Disadvantages

Bus • Scalable • Not secure

• No additional network components

Star • Easily reducable • Large number of lines

• Secure • SPOF

• No routing

Ring • Easily extendable • Not secure

• No additional network components • Each object is SPOF

• Long transmission times

For the physical realization of such networks, a wide range of tethered and wireless options are
available. These are referred to as media.

Definition 4.5 (Network medium).
Consider a network (O, E). Then we call the physical possibility to realize edges e ∈ E network

medium NM.

Here, we consider only the different transmission media and refrain from discussing the numer-

78

ous protocol level or technology specific options that may operate on top of them. Nevertheless,
even at this fundamental level, the choice of medium has a significant impact on system behav-
ior, as each exhibits distinct physical characteristics, performance limits, and susceptibility to
disturbances. These differences directly influence achievable bandwidth, latency, robustness, in-
stallation complexity, and cost. For instance, wireless media may offer high flexibility but reduced
reliability in harsh industrial environments, whereas optical fibers provide excellent immunity to
electromagnetic interference at the expense of higher installation effort. The following Table 4.3
summarizes some basic properties and relates each medium to typical communication topologies,
highlighting how certain media naturally support or constrain the organization of networks within
automated systems.

Table 4.3.: Properties of communication media

Medium Advantages Disadvantages Topology Example

UTP1 Low costs Not secure Bus, ring, star ISDN

Simple patching Low throughput Ethernet

Low range

S/STP2 Simple patching High costs Star Ethernet

Medium throughput Not secure

Coaxial High throughput Difficult patching Bus BNC (Car)

High range Medium costs F-plug (TV)

Fiber optic High throughput High costs Star, ring LC (Router)

High range Difficult patching Soundbar

Not bus-compatible

Wireless No cables High costs Meshed, Star LTE/5G

No patching Not secure 802.11/15/16

As can be seen from the different media and topologies available, the technologies applied in the
examples shown in Table 4.3 can diverge quickly. To prevent this, the so-called ISO/OSI standard

1Unshielded twisted pair such as CAT3 to CAT5
2Screend shielded twisted pair such as CAT6/7

4.3. OPEN SYSTEM INTERCONNECTION 79

has been developed to ensure that all technologies and media can be used interchangeably at the
cost of additional components

Remark 4.6
Additional hardware components may be required if the selected media and topologies are not

inherently compatible. For instance, transitioning from a wired bus segment to an optical fiber

backbone necessitates the use of repeaters or media converters to bridge the physical-layer in-

compatibility. Similarly, integrating a wireless mesh segment into an otherwise line- or star-

structured wired network may require gateways that translate the physical medium, addressing

and timing behavior characteristic of the respective topology. These conversion points introduce

additional costs, latency and potential failure modes, meaning that the choice of media and net-

work topology cannot be considered in isolation. Instead, they must be evaluated together to

ensure seamless communication across heterogeneous system components.

4.3. Open system interconnection

The OSI (Open Systems Interconnection) reference model was developed to standardize com-
munication structures and behaviors across heterogeneous systems, thereby enabling interoper-
ability among devices, software components, and network technologies. This standardization
provides significant advantages to both users and developers/manufacturers of communication
components: users benefit from predictable behavior and interchangeability, while developers
can design modular communication interfaces without needing to tailor each solution to every
possible application scenario. However, as we learned in Chapter 3, any form of standardization
inherently introduces constraints and may reduce system optimality. The OSI model is no excep-
tion. In the context of information and communication, this degradation typically stems from the
fact that the reference model prescribes application-independent communication patterns. These
patterns are designed to be generic and broadly applicable, which means they may not perfectly fit
the specific timing, bandwidth, or reliability requirements of a particular industrial or embedded
application. As a result, additional overhead—such as header structures, protocol negotiation,
encapsulation, or abstraction layers—may be introduced solely to comply with a standardized
structure. The OSI model divides communication into seven distinct layers [13], each responsible
for a specific set of functions within the overall communication process. This layered approach
supports modularization and separation of concerns: higher layers can operate independently of
the underlying physical technology, while lower layers remain unaffected by application logic.
Figure 4.10 illustrates how the layers build on one another, forming a conceptual pipeline that
governs the transformation of data into signals, and ultimately into meaningful information ex-

80

changed between systems.

Physical layer: Allows transfer
of raw bit streams over a medium

Data link layer: Transmits frames between two nodes

Network layer: Provides functions and proce-
dures to transfer packets in multi-node network

Transport layer: Provides functions and procedures
to transfer data of variable length and maintains QoS

Session layer: Creates setup and con-
trols connection between two nodes

Presentation layer: Establishes data format-
ting and translation as well as encryption

Application layer: Provides functions
for services and network management

Figure 4.10.: Structure of the standardization process

As such, the OSI reference model is a network that upholds certain rules, which pay special
attention to the allowable links between objects.

Definition 4.7 (Layer).
Consider a network (O, E) with clustering S. Then we call the elements Lj ∈ S layers if

Lj ∩ Lk = ∅ (4.1)

∀Oj1 ∈ Lk, k < #S : ∃Oj2 ∈ Lk+1 ∧ (Oj1 ,Oj2) ∈ E (4.2)

∀Oj1 ∈ Lk, k > 1 : ∃Oj2 ∈ Lk−1 ∧ (Oj1 ,Oj2) ∈ E (4.3)

∀Oj1 ∈ Lk : ̸ ∃(Oj1 ,Oj2) ∈ E : Oj2 ̸∈ Lk−1 ∪ Lk+1 (4.4)

∀Oj1 ∈ Lk : ̸ ∃Oj2 ∈ Lk ∩ (Oj1 ,Oj2) ∈ E . (4.5)

In this sense, the OSI reference model is not a physical network but a rule-based structural net-
work. Its operation depends on these rules in the same way technical systems depend on physical
laws or organizational networks depend on coordination rules.

4.3. OPEN SYSTEM INTERCONNECTION 81

Note that the definition of layers within the OSI reference model is formulated from the perspec-
tive of a single, distinct node, whether this exists as a physical device, such as a sensor, controller
or server, or as a virtualized entity, such as a software-defined communication endpoint. The
model describes how this node structures, processes and exchanges information through its in-
ternal layer stack. Each layer is therefore a function of the node rather than a property of the
network as a whole. In a broader network-theoretic sense, however, such nodes are still treated
as interacting objects. The OSI layers define how each object behaves internally and prepares
data for interaction. However, the network emerges only from the interplay of many such objects
connected through communication links. Therefore, although the OSI model is node-centric,
communication is a system-level phenomenon shaped by the collective behavior of all intercon-
nected objects. As such, the OSI network links different nodes.
Hence, due to the layer structure in each of the nodes, there actually exist two networks. Ab-
stracting the latter, we obtain the following:

Definition 4.8 (OSI network).
Consider a network (O, E). Then we call it OSI network if

each object Oj ∈ O is itself a network consisting of 7 layers in the sense of Definition 4.7
and Figure 4.10,

for each edge (Oj,Ok) ∈ E there exist edges (Ojz ,Okz), z = 1, . . . , 7 connecting the
layers, and

for each communication process including more than two objects, only layers 1-3 exist for
intermediate objects.

Remark 4.9
The last condition in Definition 4.8 explicitly deals with the communication process, not the net-

work. In fact, Definition 4.8 shows us two networks, one for communication and one within the

objects for the respective layers.

For developers of programs, the first three layers are relevant as they can be adapted to application
specifications, whereas the lower four layers address the transport of information. In terms of
connectivity, the first five levels consider multi-hop and multi-destination problems, whereas the
lower two layers implement point-to-point communication, cf. Table 4.4.
The top four layers within the OSI reference are so-called host layers and deal with issues of the
host. On the other hand, the lower three layers are called media layers and focus on the specifics
of the respective media. In Figure 4.10, these layers are indicated by the different colors.

82

Table 4.4.: Layers in the OSI reference - Please Do Not Throw Salami Pizza Away

Layer Classification Connection Examples

Application DHCP, FTP, DNS

Presentation Application oriented MQTT, LDAP,

Session Multihop HTTP/S

Transport TCP, UDP

Network IP, IPX

Data link Transport oriented 802.11, MAC

Physical Point-2-point ARCNET

Here, we want to highlight some of the key properties of the respective layers:

1. The physical layer provides „physical“ means for communication, that is, mechanical, elec-
trical, optical, or other components to transmit bits. Hence, only 0 and 1 can be transmitted,
which induces some kind of coding.

2. On the data link layer, we are already dealing with frames, which are sets of bits combined
with being transmitted. The aim is to guarantee the most error-free transmission and ability
to access the medium. To this end, checks for successful transmission are made on the
receiving end, yet no corrections are considered.

3. The network layer deals with packets of frames and aims to choose the right way to the
destination while already avoiding congestion on the medium. To this end, this layer also
considers different ways to reach the target, which is called routing.

4. The transport layer slices the information to be transmitted into packets and serves as an
internal router by assigning a port for communication. By assigning a port, this layer also
converts data into technology dependent formats for the underlying layers.

5. The session layer organizes and synchronizes information transmission between two sys-
tems. As such, it supervises each connection and validates access permission.

6. The presentation layer converts the system depending representation of data into an inde-
pendent form, i.e., allows for syntactic abstraction but also for encryption or compression.

4.4. NETWORK ACCESS 83

7. Last, the application layer provides access to functions of lower layers and serves as a
mediator.

While the OSI reference model specifies how communication tasks are to be hierarchically de-
composed within each individual unit, it remains intentionally agnostic regarding the actual mech-
anisms through which communication channels are accessed. In other words, the model defines
what each layer is responsible for, but not how these responsibilities must be implemented in
practice. Consequently, the OSI model does not specify how communication channels shall be
accessed physically, logically, or timewise.
Hence, the OSI model tells us the „what“ but not the „how“.
These aspects are left to concrete communication technologies and protocols, which may interpret
or implement the OSI layers in markedly different ways.

4.4. Network access

We now want to transmit signals between objects in accordance with the OSI reference model.
To this end, we can draw upon the various communication structures and physical transmission
media discussed in Section 4.2 and combine them with the layered communication functions
introduced in Section 4.3. Our objective is to derive rules for how data is sent over a transmission
medium, specifically addressing whether, when, and in what order multiple objects may access
that medium. In other words, we are concerned not only with how information is processed inside
each node (as described by the OSI layers) but also with how multiple nodes share or compete
for use of the same physical channel.
Here, we talk about network access in the following sense:

Definition 4.10 (Network access).
Consider a network medium NM. We call any set of rules to access the network medium network

access NA.

As outlined before, these rules may depend on physics, logic and time, i.e. „how“ is „which“
object allowed to access the network medium „when“.
To exemplify the latter, we consider a simple two-sensor setup connected by a shared bus cable
(e.g., a CAN bus). Both sensors may wish to transmit temperature readings to a controller, but
the rules of the bus dictate that only one message can occupy the line at any moment. The access
mechanism is a time based procedure, which ensures that collisions are avoided by predefined
time slots for medium access.

84

If we use the same network setting together with a wireless network medium, then the objects
may rely on carrier sensing to detect whether the channel is free before transmission.
Considering these two cases, we see that the first one is time triggered while the second one
applied logic rules.
Generalizing the latter example, we have to distinguish two forms of network access, that is,
deterministic and probabilistic methods.

Definition 4.11 (Deterministic network access).
Consider a network (O, E) together a network medium NM and network access NA. If

NA is time-based or fixed for all O and

the transmission and response time are bounded and known,

then we call NA a deterministic network access method.

Definition 4.12 (Probabilistic network access).
Consider a network (O, E) together a network medium NM and network access NA. If NA is
event-based, then we call it a probabilistic network access method.

Why are these two forms relevant: The deterministic network access is only applicable if the
objects themselves and the network medium can be characterized (more or less) completely. Such
an implementation makes sense if the overall process will not be changed and no modifications
will be made. This is typically the case for production lines. Examples of such network access
methods are given in Table 4.5.

Table 4.5.: Deterministic network access methods

Method Advantages Disadvantages

Master/Slave Master periodically asks slaves whether they want to access the network
medium.

Simple organization Max. latency proportional to the
number of objects

Guaranteed response time communication if master fails

Continued on next page

4.4. NETWORK ACCESS 85

Table 4.5 – continued from previous page

Method Advantages Disadvantages

Token passing Token is handed over to net object in a ring topology.

High performance capability Long delays in case of errors

Required surveillance of token

TDMA3 Each object has one/multiple time slots for network access in a cyclic
period.

Short and constant cycle time Required synchronization of time

Low overhead

In contrast to deterministic methods, probabilistic methods are more suitable for changing en-
vironments, a changing number of objects, and modifications to applications which result in
different response times. The idea of these methods is to constantly listen to the network medium
and start network access if the medium is available. While being very flexible, such methods also
show structural shortcomings. In the following Table 4.6, we characterize a few of these methods.

Table 4.6.: Probabilistic network access methods

Method Advantages Disadvantages

CSMA4 Easily extendable Not realtime capable

No coordination required Requires permanent listening

CSMA-CD5 Detect collisions of packages via data matching, resends after object
specific waiting time.

Short latency in low load case Long waiting times in high load
case

Continued on next page

3Time Division Multiple Access
4Carrier Sense Multiple Access
5Carrier Sense Multiple Access - Collision Detection

86

Table 4.6 – continued from previous page

Method Advantages Disadvantages

CSMA-CA6 Avoids collisions by priority rules.

Allocation of time slots possible Required fixed rules

Apart from the network access, also the format of transmission itself is of interest. As the format
differs depending on the network medium and the used protocol, we will not go into detail but
focus on the big picture along the OSI reference model. Figure 4.11 provides an overview of how
data is split and appended by network and transmission information to be ready for transmission/-
transport using the OSI layers.

Application

Presentation

Session

Transport

Network

Data link

Physical

Data

Netw. header Data

Frame header Netw. header Data Frame trailer

1 0 1 0 0 1 1 0 0 1 1

Segment

Packet

Frame

Bits

Application

Presentation

Session

Transport

Network

Data link

Physical

Figure 4.11.: Transforming network communication to bits

As an illustrative example, Figure 4.12 depicts the structure of a typical CAN bus frame together
with its corresponding physical-bit representation using pulse-width–modulated (PWM) signal-
ing.

6Carrier Sense Multiple Access - Collision Avoidance

4.4. NETWORK ACCESS 87

Figure 4.12.: CAN bus frame [31]

The upper part of the figure highlights the logical organization of a CAN message—such as
the start-of-frame bit, arbitration field, control field, data field, CRC sequence, and end-of-frame
bits—while the lower part shows how these logical bits are translated into the actual dominant and
recessive signal levels transmitted on the bus. This juxtaposition makes it clear how the abstract,
protocol-level frame format is encoded on the physical layer and how bit timing, synchronization,
and arbitration arise directly from the underlying signal pattern.

Summing up, communication provides the structural foundation upon which we may now build
control in automated systems. While the previous section focused on how information is gen-
erated, transmitted, and organized across heterogeneous devices and networks, the subsequent
control part addresses how this information is transformed into decisions and actions. In other
words, communication enables the availability and integrity of data, whereas control relies on
this data to interpret system behavior, compute control laws, and influence the physical process.
Only through the seamless interaction of both domains can an automated system function reliably,
adapt to disturbances, and achieve its intended performance. The following Chapter 5 therefore
builds directly on the communication structures established so far and shows how they serve as
the input channels for monitoring, feedback, and decision-making.

CHAPTER 5

CONTROL

Generated with chatgpt.com

Feedback is the breakfast of champions.

Ken Blanchard

90 5. CONTROL

In Chapter 1, the fundamental concepts of feedforward and feedback control were introduced.
Although conceptually simple, these two complementary control paradigms constitute the core
building blocks of automation systems. Feedforward control enables proactive compensation
of measurable disturbances and reference changes, while feedback control ensures robustness
against uncertainties, unmodeled dynamics, and external perturbations by continuously correcting
deviations from the desired system behavior.
Together, feedforward and feedback control establish the functional link between lower-level
control loops and higher-level automation tasks, such as system integration, optimization, super-
vision, and planning, cf. Figure 5.1. In this sense, classical control loops form the technical foun-
dation upon which higher abstraction layers are built ranging from coordination and scheduling
up to normalization and production planning. Without this reliable and well-understood control
backbone, advanced automation functionalities at the planning and optimization levels cannot be
implemented in a stable and reproducible manner.

Planning System planning Lean planning

Normal Modularization Standardization Automation

Integration Industrial cloud Industrial internet CPS

Optimization Industrial big data Knowledge management

Leading AI Ecosystem

Capacity planning
Process optimization

Waste elimination

Path planning

Standard interface Digital drive

Interfacing Unit integration

Fusion Modeling

Interconnection System integration

Emergence Decision support

Chain integration

Figure 5.1.: Information in the integrated implementation path of automation

In industrial production systems, the interplay of feedforward and feedback control is a standard
design principle. For example, in high-speed manufacturing systems such as printing machines,
packaging lines, and CNC machining centres, feedforward control is often derived from reference
trajectories or process models in order to achieve high dynamic accuracy. Feedback loops then
compensate for wear, friction, modelling uncertainties, and external disturbances. This layered
control structure is essential in industrial practice, as it ensures reproducibility, scalability, and
maintainability across different machines and production sites.
A closely related design philosophy can be observed in automotive systems, where feedforward
and feedback control form the basis of almost all mechatronic subsystems. In engine and power-

4.4. NETWORK ACCESS 91

train control, feedforward maps obtained from calibration data are used to compute actuator com-
mands—such as fuel injection, air mass, and ignition timing—based on current operating con-
ditions. Feedback loops complement these maps by ensuring compliance with emission, torque,
and drivability targets under varying environmental conditions and ageing effects.

Figure 5.2.: Illustration of feedforward and feedback in production and automotive, generated with chat-
gpt.com

Against this background, this chapter focuses on the feedback part of such control architectures,
using the widely applied PID controller as a representative example. While the PID controller
is inherently limited to single-input–single-output (SISO) systems, it provides a transparent and
practically relevant starting point for understanding feedback mechanisms. To overcome its struc-
tural limitations and to reflect industrial practice more accurately, the basic PID loop is subse-
quently extended by precontrol and prefilter structures, which allow additional feedforward in-
formation to be integrated into the control loop. However, real industrial and automotive systems
rarely consist of a single controlled variable and a single actuator. Instead, multiple inputs must be
computed and multiple outputs must be regulated simultaneously. Such systems are referred to as
multi-input–multi-output (MIMO) systems. The transition from SISO control concepts to MIMO
systems therefore forms a natural next step and serves as an entry point for linking higher-level
automation tasks with machine-level control structures, which will be addressed in the subsequent
chapters.

92

5.1. Feedforward and feedback control

In Definitions 1.10 and 1.11, two fundamental control concepts — feedforward and feedback —
were introduced. Although closely related, these concepts differ fundamentally in how control
actions are generated.
Roughly speaking, feedforward control prescribes control actions to be applied at specified time
instants, independent of the measured system response. Consequently, a feedforward strategy can
be interpreted as a mapping from time to control input. In contrast, feedback control determines
control actions based on the observed behavior of the system. In this case, the control input is
generated as a function of the measured output (or state), yielding a mapping from output to input.
To formalize these concepts, we recall the definition of a nonlinear control system given in state-
space form:

ẋ(t) = f (x(t), u(t), t), x(t0) = x0

y(t) = h(x(t), u(t), t).
(1.1)

In order to derive a meaningful feedback law for such a system, a desired system behavior must
be specified. This is achieved by introducing a reference signal, which encodes the intended
evolution of the system output over time.

Definition 5.1 (Reference).
Given a system (1.1), we call w : T → Y a reference.

Figures 5.3 and 5.4 illustrate the corresponding information paths for feedforward and feedback
control, respectively, highlighting the fundamental difference in how control actions are generated
and applied.

Control
t Systemu y

Figure 5.3.: Simple feed forward

Control
w +

Systemu y

−

Figure 5.4.: Simple feedback

5.1. FEEDFORWARD AND FEEDBACK CONTROL 93

Remark 5.2
Note that both Figure 5.3 and 5.4 resemble a network consisting of objects (system, control) and

edges (time input, reference input, control input/output and measurement output).

In practical control applications, feedforward and feedback are rarely used in isolation, but are
typically combined in a complementary manner. While both concepts aim at influencing system
behavior toward a desired objective, they exhibit fundamentally different properties with respect
to robustness, anticipation, and disturbance rejection. These differences become particularly evi-
dent when considering intuitive real-world examples.

Task 5.3
Discuss the concepts of feed forward and feedback in driving situations. Highlight disadvan-

tages.

Solution to Task 5.3:

A feedforward strategy in driving is comparable to studying a road map or navigation
plan in advance and deriving a route from a starting point to a destination. The resulting
plan specifies where and when certain actions should be taken, independent of the
actual driving situation encountered later.

A feedback strategy corresponds to steering, accelerating, and braking a vehicle based
on its current state, as obtained from measurements and perception of the surrounding
environment (e.g., vehicle speed, lane position, other traffic participants).

The downsides for this particular example are:

A purely feedforward approach lacks information about unforeseen disturbances and
dynamic changes. For instance, a preplanned route does not account for sudden braking
of a vehicle ahead, traffic jams, or road closures.

A purely feedback-based approach reacts only to the current situation and does not
exploit available preview information. As a consequence, the driver may follow a
locally reasonable path but unknowingly enter an unfavorable or even dead-end route.

On a more generic view, the concepts exhibit the advantages and disadvantages given in Table 5.1.

94

Figure 5.5.: Illustration of shortcomings of pure feedforward and pure feedback in driving, generated with
chatgpt.com

Table 5.1.: Advantages and disadvantages of feed forward and feedback

Method Advantages Disadvantages

Feed forward Integrates external knowledge May show infeasible solutions

Plans ahead via simulation Requires good model

Addresses KPIs

Feedback Guarantees stable behavior May end in unwanted operating points

Reacts to circumstances Requires theoretical insight

Addresses system properties

While feedback control is conceptually more demanding than feedforward control, it constitutes
the fundamental enabling mechanism for higher-level automation tasks. In particular, feedback
provides robustness with respect to disturbances, uncertainties, and modeling errors, which is
indispensable for reliable operation in real-world systems. For this reason, we first focus on
feedback control and its properties before integrating feedforward structures into such loops in
Section 5.2.

5.1.1. PID control

Among feedback controllers, PID control — proportional–integral–derivative control — is by
far the most widely used approach in industrial practice. Its popularity stems from its simple

5.1. FEEDFORWARD AND FEEDBACK CONTROL 95

structure, intuitive tuning parameters, and its effectiveness across a wide range of applications.
Formally, a PID controller is defined as follows.

Definition 5.4 (PID control).
Consider a system (1.1). Then we call u : Y → U given by

u(t) = KP · (w(t)− y(t)) +
t∫

t0

KI · (w(τ)− y(τ)) dτ +
∂

∂t
(KD · (w(t)− y(t))) (5.1)

PID controller. The parameters KP, KI and KD are called proportional, integral and derivative
gains.

Remark 5.5
Note that typically, a PID controller is designed in frequency domain using Laplacian and Inverse

Laplacian transform.

Link: For further details regarding PID control, we refer to the lecture Control Engineering 1
(Regelungstechnik 1).

Like any feedback controller, a PID controller is introduced to enforce desirable dynamical prop-
erties around specific system configurations, commonly referred to as operating points. Operating
points represent steady-state conditions at which a system or process is intended to operate, such
as temperatures at which a 3D printer is most efficient or vehicle speeds that minimize fuel con-
sumption.

Definition 5.6 (Operating point).
Consider system (1.1). Then the pairs (x⋆, u⋆) satisfying

f (x⋆, u⋆) = 0 (5.2)

are called operating points of the system. If (5.2) holds true for any u⋆, then the operating point
is called strong or robust operating point.

Remark 5.7
We like to point out that in industrial practice we typically linearize a system around an operating

point and design the feedback for this linearization.

96

Link: For the overall nonlinear system, different types of controller designs are available.
For details, we refer to the lecture Control Engineering 2 & 3.

5.1.2. Stability

As discussed earlier, the primary system property of interest in control design is stability. Infor-
mally, stability means that if the system is initially at an operating point, it remains there, and if
it is perturbed away from this point, the system trajectories remain close to — or converge back
to — the operating point.
Building upon Definition 5.6, we can introduce different notions of stability, such as stability and
asymptotic stability, as well as related concepts like robustness and controllability. The precise
interpretation of these properties depends on whether the control input u is regarded as an actively
designed control signal or as an external disturbance acting on the system.

Definition 5.8 (Stability and Controllability).
For a system (1.1) we call x⋆

strongly or robustly stable operating point if, for each ε > 0, there exists a real number
δ = δ(ε) > 0 such that for all u we have

∥x0 − x⋆∥ ≤ δ =⇒ ∥x(t)− x⋆∥ ≤ ε ∀t ≥ 0 (5.3)

strongly or robustly asymptotically stable operating point if it is stable and there exists a
positive real constant r such that for all u

lim
t→∞

∥x(t)− x⋆∥ = 0 (5.4)

holds for all x0 satisfying ∥x0 − x⋆∥ ≤ r. If additionally r can be chosen arbitrary large,
then x⋆ is called globally strongly or robustly asymptotically stable.

weakly stable or controllable operating point if, for each ε > 0, there exists a real number
δ = δ(ε) > 0 such that for each x0 there exists a control u guaranteeing

∥x0 − x⋆∥ ≤ δ =⇒ ∥x(t)− x⋆∥ ≤ ε ∀t ≥ 0. (5.5)

weakly asymptotically stable or asymptotically controllable operating point if there exists a
control u depending on x0 such that (5.5) holds and there exists a positive constant r such

5.1. FEEDFORWARD AND FEEDBACK CONTROL 97

that

lim
t→∞

∥x(t)− x⋆∥ = 0 ∀∥x0 − x⋆∥ ≤ r. (5.6)

If additionally r can be chosen arbitrary large, then x⋆ is called globally asymptotically

stable.

Task 5.9
Draw solutions of systems for each of the cases in Definition 5.8.

Remark 5.10 (BIBO stability)
In some books, the concept of strong/robust stability is also termed BIBO (bounded input bounded

output) stability.

The standard example in control is the inverted pendulum on a cart, cf. Figure 5.6.

Figure 5.6.: Illustration of inverted pendulum on a cart, generated with chatgpt.com

To understand strong asymptotic stability ,we consider the downward position of the rod. Due
to friction, the rod will converge into this state eventually. More generally speaking, the stability

98

property is inherent to the system dynamics and therefore does not depend on the specific choice
of the control input. In such cases, the role of the control law is not to ensure stability itself, but
rather to shape the transient behavior and steady state performance of the system, for instance
with respect to convergence speed, overshoot, energy consumption, or robustness margins.
In contrast, the concept of weak stability is reflected by the upward position. Here, stability of the
operating point is no longer guaranteed by the system alone, but instead must be actively enforced
by a suitably designed control law. This naturally raises the question of how to construct control
laws that render a given operating point weakly stable or asymptotically stable, and, beyond
mere stability, how to assess and compare the quality of different control strategies in terms of
performance, robustness, and implementation constraints.

Link: Methods on how computing and characterizing control laws stand at the core of the
lectures Control Engineering 1 & 2.

5.2. Prefilter and precontrol

As previously outlined, the path of automation (Figure 5.1) requires the systematic integration
of higher-level planning functions with lower-level control mechanisms. Conceptually, plans
generated at higher levels of the automation hierarchy naturally take the form of feedforward
actions, whereas execution and regulation at the machine level rely on feedback control to cope
with disturbances and uncertainties.
Below, we consider fundamental control structures that enable the integration of feedforward and
feedback within a single control loop. These structures offer a systematic approach to incorpo-
rating anticipatory information from higher-level planning while maintaining the robustness and
stability guarantees provided by feedback control. Two common realizations of this integration
in practice are precontrol and prefilter structures, illustrated in Figures 5.7 and 5.8, respectively.

w +
Feedback uR

+
Systemu y

−

Feed forward uF

+

Figure 5.7.: Structure of a precontrol

5.2. PREFILTER AND PRECONTROL 99

Feed forward uP
w +

Feedback uR Systemu y

−

Figure 5.8.: Structure of a prefilter

Remark 5.11
It is important to emphasize that, in the considered structures, the feedforward path does not

interfere with the feedback loop. As a consequence, the stability properties of the closed-loop

system are preserved. The presented architectures therefore allow us to systematically combine

the complementary strengths of feedforward and feedback control: anticipatory action on the one

hand and robustness against disturbances and uncertainties on the other.

The precontrol structure shown in Figure 5.7 and the prefilter structure shown in Figure 5.8 both
enable a simultaneous treatment of reference tracking via feedback and anticipation via feedfor-
ward. However, they differ fundamentally in where the feedforward action is introduced and how
it is designed.
The design of a precontrol proceeds in two steps:

Algorithm 5.12 (Design precontrol)
Consider a control system as illustrated in Figure 5.7.

(1) Design the feed forward uF(t) to be (approximately) the inverse of the open loop sys-
tem (1.1).

(2) Design the feedback uR(y) such that desired properties such as stability are guaranteed as
good as possible.

In contrast, the design of a prefilter follows the reverse logic:

Algorithm 5.13 (Design prefilter)
Consider a control system as illustrated in Figure 5.8.

(1) Design the feedback uR(y) such that desired properties such as stability are guaranteed as
good as possible.

(2) Design the feed forward uP(t) to be (approximately) the inverse of the closed loop sys-
tem (1.1) with feedback uR(y).

100

Remark 5.14
From a functional perspective, the two approaches operate in different domains: the prefilter is

a mapping uP : T → Y , acting directly on the reference signal, whereas the precontrol defines

a mapping uF : T → U , acting on the system input. Consequently, prefilter and precontrol

address distinct aspects of the control problem and are suited to different modeling assumptions

and implementation constraints.

It is worth noting that precontrol, in contrast to prefiltering, is designed independently of the
closed-loop dynamics. Consequently, once a precontrol has been constructed, it does not need to
be modified if the feedback controller is subsequently retuned or replaced. In this sense, precon-
trol provides a higher degree of modularity with respect to feedback redesign.
Despite this structural difference, the two approaches are fundamentally equivalent in terms of
their achievable closed-loop behavior, as stated in the following result.

Theorem 5.15 (Equivalency precontrol and prefilter).
Suppose a system (1.1) to be given. Then

for every precontrol defined via Algorithm 5.12 there exists a prefilter, which exhibits an

identical closed loop, and

for every prefilter defined using Algorithm 5.13 there exists a precontrol, which exhibits an

identical closed loop.

The integration of feedforward and feedback discussed above directly reflects the connection
between the integration, optimization, and leading levels and the normalization and planning
levels in the path of automation. At this stage, however, both precontrol and prefilter structures
are restricted to single-input–single-output (SISO) systems.
Recalling the general structure of an automated system or process introduced in Chapter 1 (cf.
Figure 5.9), we have now established all essential concepts required to analyze and design control
architectures for systems with a single input and a single output. While this setting provides a
transparent and instructive foundation, it is inherently insufficient for most real-world automation
applications.
In manufacturing systems, such as CNC machining centers or printing and packaging lines, mul-
tiple actuators (e.g., drives, spindles, and feeders) simultaneously influence multiple quality-
relevant outputs (e.g., position accuracy, surface quality, and throughput). Strong coupling ef-
fects, timing constraints, and shared resources make it impossible to treat each input–output pair
independently without sacrificing performance or stability.

5.2. PREFILTER AND PRECONTROL 101

SystemActuators Sensors

Environment

Monitoring & Control

OperatorObjectives

DisturbanceDisturbance

Disturbance

Figure 5.9.: Structure and process of automated systems

Similarly, in automotive systems, even seemingly simple functions such as longitudinal vehicle
control involve multiple interacting inputs and outputs, i.e. engine torque, braking force, and
transmission state jointly affect vehicle speed, fuel consumption, and emissions. In such settings,
a purely SISO based control perspective neglects essential cross-couplings and interaction effects.
These examples illustrate that modern automation systems are intrinsically multi-input–multi-
output (MIMO) in nature. Consequently, extending the concepts developed so far to multi-
variable systems is not merely a theoretical generalization, but a practical necessity for achieving
robust, high-performance control in real-world applications.
At the same time, the overarching objective of automation engineering — and in particular of
paradigms such as Industrie 4.0 and the Industrial Internet of Things (IIoT) — is to enable op-
eration at a potentially global and interconnected scale. This shift from isolated machines to
networked systems introduces additional challenges related to communication, coordination, and
scalability. To address these aspects, the following Chapter 6 investigates how large scale automa-
tion systems can be structured and interconnected. Building on this architectural foundation, we
subsequently turn to centralized, decentralized, and distributed control and optimization formu-
lations in Chapter 7, where coordination, optimization, and leading tasks across interconnected
subsystems are systematically addressed.

Part II.

Integration, optimization and leading

CHAPTER 6

NETWORKING

Generated with chatgpt.com

Everything that can be automated will be automated.

Robert Cannon

106 6. NETWORKING

In the preceding chapters, control concepts were developed primarily in the context of single-
input–single-output (SISO) systems. This setting allowed us to introduce feedback, feedforward
and their integration in a transparent manner. In particular, PID control exploits a clear separa-
tion between time-domain error dynamics and a single control channel, enabling straightforward
interpretation and tuning.
However, most real-world automation systems cannot be adequately described by a single manip-
ulated variable and a single measured output. Instead, multiple actuators simultaneously influence
multiple outputs, often in a coupled and time-varying manner. Such systems are referred to as
multi-input–multi-output (MIMO) systems and form the dominant class of systems in practical
applications. While we technically already considered such a setting in our planning Chapter 2
using networks, we left out the components communication and information as well as control
and coordination. Considering our path of automation, Figure 6.1 shows the components we
consider in this chapter.

Planning System planning Lean planning

Normal Modularization Standardization Automation

Integration Industrial cloud Industrial internet CPS

Optimization Industrial big data Knowledge management

Leading AI Ecosystem

Capacity planning
Process optimization

Waste elimination

Path planning

Standard interface Digital drive

Interfacing Unit integration

Fusion Modeling

Interconnection System integration

Emergence Decision support

Chain integration

Figure 6.1.: Information in the integrated implementation path of automation

A classical approach to coping with complexity in interconnected systems is decoupling. Anal-
ogous to PID control in the SISO case—where proportional, integral, and derivative actions sep-
arate different temporal effects—MIMO systems are often simplified by attempting to decouple
them along different dimensions:

state-based decoupling, separating subsystems by buffers or intermediate storage,

time-based decoupling, separating processes through scheduling, batching, or waiting times,

control-based decoupling, separating control loops by treating interactions as disturbances.

6.1. DECOUPLING 107

While these approaches outlined in the following Section 6.1 are simple to apply and have been
widely used in industrial practice, they come at a cost. In manufacturing systems, such as CNC
machining centers, printing presses, or packaging lines, we observe strong coupling between
drives, spindles, thermal effects, and quality metrics. Treating such systems as collections of
loosely coupled SISO loops neglects essential interaction effects and quickly reaches its limits.
Similarly, in automotive systems, longitudinal and lateral dynamics, powertrain, thermal man-
agement, and energy storage are tightly interconnected, making decoupling-based simplifications
increasingly inadequate.
MIMO control seeks to explicitly account for interactions, coupling effects, and constraints, rather
than masking them through decoupling. This enables coordinated control actions, improved per-
formance, and more efficient use of resources. While the standard PID idea can be pursued in the
case of two inputs and two outputs, such as procedure falls short in terms of scalability as we will
see in Section 6.1.3.
To overcome this deficiency, we first introduce the concept of digital twins in Section 6.2, i.e.,
digital representations of physical systems that combine first-principles models with measurement
data and operational knowledge. In the context of MIMO systems, digital twins allow interaction
effects to be analyzed, monitored, and exploited rather than suppressed. The digital twin concept
is a key enabler of cyber-physical systems (CPS), in which computation, communication, and
physical processes are tightly integrated. We capture CPS architectures in Section 6.3 to allow
continuous interaction between the physical system and its digital counterpart, enabling real-time
monitoring, prediction, and control without being bound by the physical limitations of the plant
or vehicle, particularly with respect to computing power and information availability.
In the extension of cyber-physical systems, we discuss the ideas of Industrie 4.0 and the Indus-
trial Internet of Things (IIoT) in Section 6.4. These move beyond individual machines or vehicles
toward large-scale, networked systems. Industrial cloud infrastructures provide services such as
Infrastructure as a Service (IaaS) and Software as a Service (SaaS), enabling scalable computa-
tion, centralized data access, fleet-level analytics, and coordinated optimization across distributed
assets. This leads us to the service of an Industrial Internet forming the conceptual and techno-
logical basis for addressing large-scale optimization and leading problems.

6.1. Decoupling

To understand why emerging technologies such as the industrial cloud, the industrial internet,
and cyber-physical systems can have a profound impact on automation engineering, it is first
necessary to examine how interconnection and system integration are traditionally addressed. A
fundamental principle in engineering is to keep systems as simple as possible. When applied

108

to interconnection and integration, this principle typically leads to an attempt to separate and
decompose systems or processes such that couplings between them are minimized or ideally
eliminated.
While this approach has proven effective for many classical automation tasks, it increasingly
reaches its limits as systems grow in complexity, speed, and scale. To formalize this discussion,
we introduce the following definition.

Definition 6.1 (MIMO system).
Consider a system

ẋ(t) = f (x(t), u(t), t), x(t0) = x0

y(t) = h(x(t), u(t), t).
(1.1)

Then we call the system to be multi input multi output (MIMO) if∥∥∥∥∥ ∂2y
∂aj∂ak

∥∥∥∥∥ ≥ θ (6.1)

for some aj, ak ∈ {y1, . . . , yny , u1, . . . , unu , t} with θ ∈ R+.

The threshold parameter θ indicates the degree of coupling of the inputs and outputs. Hence, if
there exists no pair aj, ak for which (6.1) holds true, then all components can be treated indepen-
dently. Still one has to keep in mind that the threshold allows for certain small impacts, hence
the control of the independently designed systems should be capable to suppress disturbances
emanating from other systems.
Before coming to approaches for decoupling, we want to highlight that coupling occur on various
levels and variables. Examples for strongly coupled outputs are

pressure and temperature for steamers,

position, velocity and force for robot arms, or

produced parts in serial production lines.

Coupled inputs may be

position control of multiple drives for robots,

roll and yaw angle control for flying curves with an aircraft, or

temperature, pH measurement and biomass distribution for bio reactors.

In the remainder of this section, we briefly discuss classical approaches that aim to decouple
systems and processes by exploiting state variables, time separation, or control structure design,
and we highlight the fundamental limitations associated with each of these approaches.

6.1. DECOUPLING 109

6.1.1. Decoupling of states and outputs

The most fundamental and widely used decoupling approach is state-based decoupling. The
underlying idea is to partition the system into subsystems by assigning distinct state variables to
each part. If two states are dynamically coupled, this coupling becomes observable only through
their influence on the corresponding outputs yj and yk. Consequently, state-based decoupling
aims to isolate state dynamics such that interactions between subsystems are minimized or treated
as disturbances at the output level.

System
uj

uk

yj

yk

Figure 6.2.: MIMO system with two inputs and two outputs

From (6.1), we directly obtain ∥∥∥∥∥ ∂2y
∂yj∂yk

∥∥∥∥∥ ≥ θ. (6.2)

The idea to decouple these two outputs is to add a new state

xjk(t) := yj(t)− yk(t)

to the system eliminating the coupling. While introducing the new state solves the pure coupling
problem at least mathematically, the downside is that the new state sums up all coupling problems.
In industrial production systems, this principle is commonly applied by introducing buffers or
intermediate storage. For example, in serial manufacturing lines, individual machines are often
decoupled by workpiece buffers. The internal states of one machine — such as tool wear, spindle
dynamics, or local thermal conditions — do not directly affect the next machine, but only become
visible through output variables such as part availability or dimensional deviations. While this
approach simplifies local control design, it introduces inventories and reduces overall system
responsiveness.
A similar strategy can be found in automotive systems, where subsystems are often decoupled
at the state level to simplify control design. For instance, in vehicle powertrain architectures,
engine, transmission, and drivetrain dynamics are frequently treated as separate subsystems, with
their interaction limited to torque or speed signals. Internal states such as combustion dynam-

110

ics or clutch temperature are hidden from neighboring controllers and only manifest themselves
through measurable outputs. While this facilitates modular development, it can lead to suboptimal
coordination and delayed reactions under highly dynamic driving conditions.
Note that such an approach is good to compensate for fluctuations, yet not for system/process
instabilities. Hence, it can only be used to a certain extend, i.e. until the capacity is reached.

Table 6.1.: Advantages and disadvantages of output decoupling

Advantage Disadvantage
✓ Simple separation ✗ Induces storage
✓ Small additional load ✗ Unable to treat instabilities

6.1.2. Decoupling of time

An alternative to decoupling via states or outputs is decoupling in time. Similar to the state-based
case, coupling between outputs can be characterized by∥∥∥∥∥ ∂2y

∂yj∂yk

∥∥∥∥∥ ≥ θ,

indicating a significant interaction between output components. Instead of structurally separat-
ing subsystems, time decoupling exploits temporal separation by executing coupled actions at
different time instants. Formally, this is achieved by redefining the output signals via

yj(t) = η(t) · yj(t)

yk(t) = η(t − δ) · yj(t)

for some temporal shift δ > 0. Here, η(·) is the Heaviside function

η(t) =


0, t < 0

undefined, t = 0

1, t > 0

representing a unit jump. While mathematically eliminating the coupling at a specific point in
time t, the result of a time decoupling is that system/process steps are executed consecutively.
In practical terms, time decoupling transforms a parallel control problem into a sequence of tasks,
thereby eliminating simultaneous interactions. This approach is widely used in industrial pro-

6.1. DECOUPLING 111

duction systems. For example, in robotic manufacturing cells, operations such as positioning,
welding, and inspection are often executed sequentially rather than concurrently. By separating
motion and processing phases in time, complex multi-variable interactions are avoided, simplify-
ing control design at the expense of cycle time.
A similar strategy appears in automotive systems, particularly in vehicle testing, calibration, and
operation management. For instance, certain engine diagnostics or actuator calibrations are per-
formed only during specific operating phases (e.g., idle or steady cruising), deliberately avoiding
periods of high dynamic coupling such as acceleration or gear shifts. Likewise, advanced driver
assistance systems may temporarily deactivate or sequence control functions to prevent interfer-
ence between longitudinal and lateral control tasks.
While time decoupling is effective in reducing control complexity, it introduces inherent limita-
tions. Most notably, it leads to time delays and reduced throughput, as coupled actions cannot
be executed in parallel. Moreover, changes in process timing often require program-level adapta-
tions, making such approaches less flexible in highly dynamic or reconfigurable systems. These
characteristics are summarized in Table 6.2.

Table 6.2.: Advantages and disadvantages of time decoupling

Advantage Disadvantage
✓ Simple separation ✗ Induces time delays
✓ No additional load ✗ Requires program adaptation

6.1.3. Decoupling of control

In contrast to state- or time-based decoupling, decoupling at the control level is significantly more
involved. Rather than separating subsystems structurally or temporally, control-based decou-
pling explicitly compensates for interactions between inputs and outputs through appropriately
designed control laws.
Focusing on the setting illustrated in Figure 6.2, we observe that coupling between inputs and
outputs can occur in two fundamentally different ways. These two interaction patterns correspond
to feedforward-like and feedback-like structures and are formalized by the following canonical
representations.

Definition 6.2 (P canonical structure).
Consider a system with two inputs and two outputs. If the coupling of inputs to outputs exhibits

112

a feed forward structure as shown in Figure 6.3a where Pjk is the transfer function of input uk to
output yj for all j and k, then we call it P canonically structured.

Definition 6.3 (V canonical structure).
Consider a system with two inputs and two outputs. If the coupling of inputs to outputs exhibits a
feedback structure as shown in Figure 6.3b where Vjk are the respective transfer functions for all
j and k, then we call it V canonically structured.

Pjj

Pkj

Pjk

Pkk

uj yj

uk yk

(a) P canonical structure

Vjj

Vkj

Vjk

Vkk

uj yj

uk yk

(b) V canonical structure

Figure 6.3.: Canonical structures of MIMO systems with two inputs and two outputs

Both structures are often found in practice showing the properties given in Table 6.3.

Table 6.3.: Properties of P and V canonical structure

P canonical structure V canonical structure
✓ Direct correspondence to transfer ma-

trix
✗ Required transformation of transfer

matrix
✗ Typically no connection to modeling ✓ Direct derivation via modeling
✓ Easy to treat ✗ Difficult to treat
✗ Typically no equivalent of Pjk, Pkj in

real system
✓ Equivalent of Vjk, Vkj in real system

✗ Physical interpretation questionable ✓ Physical interpretation given

6.1. DECOUPLING 113

P canonical structures typically arise from input–output transfer descriptions, for instance in
frequency-domain models of machine tools or drive systems. In contrast, V canonical struc-
tures often reflect the physical interconnection of subsystems, such as force–motion feedback in
robot arms or torque–speed feedback loops in automotive powertrains. Since the P canonical
structure is more amenable to classical control design techniques, V canonical systems are often
transformed into an equivalent P canonical representation. To this end, we have

Theorem 6.4 (Equivalence P and V canonical structure).
Consider two systems with two inputs and two outputs to be given. Suppose one system is in P

canonical structure and one in V canonical structure. If[
Pjj Pjk

Pkj Pkk

]
=

[
1 −Vjj · Vjk

−Vkk · Vkj 1

]−1

·
[

Vjj 0
0 Vkk

]
(6.3)

holds, then both systems are equivalent.

In production systems, such transformations are commonly applied when converting physically
motivated models — such as coupled thermal–mechanical dynamics in CNC machines — into
representations suitable for controller synthesis.
Similarly, in automotive systems, V canonical feedback structures naturally arise from drivetrain
and vehicle dynamics, while P canonical structures are preferred for controller implementation
and calibration.
Regarding decoupling, we define the following:

Definition 6.5 (Decoupling control).
Consider a system with two inputs and two outputs in P canonical structure. If the control exhibits
the structure given in Figure 6.4 where Sjk is the transfer function of input uk to output yj for all
j and k, then we call it decoupling control.

The fundamental idea of decoupling control is to interpret cross-couplings as disturbances and to
actively cancel or attenuate them through additional control paths. This enables the application
of standard SISO design techniques to the resulting decoupled subsystems.
In industrial production, this approach is widely used in multi-axis motion control, for example
in high-speed CNC machining. Cross-couplings between axes — caused by structural flexibility
or cutting forces — are compensated through decoupling controllers, allowing each axis to be
controlled independently while maintaining high precision.
In automotive applications, decoupling control appears in chassis control systems, where inter-
actions between longitudinal and lateral dynamics are compensated to allow separate design of

114

Rjj

Rkj

Rjk

Rkk

−

−

Sjj

Skj

Sjk

Skk

yj

yk

uj

uk

wj

wk

−

−

Figure 6.4.: Decoupling structure of MIMO system with P canonical structure

traction and steering controllers.
Within Figure 6.4, there are four controllers which need to be designed. While designing, the
intention is that

Rjj shall control yj using uj (main system Sjj),

Rjk shall eliminate the impact of uk on yj (coupling system Sjk),

Rkj shall eliminate the impact of uj on yk (coupling system Skj), and

Rkk shall control yk using uk (main system Skk).

We now focus on eliminating the impact of the second system on the first, cf. Figure 6.5.
In order to eliminate one another, the blue and red paths in Figure 6.5 need to be identical. Hence,
we directly obtain

Theorem 6.6 (Decoupling condition).
Consider a MIMO system with two inputs and two outputs in P canonical structure subject to a

decoupling control. If the conditions

Rjk = Rkk ·
Sjk

Sjj
(6.4)

Rkj = Rjj ·
Skj

Skk
(6.5)

hold, then the system is decoupled.

6.2. DIGITAL TWIN 115

Rjj

Rkj

Rjk

Rkk

−

−

Sjj

Skj

Sjk

Skk

yj

yk

uj

uk

Figure 6.5.: Elimination of coupling

A crucial observation is that even under ideal decoupling, each control channel depends on both
the main and the decoupling controllers. Consequently, any modification of a main controller
requires a corresponding redesign of the decoupling controllers, which significantly increases
development and maintenance effort.

Table 6.4.: Advantages and disadvantages of control decoupling

Advantage Disadvantage
✓ Keeps for MIMO structure ✗ Computationally involved
✓ Standardized P and V structures ✗ Structure limited in usage or derivation
✓ Allows for independent design ✗ Require additional controllers
✓ Allows for basic methods ✗ Requires specific decoupling structure

The elegance of state-, time-, and control-based decoupling lies in their ability to reduce com-
plex systems to simpler subsystems. However, this simplification inevitably introduces artificial
inventories, time delays, and disturbance paths that are technically unnecessary.
In the following section, we therefore move beyond decoupling and introduce concepts that
explicitly embrace interaction and coupling, laying the foundation for digital twins and cyber-
physical systems to avoid these shortcomings.

6.2. Digital twin

In the context of networking, an alternative approach to decoupling is to avoid decoupling alto-
gether by reformulating the system or process at a software-based integration layer, where the

116

overall system behavior can be addressed holistically. In contrast to classical decoupling strate-
gies, this approach allows all relevant aspects of a system or process—such as structure, dynam-
ics, constraints, and interactions—to be handled explicitly and consistently at the software level.
A prerequisite for this approach is the existence of a digital representation of the system or pro-
cess. In the following, we adopt the terminology and concepts proposed by the Industrial Internet
Consortium (IIC) [19] and the National Institute of Standards and Technology (NIST) [26]. The
fundamental building blocks of such representations are so-called data elements.

Definition 6.7 (Data element).
A data element is a basic unit of information built on standard structures haveing a unique mean-
ing and distinct units or values.

Based on data elements, more expressive digital abstractions of systems and processes can be
constructed.

Definition 6.8 (Digital representation).
Consider a system/process to be given. A digital representation is a data element representing a
set of properties of the system/process.

While digital representations are most commonly used to describe physical entities, such as ma-
chines, vehicles, or production lines, the above definition is deliberately more general. It also
applies to non-physical entities, for instance to represent software behavior, control logic, or
communication protocols at an abstract level.
Historically, such representations have predominantly been document-centric, relying on textual
specifications, diagrams, and informal descriptions. In contrast, this lecture adopts a model-
centric perspective, which is well established in systems engineering but – at least in current
industrial practice – is still not consistently applied across all domains of automation.
A central modeling language supporting this paradigm is the Systems Modeling Language (SysML),
which utilizes the following:

Definition 6.9 (Systems modeling language (SysML)).
Consider a system/process. Then we call a set of

requirements,

behaviors given by

activity diagram

6.2. DIGITAL TWIN 117

sequence diagram,

state machine diagram, and

use case diagram

structures given by

block definition diagram,

internal block diagram,

parametric diagram, and

package diagram

a model according to the systems modeling language.

The diagrams provided by SysML follow specific syntax and semantics and are closely related
to the Unified Modeling Language (UML). Figure 6.6 illustrates the relationships between the
different diagram types and highlights their role within a coherent system model.

System

Behavior Requirement Structure

Activity Sequence State machine Use case Block definition Internal block Package

Parametric

Legend:
Diagram from UML

Adapted diagram from UML

New diagram from SysML

Figure 6.6.: Diagram taxonomy for systems (according to SysML)

Using this digital representation, we can define a digital twin.

Definition 6.10 (Digital model/shadow/twin).
Suppose a system/process with inputs and outputs, a digital representation of the same sys-
tem/process and communication possibility between both to be given.

If there exists at least a manual data flow from the system/process to the digital representa-
tion, then we call the digital respresentation a digital model.

118

If there exists at least an automated data flow from the system/process to the digital repre-
sentation, then we call the digital respresentation a digital shadow.

If there exists a bidirectional automated data flow between the system/process and the dig-
ital representation, then we call the digital representation a digital twin.

System/process

Digital representation

(a) Digital model

System/process

Digital representation

(b) Digital shadow

System/process

Digital representation

(c) Digital twin

Figure 6.7.: Comprehend the difference between digital model/shadow/twin

Using Definition 6.10, we see that the difference between the three forms exists in the interaction
structure. Depending on the state of digitalization within a company, we may find all of the latter
to be applied on machine level, cf. Figure 6.8 for an illustration.

Figure 6.8.: Illustration for digital representations in production, generated with chatgpt.com

Yet, the original (or final) intention of these digital representations is different and illustrated in
Figure 6.9:

In the case of a digital model, data are transferred manually from the physical system or pro-
cess to the digital representation. The primary intention of this setup is to gain qualitative

6.2. DIGITAL TWIN 119

and quantitative insights into system behavior, performance limits, and design alternatives.
Consequently, digital models are predominantly used on the strategic layer, for example
during system design, commissioning preparation, or what-if analyses.

If an automated, potentially real-time capable data flow from the physical system to the
digital representation exists, the digital representation is referred to as a digital shadow.
In this case, the digital representation continuously reflects the current state of the system
or process. Digital shadows are therefore particularly suited for monitoring and reporting
purposes and naturally operate on the tactical layer, supporting planning, diagnostics, and
predictive maintenance.

Finally, if a bidirectional, automated data flow between the physical system or process and
its digital representation is established, the digital representation becomes a digital twin.
This bidirectional coupling allows the digital twin not only to observe but also to actively
influence the physical system. As a result, digital twins can be deployed on the operational
layer, where they support closed-loop optimization, adaptive control, and autonomous de-
cision making.

Operational layer

Tactical layer

Strategic layer

Digital twin

Digital shadow

Digital model

Figure 6.9.: Working layers for digital representations

In industrial practice, digital models are used to simulate production lines or CNC machining
processes offline. This allows engineers to evaluate different layouts, cycle times, and tool paths
before implementing any physical changes. Similarly, digital vehicle or powertrain models are
used during the development of concepts to evaluate energy consumption, emissions, and vehicle
dynamics under different design assumptions.
Regarding digital shadows, machine data streams are used to visualize utilization, energy con-
sumption, and wear indicators on dashboards for operators and maintenance personnel. In the
automotive industry, digital shadows aggregate sensor data, such as temperatures, fault codes,

120

and usage profiles. This enables condition monitoring and maintenance planning without directly
influencing vehicle behavior.
Lastly, digital twins adapt process parameters, scheduling decisions, and energy usage in manu-
facturing systems in real time, thereby optimizing throughput and quality. Similarly, an automo-
tive digital twin can enable functions such as adaptive powertrain control, thermal management
optimization, and fleet-level software updates. In this case, digital models interact directly with
physical vehicles.

Remark 6.11
Note that a representation can be given in many forms such as models or networks, which we

discussed in the lecture, but may also consist in lookup tables, databases or other digital types,

but may also take a physical form like analog computers.

Hence, not all digital forms can or should be applied uniformly across all management tasks;
rather, each form is most effective when aligned with a specific management layer. These layers
traditionally operate on different levels of abstraction and aggregation of the physical system or
process.

Figure 6.10.: Abstraction levels for digital represen-
tations, generated with chatgpt.com

A machine operator interacts with the con-
crete behavior of individual machines and
actuators, focusing on parameters such as
setpoints, alarms, and local disturbances.
A shift supervisor aggregates information
across machines or workstations, address-
ing throughput, quality deviations, and short-
term scheduling within a production segment.
At a higher level, a plant manager evaluates
overall plant performance, including, e.g.,
output, energy consumption, and availability,
while a supply chain manager operates on an
even more abstract level, coordinating mate-
rial flows, logistics, and intercompany inter-
faces across sites or organizations.
A similar stratification can be observed in au-
tomotive systems. At the vehicle level, a dig-
ital twin of a powertrain or battery system may be used by control engineers or onboard software
to optimize efficiency, thermal behavior, or aging during operation. At the fleet level, digital
shadows aggregate data from thousands of vehicles to support maintenance planning, software

6.2. DIGITAL TWIN 121

updates, and usage pattern analysis. At the highest level, digital models of vehicle fleets and
logistics networks are employed to support production planning, supply chain optimization, and
lifecycle management across manufacturers, suppliers, and service providers.

Remark 6.12
As the last example indicates, the abstraction level is not directly proportional to the possibility

of interaction with the system at hand.

Apart from being able to consider the overall system/process, a digital version shows two ad-
ditional advantages: For one, a digital version is easier to manipulate and assess in a virtual
environment that the physical system in the real world. This allows for cost-effective exploration
of the behavior of the system under testing conditions. Secondly, the data from these experi-
ments can be used to improve the system/process itself, e.g., maintenance, design, robustness etc.
Hence, the application fields for digital representatives span (but are not limited to)

Model validation with real data

Decision support

Identification of waste

Optimization of overall performance

Prediction of changes within the system/process

Exploration of new application and revenue streams

Taking a more generic look at Figure 6.9, the idea of layered systems is to generate levels of
abstraction of the system/process, which allows to zoom in on specific tasks at machine level, but
also to see the big picture of requirements, interfaces, system design, analysis/tradeoff and tests
put to the overall system. Here, we like to note that the model centric view provides a structure,
which can be followed to properly derive a digital representation, which is suitable for the task it is
created for. Additionally, such an approach allows to integrate generalizations in both directions,
that is to generate evaluations and model abstractions for higher layers or to integrate realtime
communication and control down to machine level.

Remark 6.13
The big advantage of the latter approach is its integration property. It doesn’t matter where the

starting point of a digital representative is set, the approach allows full and complete integration

of properties as well as traceability of properties through the diagrams.

122

Table 6.5.: Advantages and disadvantages of SysML based digital representations

Advantage Disadvantage
✓ Represent overall system/process ✗ Requires full taxonomy of SysML
✓ Allows full integration ✗ Rework document centric view
✓ Allows aggregation and specification
✓ Allows assessment in virtual space

Next, we concretize how digital representations are integrated into real systems by combining
control and communication mechanisms.

6.3. Cyber physical systems

Our point of departure for a digital twin architecture is the concept of a cyber-physical system
(CPS). In the literature [26], this term is associated with time-sensitive functions and varying
degrees of interaction between physical and digital components—an idea that is already captured
by our definition of a digital twin.

Definition 6.14 (Cyber physical system).
Consider a physical system/process together with KPIs and requirements to be given. Then we
call a digital twin a cyber physical system, if the bidirectional flow is realtime capable to enforce
the requirements and address the key performance indicators.

By definition, every cyber-physical system is a digital twin. However, the converse does not
hold. In contrast to a general digital twin, a cyber-physical system must (i) represent a concrete
physical system or process, (ii) include a control unit with real-time access to sensors and actua-
tors, and (iii) actively influence the physical system to improve KPIs while respecting operational
constraints and requirements.
To integrate the latter into one particular problem, we first need to specify a key performance
indicator in the setting of our system dynamics

ẋ(t) = f (x(t), u(t), t), x(t0) = x0

y(t) = h(x(t), u(t), t).
(1.1)

Focusing on the state space, we typically consider requirements in terms of constraints (cf. Defi-
nition 1.14) and key performance indicators (cf.Definition 1.13) in terms of cost functions. These
combined information on state and input of the system to quantify performance of the control.

6.3. CYBER PHYSICAL SYSTEMS 123

Definition 6.15 (Cost function).
We call a key performance criterion given by a function ℓ : X × U → R a cost function.

Since a cost function evaluates performance at a single time instant t ∈ T , overall performance
must be assessed over an operating horizon. This leads to the notion of a cost functional.

Definition 6.16 (Cost functional).
Consider a key performance criterion ℓ : X × U → R. Then we call

J(x0, u) :=
∞∫

0

ℓ(x(t, x0, u), u(t))dt (6.6)

cost functional.

Remark 6.17
Note that the latter definition can be used across operational, tactical and strategic level whereas

Definition 2.20 is applicable for planning, i.e. the strategic level only.

Integrating these components allows us to quantify not only operating points (Definition 5.6), but
also the transients from the current state of the system to such an operating point.

Definition 6.18 (Optimal control problem).
Consider a system (1.1) and a cost functional (6.6). Then we call

min J(x0, u) over all u ∈ U (6.7)

subject to ẋ(t) = f (x(t), u(t), t), x(t0) = x0

x(t) ∈ X, u(t) ∈ U

an optimal control problem.

The idea of the latter problem in automation engineering is to generate automated solutions with-
out the need of human interaction. To this end, technology is used to plan and change existing
devices and monitor the performance of the resulting device.

124

Link: For solution methods regarding optimal control problems we refer to Control Engi-
neering 2 & 3.

In order to solve problem (6.7), we require not only a control logic, but also computing, storage,
communication and planning/modeling components, cf. Figure 6.11 for a generic sketch.

CPS Internet of things

Planning

Communication

Storage

Control

forming

forming recording

storagecomputing

controlling

· · ·Physical system 1 Physical system j

Figure 6.11.: Generic sketch of a CPS structure

The terms in Figure 6.11 specify generic components only. In practice, there are several possibil-
ities and methods, which can be chosen for each of these components, cf. Figure 6.12 for some
of the current buzzwords.
Figure 6.12 illustrates that cyber-physical systems naturally give rise to large volumes of het-
erogeneous data and thus enable the application of optimization and AI-based methods. Nev-
ertheless, their primary purpose is not data generation per se, but the tight coupling of physical
dynamics with a digital representative in order to continuously capture the system or process state
and to act upon it in a time-sensitive manner. In this sense, cyber-physical systems serve as the
operational backbone that connects sensing, computation, communication, and control. Analo-
gous to the application layers of digital representations, cyber-physical systems can be structured
into five functional levels, as depicted in Figure 6.13. These levels range from the intelligent
connection layer, which provides sensor integration and communication, to the cognitive and
configuration layers, where higher-level reasoning, optimization, and adaptation take place.
Considering production, sensors at the intelligent connection layer acquire data on positions,
forces, and temperatures of machines and workpieces. These data may be fused and analyzed
to detect deviations or wear at the data transformation and monitoring layers. At the cognitive

6.3. CYBER PHYSICAL SYSTEMS 125

CPS

Storage

Big data

Smart data

Distributed
FS

. . .

Control

Cloud
computing

(Distributed)
AI

Edge
computing

. . .

Communication

Internet

Wired

Wireless

. . .

Planning

Embedded
systems

(Petri)
Networks

Model
equations

. . .

Figure 6.12.: Possibilities for cyber physical system components

and configuration layers, the system may automatically adapt process parameters or reconfigure
machine settings to maintain product quality and throughput in the presence of disturbances or
equipment degradation.
Similar to prodcution, cyber physical architectures are employed in the automotive range, e.g.,
as advanced driver assistance systems or powertrain management. Here, sensor networks collect
data from cameras, radar, and vehicle states, which are fused and monitored to assess the driving
situation and vehicle condition. Higher cyber physical system layers then may optimize control
actions, such as torque distribution or energy management, and may autonomously adjust system
behavior to changing environments, traffic conditions, or component aging.
At the most fundamental level, cyber physical systems aim to make tacit knowledge of humans,
machines, methods, and design intent explicit. This knowledge is successively embedded into

126

Cir-
cum-
ven-
tion

Configuration layer:
Self-configuration for recovery
Self-adjustment of changes
Disruptive liberalization

Opti-
miza-
tion

Cognitive layer:
Integrated simulation and synthesis
Remote man-machine visualization
Collaborative diagnosis and decision making

Moni-
toring

Network layer:
Twin models of components and equipment
Change recognition and variation identification
Similarity clustering for data mining

Data
fusion

Data information transformation layer:
Smart analytics and data correlation
Degradation and performance prediction

Sens-
ing

Intelligent connection layer:
Plug and play
Contactless communication
Sensor network

Figure 6.13.: Structure levels of cyber physical systems

software, software into hardware platforms, and hardware into physical devices, thereby enabling
intelligent, adaptive, and scalable automation systems.

Table 6.6.: Advantages and disadvantages of cyber physical systems

Advantage Disadvantage
✓ Represent overall system/process ✗ Requires realtime computation
✓ Allows for layers of methods ✗ Requires realtime communication
✓ Maps digital representation physically ✗ May require big data analytics

As outlined, cyber physical systems collect a large amount data upon which they act in realtime.
In a greater picture, this data may be used for other purposes which leads us to the idea of services.

6.4. INDUSTRIAL CLOUD PLATFORM 127

6.4. Industrial cloud platform

The core idea of a cloud platform is to provide customers with on-demand access to services such
as computing resources, storage, software, or data that are available anytime and anywhere. To
characterize this concept rigorously, we first introduce its fundamental building blocks. As before,
we follow the terminology and definitions established by the Industrial Internet Consortium [19]
and the National Institute of Standards and Technology [26].
Since a cloud platform provides access to resources and functionality, some form of interaction
mechanism is required. More generally, this is captured by the notion of an interface.

Definition 6.19 (Interface).
Consider a system/process and a respective digital representative to be given. An interface is a
named set of operations to read and set data of the system/process or its digital representative.

An interface therefore allows interaction of both the system and its cyber version with the out-
side, but also allows interaction between both internally. Based on such interfaces, access to
functionality can be structured and exploited, for instance to evaluate KPIs or enforce constraints.

Definition 6.20 (Service).
A service is a distinct part of the functionality that is provided through interfaces. A service is
called metered if it is payed by use and depend on the quality of the functionality.

This definition allows services to be applied not only to cyber-physical systems relying on digital
twins, but also to digital shadows and digital models. Consequently, the applicability of services
is not restricted by real-time requirements or the presence of a physical system.
One common way to provide such services is via cloud-based infrastructures.

Definition 6.21 (Industrial cloud platform).
Suppose a system/process and a digital representative to be given. Then an industrial cloud

platform is a metered service for the digital representative.

Remark 6.22
Here, we utilized the European formulation [7], which explicitly integrates quality of service,

metering and in its original also stakeholders. In contrast to that, the US version addresses IT

configurability regarding resources.

128

As illustrated in Figure 6.14, industrial cloud platforms support different classes of services that
build on the essential characteristics of cloud computing. These services can be deployed using
public, private, hybrid, or community infrastructures. The choice of deployment model depends
on application-specific requirements such as data sovereignty, latency, scalability, availability, and
regulatory constraints. In industrial contexts, this decision is particularly critical, as production
continuity, safety, and intellectual property must be ensured alongside economic efficiency.

Cloud
Computing

Å
Storage

I
Mobile Ô

Application

á
Server

õ
Database

Public cloud

Hybrid cloud

Private cloud

Ô Deployment models

Figure 6.14.: Visual model of industrial cloud

To structure the service offerings of industrial cloud platforms more precisely, we subdivide them
according to the degree to which software and hardware resources are provided to the user.

Corollary 6.23 (SaaS, IaaS, PaaS)
Consider a system/process, its digital representative and an industrial cloud platform to be given.

Then providing

access to delivery or licensing of software is a service called Software-as-a-Service,

utilization of hardware such as compute, storage and networking resources is a service

called Infrastructure-as-a-Service, and

access to maintained soft- and hardware is a service called Platform-as-a-Service.

6.5. INDUSTRIAL INTERNET 129

Remark 6.24
The above service models are not independent of the digital representative and the underlying

system or process; rather, they directly build upon the availability and quality of digital models,

shadows, or twins.

In all three cases, users of industrial cloud services can focus on their core tasks while outsourcing
setup, maintenance, and scaling of IT infrastructure and software components.
In manufacturing, SaaS solutions are commonly used for condition monitoring, quality analytics,
or production dashboards. These solutions visualized and analyzed machine data without requir-
ing local installation. PaaS offerings allow engineers to deploy custom optimization or scheduling
algorithms on top of plant-wide digital shadows. IaaS is often used for large-scale simulations or
virtual commissioning of production lines using digital twins.
In the automotive industry, SaaS platforms support fleet monitoring, predictive maintenance, and
over-the-air update management. PaaS environments are used to develop and test vehicle soft-
ware functions and data-driven driver assistance algorithms. IaaS is used for high-performance
computing tasks such as virtual vehicle testing, large-scale simulation of traffic scenarios, and
battery aging analysis.
The advantages and disadvantages are summarized in Table 6.7.

Table 6.7.: Advantages and disadvantages of industrial cloud

Advantage Disadvantage
✓ Separates core from auxiliary tasks ✗ Depends on use case
✓ Utilizes shared resources ✗ Depends on security

6.5. Industrial internet

Industrial cloud platforms constitute components of modern systems and processes that are mod-
eled, monitored, or controlled as integrated wholes. Consequently, any concrete realization of an
industrial cloud is typically driven by a specific application or use case.
At the same time, Corollary 6.23 has shown that services provided via industrial clouds are not in-
herently bound to a single use case. The concept of the industrial internet reutilizes software, data,
and infrastructure components. Its objective is to abstract away from individual use cases and to
facilitate the systematic modeling, sharing, and reuse of industrial technologies, methods, and

130

domain knowledge. Ultimately, the industrial internet aims to form an ecosystem characterized
by resource enrichment, interoperability, and collaborative participation among heterogeneous
stakeholders. Formally, we have the following:

Definition 6.25 (Industrial internet).
Suppose the set of all industrial clouds to be given and any interfaces to the underlying system-
s/processes to be removed. Then any element of the powerset is called industrial internet.

Note that by definition, the industrial internet is not unique but depends on the choice of combined
industrial clouds. The combination of clouds additionally stresses the necessity of standardization
of systems/processes, their digital representations and all of their components.
The downside of such an idea is that the industrial internet is completely decoupled from all
systems/processesfrom which the underlying data and digital representations originate. While
this detachment enables scalability and reuse, it also weakens the direct link to operational reality.
Despite its apparent simplicity, the following observation forms the foundation of a large number
of companies operating in the field of industrial digitalization:

Corollary 6.26
Every industrial internet is a service.

The advantages and disadvantages are summarized in Table 6.8.

Table 6.8.: Advantages and disadvantages of industrial internet

Advantage Disadvantage
✓ Allows aggregation of use cases ✗ Looses connection to reality
✓ Reutilizes methods and data ✗ Misses uniqueness of service

CHAPTER 7

OPTIMIZATION AND LEADING

Generated with chatgpt.com

The original question „Can machines think?“ I believe to be too meaningless to
deserve discussion.

Alan Turing

132

In the preceding chapters we focused on structuring and connecting components using mod-
ules, interfaces and networks. Next, the level of optimization and leading is primarily decision-
oriented. In particular, we will not introduce new physical building blocks, but convert the results
of integration of services into improved system behavior and better decisions along the chain of
automation captured in Figure 7.1.

Planning System planning Lean planning

Normal Modularization Standardization Automation

Integration Industrial cloud Industrial internet CPS

Optimization Industrial big data Knowledge management

Leading AI Ecosystem

Capacity planning
Process optimization

Waste elimination

Path planning

Standard interface Digital drive

Interfacing Unit integration

Fusion Modeling

Interconnection System integration

Emergence Decision support

Chain integration

Figure 7.1.: Information in the integrated implementation path of automation

To this end, we discuss industrial big data, i.e., the systematic collection, fusion, and analysis of
heterogeneous data streams from machines, products, and IT systems in Section 7.1. The aim
of industrial big data is to detect patterns, quantify variability, and derive actionable insights for
process and system improvement. Closely related is knowledge management, which we consider
next in Section 7.2. This concept aims to capture, structure, and disseminate experience-based
(often tacit) know-how, which is typically inherent to persons, e.g. troubleshooting routines, qual-
ity rules, or best practices, so that it becomes reusable beyond individuals, shifts, and sites. Within
both, we apply artificial intelligence as a class of methods that can learn the latter. Together, these
concepts provide the methodological foundation to move from connected automation to scalable
improvement, coordinated decision-making, and, ultimately, ecosystem-level integration.

7.1. Industrial big data

In the last decade, the concept of big data has attracted significant attention in both academia and
industry. The idea is to utilize this data to retrieve answers for questions of stakeholders. To this
end, methods such as Large Language Models (LLMs) such as ChatGPT or others may be applied
due to their capabilities in natural language understanding and generation. Here, we use LLMs

7.1. INDUSTRIAL BIG DATA 133

but do not go into details on how they are defined or operate.

7.1.1. Retrieval-Augmented Generation

While being simple in their usage, LLMs are parametric, rely on static training data, and lack
explicit guarantees regarding factual correctness, consistency, and traceability. In industrial, sci-
entific, and engineering contexts these limitations are unacceptable.
The concept of Retrieval-Augmented Generations (RAGs) can be employed to cope with these
issues by coupling a generative model with a domain based data source, i.e. industrial big data.
The concept of this approach was introduce in [23]. Figure 7.2 sketches the workflow of such an
approach.

Û
Query

A
Prompt

Æ
LLM

Ú
Answer

Æ
LLM

Ú
Question

õ
Big data

ççç
Retrieved chunks

Figure 7.2.: Query for RAG

The separation of the question–answer plane to the data plane allows for a worksplit. In the
background, experts work on the big data to keep its properties, e.g. privacy in the context of
industrial data. On application layer, users can access the data plane by using common language
and don’t require programming knowledge to generate queries and interpret retrieved chunks.

Remark 7.1
Note that the shortcomings of LLMs (or AI based methods in general) still apply, but are limited

to the question–answer plane, e.g. by generating incorrect queries or insufficient interpretation

of results.

Technically, any data source may be used within this workflow to retrieve an answer. In the
context of automation engineering, we face the difficulty of handling data, which is not only
complex due to its size, but also due to additional properties such as heterogeneity, dynamics,
and uncertainty. To properly distinguish big data from conventional data processing as well as
from concepts such as the industrial internet, it is therefore necessary to clarify these properties
explicitly.

134

7.1.2. Data processing

In Section 4.1, we discussed the transformation of raw data into information by means of data
processing. Note that at that time, we did not specify on how/where such methods are executed
and/or data is stored. In the context of on-site automation, we can specify so called traditional
data processing approaches:

Definition 7.2 (Traditional data processing methods).
Consider a processing method m : D → I with given data set D and information set I . Then
we call m : D → I traditional data processing method if both data set D, information set I and
method m(·) can be stored and executed on a single machine.

Note that depending on the implementation, any service from industrial clouds may also be a
traditional processing method. While in Section 4.1 our aim was to retrieve information from
data on a sensor level, for a generic service the purpose of a method m(·) may include

validation (ensuring correctness and relevance of data)

sorting (putting data in sequence for a given ordering)

classification (assigning data to categories)

summation (combining data additively)

aggregation (combining data by meaning)

reporting (presenting data for given KPIs)

analysis (interpreting data given KPIs)

Depending on the chosen purpose, the resulting information set I may take different forms.
A common prerequisite of traditional methods is that the input data is structured, consistently
formatted, and semantically well-defined.
In contrast, big data typically comprises a mixture of structured, semi-structured, and unstruc-
tured data originating from multiple, often heterogeneous sources, and evolving over time. The
challenge is no longer limited to storage, but extends to acquisition, integration, processing, and
interpretation.

Definition 7.3 (Big data).
We call a data set D or method m : D → I big data if at least one of its properties

7.1. INDUSTRIAL BIG DATA 135

volume,

velocity,

variety,

veracity,

valence,

value

exceeds the ability of traditional methods.

These properties are often summarized as the „V dimensions“ of big data and highlight that big
data is defined by processing limitations, not by absolute size alone.
Note that industrial cloud, industrial internet and big data are intertwined. In particular, we have
that:

The industrial cloud provides the computing infrastructure and services such as storage,
compute, and platforms, which are required to handle large industrial datasets. It answers
the question where and how data is processed.

The industrial internet generalizes this idea by enabling the reuse and interconnection of
data, models, and services across multiple industrial clouds and organizations. It addresses
how data and capabilities are shared and reused.

Big data focuses on what is done with the data: the analytical methods, statistical models,
and learning techniques used to extract patterns, correlations, and trends from industrial
datasets.

In short, the industrial cloud is an enabler, the industrial internet is an ecosystem, and industrial
big data is an analytical discipline operating on top of both.

7.1.3. Data query

For analytics, i.e. the queries in Figure 7.2, we typically distinguish four different levels, that is

descriptive analytics (what happened),

diagnostic analytics (why it happened),

predictive analytics (what is likely to happen), and

prescriptive analytics (what should be done).

To formally introduce these, we define the data set for a generic system under consideration

ẋ(t) = f (x(t), u(t), t), x(t0) = x0

y(t) = h(x(t), u(t), t).
(1.1)

136

as follows:

Definition 7.4 (Generic big data set).
Given a system/process (1.1) we call

D = {(tj, xj, uj, yj)}N
j=1 (7.1)

generic big data set including time tj ∈ T , state xj ∈ X , input uj ∈ U and output yj ∈ Y with
number of instances N.

Since we want to analyze this data, we introduce the follow set of measures:

Definition 7.5 (Statistics set).
For a given system/process (1.1) we call S set of descriptive statistics such as means, variances,
distributions, correlations, or aggregates.

Furthermore, we are interested in connections between data points. Since typically the original
system is not at hand, unknown or lost in aggregation, we have to re-find it. To this end, we
introduce the following:

Definition 7.6 (Set of admissible models).
For a given big data set D we let M denote a set of admissible models of systems.

Utilizing data and statistic sets, we can now introduce the so called descriptive level:

Definition 7.7 (Descriptive analytics).
Given a big data set D and a statistics set S , we call the problem of computing a mapping

Adescriptive : D → S , (7.2)

descriptive analytics.

Note that Adescriptive extracts observable properties of historical data without modeling causal
relationships or future evolution. Hence, descriptive analytics answers what happened, but does
not infer why or what will happen.
In diagnostic analytics, we are interested in why certain data was measured. This corresponds to
fitting a suitable model. More formally:

7.1. INDUSTRIAL BIG DATA 137

Definition 7.8 (Diagnostic analytics).
Given a big data set D, a statistics set S and a set of admissible models M, we call the compu-
tation of a minimizer

f = argmin
f∈M

{J(D) | J ∈ S} =: Adescriptive(M,D,S) (7.3)

diagnostic analytics.

Here, we point out that the statistics set S is multivalued, hence the minimizing argument in (7.3)
is subject to a multiobjective optimization. By identifying a suitable candidate model, diagnostic
analytics aims to explain why something happened by uncovering dependencies, sensitivities, or
root causes.

Remark 7.9
While all the computations in diagnostic analytics are correct, the choice of statistical measures

and admissible models may be wrong. Hence, any result should be verified and validated before

it is used in further applications.

In contrast to considering the past, both predictive and prescriptive analytics consider the future.

Definition 7.10 (Predictive analytics).
Given a big data set D, a statistics set S and a minimizer f ∈ M of (7.3), then a map Apredictive :
T × X × U → Y defined by the system/process (1.1) where the dynamics is given by the
diagnosed model f is called predictive analytics.

Hence, predictive analytics answers what is likely to happen, assuming current trends, inputs,
and uncertainties. This allows us to identify strategies, which are optimal for future actions. This
basically resembles the optimal control problem we introduced in Definition 6.18 for big data.

Definition 7.11 (Prescriptive analytics).
Given a big data set D, a statistics set S , a minimizer f ∈ M of (7.3) and a prediction
method Apredictive : T × X × U → Y . Then we call a minimizer

u = argmin
u∈U

{
J(Apredictive) | J ∈ S

}
(7.4)

prescriptive analytics.

138

As a result, prescriptive analytics answers what should be done by explicitly linking prediction
with optimization and decision-making.

Remark 7.12
Similar to diagnostics, the chosen model may be wrong so the outcome of prediction and pre-

scription should always be verified and validated.

Table 7.1 summarized advantages and disadvantages of big data.

Table 7.1.: Advantages and disadvantages of big data

Advantage Disadvantage
✓ Integrates unstructured data ✗ No new knowledge
✓ Identifies links and predicts behavior ✗ May be arbitrarily wrong

Combined, big data constitutes the analytical backbone to scale computations. While it relies
on industrial clouds for scalable computation and benefits from the connectivity of the industrial
internet, it does not gain any knowledge such as relations, constraints, causality, and multi-hop
dependencies from it.

7.2. Knowledge Graphs and Knowledge Management

So far we have seen how big data can be used to work on data. Yet, data alone is insufficient
to manage any type of system/process effectively. What is required instead are structured and
semantically grounded representations of knowledge that allow interpretation, reasoning, and
decision-making beyond numerical correlations.
Here, we particularly focus on knowledge graphs, which provide a formal, graph based rep-
resentation in an explicit and machine-interpretable way. Complementarily, knowledge manage-

ment encompasses the organizational, technical, and methodological processes required to create,
maintain, govern, exploit and revise knowledge over its lifecycle. Hence, knowledge graphs are
the system whereas knowledge management refers to the process.

Remark 7.13
There exist alternatives to knowledge graphs in the literature such as, e.g.,

7.2. KNOWLEDGE GRAPHS AND KNOWLEDGE MANAGEMENT 139

Relational databases, which offer data consistency and integrity but typically don’t cover

heterogeneous data schemes and offer no reasoning. Typical applications can be found in

ERP systems (enterprise resource planning), production or inventory management.

Rule based systems (also called expert systems), which show explicit reasoning and are

easily accessible by humans. Yet, knowledge is typically fragmented, unstructured and the

handle changing domains poorly. In applications, these systems are used in diagnostics,

fault handling and safety applications.

Document stores such as NoSQL, which provide flexible application and scalable storate

for heterogenous data. However, explicit relationships and reasoning are not supported.

Such systems are often used for data loggers, sensor aggregation or in MES (manufacturing

execution systems).

7.2.1. Graph Retrieval-Augmented Generation

Similar to RAG, here we focus on an LLM based approach called Graph Retrieval-Augmented

Generation (Graph RAG), which was introduced in [4]. The latter extends RAG by putting a
query to a knowledge graph instead of the data source itself as sketched in Figure 7.3.

Û
Query

A
Prompt

Æ
LLM

Ú
Answer

Æ
LLM

Ú
Question

¨
Graph

õ
Big data

ç¨ç
Relevant graph

Figure 7.3.: Query for Graph RAG

The big advantage of Graph RAGs over RAGs is that the data plane now operates on graphs,
which can be checked for properties similar to Petri Networks, see Section 2.4. We will outline
these properties in Section 7.2.3 after properly defining Graph RAGs.
Here, we introduce knowledge graphs similar to networks from Chapter 2 from a mathematical
and systems-theoretic perspective and embed them into the broader framework of knowledge
management.
Formally, we define a knowledge graph as follows.

140

Definition 7.14 (Knowledge graph).
A knowledge graph is a labeled, directed, attributed network N = (V , E ,R,L), where where V
is a finite set of vertexes, R is a finite set of relation types, E ⊆ V ×R× V is a set of directed,
typed edges, and L : V ∪ E → X assigns labels to vertexes and edges.

Remark 7.15
Note that the edges in a knowledge graph extend the notion of a graph by including the relation

type. Additionally, labels may be assigned to both vertexes and edges.

From the latter definition, we obtain that a knowledge graph makes explicit

what exists (objects/vertexes such as physical, logical or conceptual components),

how things are related (relations, e.g., dependencies, subsets, requirements, conclusions),

what properties they have (labels such as values, texts, timestamps),

what is allowed or meaningful (semantics and constraints such as transitivity, causality,
safety).

To illustrate such a graph, we utilize an automotive example with two vehicle types featuring dif-
ferent sets of driving functions. The detailed data tables are included in Appendix A. Visualizing
the knowledge graph, we obtain Figure 7.4.

Figure 7.4.: Knowledge graph of an automotive example

Unlike databases, knowledge graphs are not limited to fixed schemes and can naturally represent
heterogeneous, interconnected, and evolving knowledge.

7.2. KNOWLEDGE GRAPHS AND KNOWLEDGE MANAGEMENT 141

7.2.2. Semantics and Ontology

Included within such a graph structure, we find so called semantics. Semantic gives a the possi-
bility to introduce meaning and relation in form of sentences subject–relation–object into a graph.
Formally, we define the following:

Definition 7.16 (Semantics).
Given a knowledge graph N = (V , E ,R,L) we call a triple

(v, r, v) ∈ V ×R× V , (7.5)

a semantic.

Note that semantics can be defined either implicitly through application specific interpretation or
explicitly by means of formal logic.

Figure 7.5.: Use of semantics in knowledge graph

Utilizing our automotive example, we can
now ask, e.g., which sensor is used in which
driving function, cf. Figure 7.5.
This provides us with the means to define the
so called ontology, which provides the se-
mantic foundation of a knowledge graph. It
defines what kinds of entities exist, how they
may relate, and what statements are meaning-
ful or admissible. In other words, it specifies
the intended interpretation of the graph struc-
ture. More formally, we use the following:

Definition 7.17 (Ontology).
An ontology is a tuple O := (C,R,H,D,A) where

C is a finite set called concepts,

R is a finite set termed relation types,

H ⊆ C × C is a set defining hierarchy relations,

D : R → C × C is a map assigning a domain and range to each relation,

A is a set of axioms defining semantic constraints and logical properties.

142

Figure 7.6.: Use of ontology for tracing in knowledge
graph

The idea of ontologies is to create overviews
and see how vertexes and semantics are con-
nected on higher levels. In particular, we can
summarize similar vertexes, e.g. all lidar sen-
sors, in one concept „Sensor“. On higher
level, we can summarize all sensors in a con-
cept „Component“, which contains the concept „Sensor“ as shown in Figure 7.6. If a relation
exists for all lidars, then we can abstract it as a semantic on the concept. The hierarchy allows us
to specify, which vertex/concept is contained in which concept, that is

(cLidar, cSensor) ∈ H =⇒ cLidar ⊆ cSensor.

The map D extends the latter to clarify in semantics (7.5), which concept cj can be a subject
and which ck can be an object. Using the example above, a concept „camera“ can be subject in
a semantic (camera, measures, picture). Last, the axioms A describe rules, which are defined a
priori and can be used to derive new insights or detect errors. As an example, if a gyro sensor is
contained in a concept „camera“, this can detect this as an error.

Remark 7.18
Note that an ontology is again a graph consisting of vertexes and edges. These, however, exist

on semantic level instead of object level. In order to be well-defined, we need an explicit relation

between these two.

Having defined the ontology, we can now introduce the central part of our question–answer
scheme, the so called query. As for a network in general, we can put a query to a knowledge
graph by projecting onto a subgraph.

Definition 7.19 (Graph Query).
Consider a knowledge graph N and a corresponding ontology O. Then a graph query is a
mapping

q : N → ΠO(V , E), (7.6)

selecting subgraphs satisfying elements of the ontology O.

Such queries may either produce tabular output or visualize it. Programs 7.1 and 7.2 showcase
feature extraction and tracing, respectively.

7.2. KNOWLEDGE GRAPHS AND KNOWLEDGE MANAGEMENT 143

1 // Which features use a Camera sensor?

2 MATCH (s:Component {name: "Camera"})<-[:REQUIRES_SENSOR]-(f:Feature)

3 RETURN f.name AS FeatureUsingCamera;

Program 7.1: Query features per camera

1 // Find all ancestor categories of "Lidar"

2 MATCH (c:Component {name:"Lidar"})-[:IS_A*]->(ancestor)

3 RETURN DISTINCT ancestor.name AS AncestorCategory;

Program 7.2: Query tracing in ontology for lidar

Remark 7.20
The projection always satisfies Π(V , E) ⊆ N . However, as the projection is always subject to

the ontology, e.g. relations or constraints, it is not equivalent to a configuration, which can be

any subset.

7.2.3. Reasoning

Apart from converting data into a graph, we can apply semantics and ontology to a large data
set to determine additional information or make corrections to the graph itself. This is the big
difference to RAG, where the data plane was managed by experts but it truly up to data itself.
The graph allows us to introduce domain knowledge into the data. By that, we can add new
connections and identify/delete incorrect ones.
First, we must walk through the raw observations and supplement them with concepts, relations,
relation types, hierarchies, and axioms. Based on these additions, we obtain an initial knowledge
graph. However, this graph only contains information that was readily available in our data.
Therefore, querying this graph according to Figure 7.3 would yield the same result as querying
the data in Figure 7.2.
To improve on the latter, we apply the concept of reasoning. To this end, we use inference rules,
or relations known to be correct. Reasoning involves deriving implicit knowledge from explicit
facts.

Definition 7.21 (Graph-Based Inference).
Given a knowledge graph N = (V , E ,R,L) and a set of inference rules I , then we call the map
IN : N × I → N ⋆ graph-based inference where N ⋆ = closure(N , I) is a modified graph.

144

The fundamental distinction between inference and axioms lies in their ability to express meaning.
Axioms define the meaning, while rules implement meaning.
Applying the identification and creation Programs 7.3 and 7.4 within our automotive example,
we can identify which vehicles require which sensors.

1 // Infer sensors required by each vehicle based on its features

2 MATCH (v:Vehicle)-[:HAS_FEATURE]->(f:Feature)-[:REQUIRES_SENSOR]->(s:

Component)

3 RETURN v.name AS Vehicle, collect(DISTINCT s.name) AS RequiredSensors;

Program 7.3: Infer sensors required per feature

1 // Materialize the inference: link vehicles to needed sensors

2 MATCH (v:Vehicle)-[:HAS_FEATURE]->(f:Feature)-[:REQUIRES_SENSOR]->(s:

Component)

3 MERGE (v)-[:NEEDS_SENSOR]->(s);

Program 7.4: Create inference links for sensors required per feature

This is illustrated in Figure 7.7. Note that „NEEDS_SENSOR“ is a newly introduced relation
type and the respective relations enrich the graph.

Figure 7.7.: Inference in knowledge graph to identify sensors per vehicle type

In general, applying the set of inference rules I allows us to identify incorrect relations, which
are then deleted from the knowledge graph N . Thus, we obtain a new, consistent knowledge

7.2. KNOWLEDGE GRAPHS AND KNOWLEDGE MANAGEMENT 145

graph N ⋆ given the asserted inference rules. Furthermore, we can derive new connections via

transitive closure, e.g.

(a → b) ∧ (b → c) =⇒ (a → c),

subsumption reasoning, e.g.

if crobot ⊆ cmachine then we can conclude robot(x, u) =⇒ machine(x, u),

constraint, e.g.

(a ≤ b) ∧ (b ≤ c) =⇒ (a ≤ c),

rule-based logic and description logic, e.g.

(a, installedIn, b) ∧ (b, installedIn, c) =⇒ (a, installedIn, c)

Once the knowledge graph is completed, it is consistent and offers additional insights that can be
retrieved directly by our approach, as shown in Figure 7.3.

7.2.4. Graph Management

In practical applications, the big data basis changes/extends continuously. Consequently, the
knowledge graph must be continuously recaptured. To this end, we can repeatedly apply inference
to integrate newly available data from the big data basis or account for changes. More formally:

Definition 7.22 (Knowledge Graph Evolution).
Given a knowledge graph N , we call a sequence (Nj)j=0,... a knowledge graph evolution if
N0 := N and Nj being obtained from Nj−1 by addition, deletion, or modification of vertexes,
edges, or labels.

Due to these ongoing changes, the knowledge graph itself is subject to a management process to
ensure it properties.

Definition 7.23 (Knowledge Management).
Knowledge management is the systematic process of creating, maintaining, governing, exploiting
and revising a knowledge graph N within an organization or system.

146

On a timely basis, a lifecycle of a knowledge graph is a transformation sequence:

N0
creation−−−−→ N1

formalization−−−−−−→ N2
storage−−−→ N3

usage−−→ N4
revision−−−−→ N5,

where Kj denotes the knowledge state at stage j. Knowledge graphs themselves primarily operate
in the formalization, storage, and usage phases. This highlights that the actual procedure in Graph
RAGs are cycled between big data and graph and regarding the graph itself, cf. Figure 7.8.

Û
Query

A
Prompt

Æ
LLM

Ú
Answer

Æ
LLM

Ú
Question

Knowledge management

¨
Graph

õ
Big data

ç¨ç
Relevant graph

Figure 7.8.: Knowledge management and query for Graph RAG

Summarizing, Graph RAGs extend the RAG paradigm by replacing or augmenting document
retrieval with graph-structured knowledge. As such, they overcome purely text-centric or data
based approaches and enable reasoning over entities, relations, hierarchies, constraints, and de-
pendencies, which are fundamental in engineered systems.

Remark 7.24
Note that while the graph as such is consistent given the inference rules, this still does not reveal

an explainable AI and issues such as hallucination are still present within that approach.

Table 7.2 summarized advantages and disadvantages of Graph RAGs.

Table 7.2.: Advantages and disadvantages of graph RAGs

Advantage Disadvantage
✓ Integrates ontologies and inference ✗ May be arbitrarily wrong
✓ Identifies multihop links and errors

Appendices

APPENDIX A

GRAPHRAG EXAMPLE

The following tables represent an illustrative example, which can be used to showcase the addded
value of Graph RAGs over simple data.

Table A.1.: GraphRAG example – vehicles

Name Autonomy level
ModelA 3

ModelB 2

Table A.2.: GraphRAG example – features

Vehicle Feature
LaneKeepAssist "Lane Keeping Assist helps keep the vehicle centered by

automatic steering adjustments."

AdaptiveCruiseControl "Adaptive Cruise Control maintains a set speed and dis-
tance from vehicles ahead."

AutoEmergencyBraking "Automatic Emergency Braking can autonomously apply
the brakes to prevent collisions."

BlindSpotMonitor "Blind Spot Monitoring alerts the driver to vehicles in
blind spots during lane changes."

Continued on next page

150 A. GRAPHRAG EXAMPLE

Table A.2 – continued from previous page

Vehicle Feature
ParkingAssist "Parking Assist automatically steers the vehicle into park-

ing spots using sensors."

HighwayPilot "Highway Pilot enables semi-autonomous highway driv-
ing by combining multiple ADAS functions."

Table A.3.: GraphRAG example – sensors

Feature Sensor
Camera "Forward-facing optical camera sensor for lane and object

detection."

Radar "Radio radar sensor for detecting the distance and speed
of objects."

Lidar "Laser-based LiDAR sensor for 3D environment map-
ping."

Ultrasonic "Ultrasonic proximity sensor for short-range distance
measurement (e.g. parking)."

Table A.4.: GraphRAG example – actuators

Feature Actuator
Steering "Electronic power steering system for automated direction

control."

Throttle "Engine throttle control for adjusting vehicle speed."

Brake "Electronic braking system for automated deceleration."

151

Table A.5.: GraphRAG example – Taxonomy

Parent Child
Component Sensor

Component Actuator

Sensor Camera

Sensor Radar

Sensor Lidar

Sensor Ultrasonic

Actuator Steering

Actuator Throttle

Actuator Brake

Table A.6.: GraphRAG example – Vehicle features

Vehicle Feature
ModelA LaneKeepAssist

ModelA AdaptiveCruiseControl

ModelA AutoEmergencyBraking

ModelA BlindSpotMonitor

ModelA ParkingAssist

ModelA HighwayPilot

ModelB AdaptiveCruiseControl

ModelB AutoEmergencyBraking

ModelB BlindSpotMonitor

Table A.7.: GraphRAG example – Feature requiring sensor

Feature Sensor
LaneKeepAssist Camera

AdaptiveCruiseControl Radar

AutoEmergencyBraking Camera

Continued on next page

152 A. GRAPHRAG EXAMPLE

Table A.7 – continued from previous page

Feature Sensor
AutoEmergencyBraking Radar

BlindSpotMonitor Radar

ParkingAssist Ultrasonic

HighwayPilot Camera

HighwayPilot Radar

HighwayPilot Lidar

Table A.8.: GraphRAG example – Feature requiring actuator

Feature Actuator
LaneKeepAssist Steering

AdaptiveCruiseControl Throttle

AdaptiveCruiseControl Brake

AutoEmergencyBraking Brake

ParkingAssist Steering

HighwayPilot Steering

HighwayPilot Throttle

HighwayPilot Brake

The data can be created, maintained, governed, exploited and revised in tools such as Neo4j,
which we used here.

1 // Load Vehicle nodes

2 LOAD CSV WITH HEADERS FROM ’file:///vehicles.csv’ AS row

3 MERGE (v:Vehicle {name: row.Name})

4 ON CREATE SET v.autonomyLevel = toInteger(row.AutonomyLevel);

5

6 // Load ADAS Feature nodes

7 LOAD CSV WITH HEADERS FROM ’file:///features.csv’ AS row

8 MERGE (f:Feature {name: row.Name})

9 ON CREATE SET f.description = row.Description;

10

11 // Load Component (Sensor/Actuator) nodes

153

12 LOAD CSV WITH HEADERS FROM ’file:///sensors.csv’ AS row

13 MERGE (c:Component {name: row.Name})

14 ON CREATE SET c.description = row.Description;

15 LOAD CSV WITH HEADERS FROM ’file:///actuators.csv’ AS row

16 MERGE (c:Component {name: row.Name})

17 ON CREATE SET c.description = row.Description;

18

19 // Create taxonomy (IS_A relationships)

20 LOAD CSV WITH HEADERS FROM ’file:///taxonomy.csv’ AS row

21 MERGE (parent:Component {name: row.Parent})

22 MERGE (child:Component {name: row.Child})

23 MERGE (child)-[:IS_A]->(parent);

24

25 // Create Vehicle HAS_FEATURE Feature relationships

26 LOAD CSV WITH HEADERS FROM ’file:///vehicle_features.csv’ AS row

27 MATCH (v:Vehicle {name: row.Vehicle})

28 MATCH (f:Feature {name: row.Feature})

29 MERGE (v)-[:HAS_FEATURE]->(f);

30

31 // Create Feature REQUIRES_SENSOR relationships

32 LOAD CSV WITH HEADERS FROM ’file:///feature_requires_sensor.csv’ AS row

33 MATCH (f:Feature {name: row.Feature})

34 MATCH (s:Component {name: row.Sensor})

35 MERGE (f)-[:REQUIRES_SENSOR]->(s);

36

37 // Create Feature REQUIRES_ACTUATOR relationships

38 LOAD CSV WITH HEADERS FROM ’file:///feature_requires_actuator.csv’ AS row

39 MATCH (f:Feature {name: row.Feature})

40 MATCH (a:Component {name: row.Actuator})

41 MERGE (f)-[:REQUIRES_ACTUATOR]->(a);

Program A.1: Loading data

1 // Load all data and display

2 MATCH (n)

3 RETURN n;

Program A.2: Visualizing data

BIBLIOGRAPHY

[1] BLONDEL, V.D. ; GUILLAUME, J.-L. ; LAMBIOTTE, R. ; LEFEBVRE, E.: Fast unfold-
ing of communities in large networks. In: Journal of Statistical Mechanics: Theory and

Experiment (2008), No. 10. http://dx.doi.org/10.1088/1742-5468/2008/

10/P10008

[2] DEUTSCHES INSTITUT FÜR NORMUNG E.V.: DIN V 19233:1998 Control technology -

Process automation - Automation with process computer systems, definitions. Beuth, 1998

[3] DEUTSCHES INSTITUT FÜR NORMUNG E.V.: DIN IEC 60050-351 Internationales Elek-

trotechnisches Wörterbuch Teil 351: Leittechnik (IEC 60050-351:2014-09). Beuth, 2014.
http://dx.doi.org/10.31030/2159569

[4] EDGE, D. ; TRINH, H. ; CHENG, N. ; BRADLEY, J. ; CHAO, A. ; MODY, A. ; TRUITT, S.
; METROPOLITANSKY, D. ; OSAZUWA NESS, R ; LARSON, J.: From Local to Global: A

Graph RAG Approach to Query-Focused Summarization. https://arxiv.org/abs/
2404.16130. Version: 2025

[5] EMMONS, S. ; KOBOUROV, S. ; GALLANT, M. ; BÖRNER, K.: Analysis of Network
Clustering Algorithms and Cluster Quality Metrics at Scale. In: PLOS ONE 11 (2016), pp.
1–18. http://dx.doi.org/10.1371/journal.pone.0159161

[6] ERLEBACH, T. ; BRANDES, U.: Network analysis: Methodological foundations. Springer,
2005. http://dx.doi.org/10.1007/b106453

[7] EXPERT GROUP ON CLOUD COMPUTING: The Future of Cloud Computing: Opportunities

for European Cloud Computing Beyond 2010. Commission of the European Communities,
2010. http://dx.doi.org/20.500.12708/36467

http://dx.doi.org/10.1088/1742-5468/2008/10/P10008
http://dx.doi.org/10.1088/1742-5468/2008/10/P10008
http://dx.doi.org/10.31030/2159569
https://arxiv.org/abs/2404.16130
https://arxiv.org/abs/2404.16130
http://dx.doi.org/10.1371/journal.pone.0159161
http://dx.doi.org/10.1007/b106453
http://dx.doi.org/20.500.12708/36467

156 BIBLIOGRAPHY

[8] GIANI, M. ; FRANK, N. ; VERL, A.: Towards Industrial Control from the Edge-Cloud:
A Structural Analysis of Adoption Challenges According to Industrial Experts. (2022).
http://dx.doi.org/10.1145/3567445.3567450

[9] INTERNATIONAL ELECTROTECHNICAL COMMISSION: IEC 61512-4:2009 Batch control.
IEC, 2009

[10] INTERNATIONAL ELECTROTECHNICAL COMMISSION: IEC 61508:2010 Functional safety

of electrical/electronic/programmable electronic safety-related systems. IEC, 2010

[11] INTERNATIONAL ELECTROTECHNICAL COMMISSION: IEC 61131:2013 Programmable

controllers. IEC, 2013

[12] INTERNATIONAL ELECTROTECHNICAL COMMISSION: ISO/IEC 81346:2022 Industrial

systems, installations and equipment and industrial products – structuring principles and

reference designations. IEC, 2022

[13] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION: ISO 7498:1994 Information

Technology - Open Systems Interconnection - Basis Reference Model. Beuth, 1994

[14] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION: ISO 22400:2014 utomation

systems and integration — Key performance indicators (KPIs) for manufacturing operations

management. ISO, 2014

[15] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION: ISO 9001:2015 Quality man-

agement systems - Requirements. Beuth, 2015. http://dx.doi.org/10.31030/

2325651

[16] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION: ISO 9241:2019 Ergonomics

of human-system interaction. ISO, 2019. http://dx.doi.org/10.31030/

3104744

[17] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION: ISO/IEC Directives, Part 2.
International Organization for Standardization, 2021

[18] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION: ISO/IEC DIS 27032:2022

Cybersecurity - Guidelines for Internet security. ISO, 2022

[19] KARMARKAR, A. ; BUCHHEIT, M.: The Industrial Internet of Things Volume G8: Vocab-

ulary. Industrial Internet Consortium, 2017

[20] LAI, C.: Intelligent Manufacturing. Springer, 2022. http://dx.doi.org/10.1007/
978-981-19-0167-6

http://dx.doi.org/10.1145/3567445.3567450
http://dx.doi.org/10.31030/2325651
http://dx.doi.org/10.31030/2325651
http://dx.doi.org/10.31030/3104744
http://dx.doi.org/10.31030/3104744
http://dx.doi.org/10.1007/978-981-19-0167-6
http://dx.doi.org/10.1007/978-981-19-0167-6

BIBLIOGRAPHY 157

[21] LANGMANN, C. ; TURI, D.: Robotic process automation – Digitalisierung und Au-

tomatisierung von Prozessen. Springer, 2020. http://dx.doi.org/10.1007/

978-3-658-34680-5

[22] LEICHT, E.A. ; NEWMAN, M.E.J.: Community structure in directed networks. In: Physi-

cal review letters 100 (2008), No. 11, pp. 118703. http://dx.doi.org/10.1103/
PhysRevLett.100.118703

[23] LEWIS, P. ; PEREZ, E. ; PIKTUS, A. ; PETRONI, F. ; KARPUKHIN, V. ; GOYAL, N. ;
KÜTTLER, H. ; LEWIS, M. ; YIH, W. ; ROCKTÄSCHEL, T. ; RIEDEL, S. ; KIELA, D.:
Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks. In: LAROCHELLE,
H. (Hrsg.) ; RANZATO, M. (Hrsg.) ; HADSELL, R. (Hrsg.) ; BALCAN, M.F. (Hrsg.) ; LIN,
H. (Hrsg.): Advances in Neural Information Processing Systems Bd. 33, Curran Associates,
Inc., 2020, 9459–9474

[24] LUNZE, J.: Automatisierungstechnik. 5. Auflage. DeGruyter, 2020. http://dx.doi.
org/10.1515/9783110465624

[25] MURATA, T.: Petri Nets: Properties, Analysis and Applications. In: Proceedings of the

IEEE 77 (1989), No. 4, pp. 541–580. http://dx.doi.org/10.1109/5.24143

[26] NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY: Framework for Cyber-

Physical Systems. National Institute of Standards and Technology, 2015. http://dx.

doi.org/10.6028/NIST.SP.1500-201

[27] NEUMANN, K. ; MORLOCK, M.: Operations Research. Hanser, 2002. http://dx.

doi.org/10.1002/zamm.19940740918

[28] PLENK, V.: Grundlagen der Automatisierungstechnik kompakt. Springer, 2019. http:

//dx.doi.org/10.1007/978-3-658-24469-9

[29] STJEPANDIC, J. ; SOMMER, M. ; DENKENA, B.: DigiTwin: An approach for production

process optimization in a built environment. Springer, 2022. http://dx.doi.org/

10.1007/978-3-030-77539-1

[30] UTTERBACK, J.M. ; ABERNATHY, W.J.: A dynamic model of process and product inno-
vation. In: Omega 3 (1975), No. 6, pp. 639–656. http://dx.doi.org/10.1016/

0305-0483(75)90068-7

[31] WIKIPEDIA: CAN bus. https://en.wikipedia.org/wiki/CAN_bus, 2023. –
Accessed: 2025-11-01

http://dx.doi.org/10.1007/978-3-658-34680-5
http://dx.doi.org/10.1007/978-3-658-34680-5
http://dx.doi.org/10.1103/PhysRevLett.100.118703
http://dx.doi.org/10.1103/PhysRevLett.100.118703
http://dx.doi.org/10.1515/9783110465624
http://dx.doi.org/10.1515/9783110465624
http://dx.doi.org/10.1109/5.24143
http://dx.doi.org/10.6028/NIST.SP.1500-201
http://dx.doi.org/10.6028/NIST.SP.1500-201
http://dx.doi.org/10.1002/zamm.19940740918
http://dx.doi.org/10.1002/zamm.19940740918
http://dx.doi.org/10.1007/978-3-658-24469-9
http://dx.doi.org/10.1007/978-3-658-24469-9
http://dx.doi.org/10.1007/978-3-030-77539-1
http://dx.doi.org/10.1007/978-3-030-77539-1
http://dx.doi.org/10.1016/0305-0483(75)90068-7
http://dx.doi.org/10.1016/0305-0483(75)90068-7
https://en.wikipedia.org/wiki/CAN_bus

158 BIBLIOGRAPHY

[32] ZENG, W. ; KHALID, M.A.S. ; CHOWDHURY, S.: In-Vehicle Networks Outlook: Achieve-
ments and Challenges. In: IEEE Communications Surveys & Tutorials 18 (2016), No. 3, pp.
1552–1571. http://dx.doi.org/10.1109/COMST.2016.2521642

http://dx.doi.org/10.1109/COMST.2016.2521642

Jürgen Pannek
Institute for Intermodal Transport and Logistic Systems
Hermann-Blenck-Str. 42
38519 Braunschweig

	Contents
	List of tables
	List of figures
	List of definitions and theorems
	1 Intension, concept and aims
	1.1 Intension
	1.2 Concept
	1.3 Aims

	I Planning and specification
	2 System planning
	2.1 Interested parties, perspectives and requirements
	2.2 Concepts of modeling
	2.3 Description methods
	2.4 Petri Networks
	2.4.1 Reachability and coverability
	2.4.2 Liveness
	2.4.3 Safeness

	3 Separation
	3.1 Modularization
	3.2 Standardization
	3.3 Lean planning

	4 Information and communication
	4.1 Information processing
	4.2 Transmission networks and communication structures
	4.3 Open system interconnection
	4.4 Network access

	5 Control
	5.1 Feedforward and feedback control
	5.1.1 PID control
	5.1.2 Stability

	5.2 Prefilter and precontrol

	II Integration, optimization and leading
	6 Networking
	6.1 Decoupling
	6.1.1 Decoupling of states and outputs
	6.1.2 Decoupling of time
	6.1.3 Decoupling of control

	6.2 Digital twin
	6.3 Cyber physical systems
	6.4 Industrial cloud platform
	6.5 Industrial internet

	7 Optimization and leading
	7.1 Industrial big data
	7.1.1 Retrieval-Augmented Generation
	7.1.2 Data processing
	7.1.3 Data query

	7.2 Knowledge Graphs and Knowledge Management
	7.2.1 Graph Retrieval-Augmented Generation
	7.2.2 Semantics and Ontology
	7.2.3 Reasoning
	7.2.4 Graph Management

	Appendices
	A GraphRAG example
	Bibliography

