
Multimodal Transport Systems
(Multimodale Transportsysteme)

Lecture Notes

Jürgen Pannek

July 19, 2023

Jürgen Pannek
Institute for Intermodal Transport and Logistic Systems
Hermann-Blenck-Str. 42
38519 Braunschweig

FOREWORD

During summer term 2023 I give the lecture to the module Multimodal Transport Systems (Multi-

modale Transportsysteme) at the Technical University of Braunschweig. To structure the lecture
and support my students in their learning process, I prepared these lecture notes. As it is the first
edition, the notes are still incomplete and are updated in due course of the lecture itself. Moreover,
I will integrate remarks and corrections throughout the term.
The aim of the module is to provide an overview on intermodal transport and logistics systems
with a particular focus on methods for planning, design and coordination of such systems.
In particular, students shall be able to describe, explain, apply and analyze modes and systems
in transport and logistics. Moreover, students can recall, interpret and evaluate key performance
indicators for unimodal and intermodal systems. Regarding planning and design, students are
able to characterize, apply and differentiate methods with respect to the area of application and
assess suitability of these methods. Last, students are able to describe, categorize and evaluate
methods of coordination regarding intermodality.
To this end, we address the subject areas

modes and systems in transport and logistics,

design and planning of systems, and

methods of coordination

within the lecture. Additionally, we utilize simulation and hardware to support understanding and
application of the discussed methods within the tutorial classes. The module itself is accredited
with 5 credits.
An electronic version of this script can be found at

https://www.tu-braunschweig.de/itl/lehre/skripte

During the preparation of the lecture, I utilized the book of Gudehus [4] and Neumann [7].

https://www.tu-braunschweig.de/itl/lehre/skripte

II

Literature for further reading

Modes and systems in transport and logistics

GUDEHUS, T.: Logistik: Grundlagen, Strategien, Anwendungen. 4th edt. Springer,
2010

GUDEHUS, T. ; KOTZAB, H.: Comprehensive Logistics. Springer, 2012

Design and planning of systems

SARDER, M.D.: Logistics Transportation Systems. Elsevier, 2020

NEUMANN, K. ; MORLOCK, M.: Operations Research. 2nd edt. Hanser, 2004

FEICHTINGER, G. ; HARTL, R.F.: Optimale Kontrolle ökonomischer Prozesse. de-
Gruyter, 2011

Methods of coordination

VOGT, J.J.: Business Logistics Management. 5th edt. Oxford University Press, 2016

SCHÖNBERGER, J.: Model-Based Control of Logistics Processes in Volatile Environ-

ments. Springer, 2011

Contents

Contents iii

List of tables v

List of figures viii

List of definitions and theorems xi

List of algorithms xiii

1 Transport and logistics systems 1
1.1 Modes . 1
1.2 Modeling . 7
1.3 Performance indicators . 19
1.4 Hierarchy of systems . 24

2 Design and planning 27
2.1 Strategic level . 27

2.1.1 Spanning tree problem . 27
2.1.2 Flow problem . 36

2.2 Tactical level . 48
2.2.1 Shortest path problem . 49
2.2.2 Vehicle routing problem . 59

3 Coordination 73
3.1 Serious gaming . 73
3.2 Leader follower . 82

Bibliography 89

Index 91

List of Tables

1.1 List of description methods . 10
1.2 Atrributes of logistics systems . 14
1.3 Decomposition and measurement of KPIs . 20

2.1 Advantages and disadvantages of Prim/Kruskal algorithms 36
2.2 Advantages and disadvantages of Ford-Fulkerson algorithm 47
2.3 Dijkstra table for example from Figure 2.17 . 57
2.4 Advantages and disadvantages of the Dijkstra algorithm 58
2.5 Distance table for example from Figure 2.23 . 61
2.6 Advantages and disadvantages of heuristics for CVRP 71

3.1 Advantages and disadvantages of serious gaming 82
3.2 Advantages and disadvantages of leader follower 87

List of Figures

1.1 Examples of load carriers . 3

1.2 Examples of storage and handling processes . 4

1.3 Multimodal transport (blue) in an intermodal transport chain 7

1.4 Modeling as cognition method . 7

1.5 Robot arm in real and model area . 8

1.6 Model and remainder . 9

1.7 Dimensions of model characteristics . 11

1.8 Graph of network from Task 1.27 . 12

1.9 Term of a system . 13

1.10 Graph of network from Task 1.33 . 16

1.11 Multiplicity within a network . 17

1.12 Network constraints . 18

1.13 Sketch Euclidean and Manhattan norm . 22

1.14 Manhattan distance using streets networks at TU Braunschweig 23

1.15 Working layers for transport and logistics systems 24

1.16 Feedback structure between layers/systems . 24

1.17 Difference between digital model/shadow/twin 25

2.1 ICE network of Germany1 . 28

2.2 Example of spanning tree problem . 29

2.3 Example of a cost assigned network . 30

2.4 Example path within a cost assigned network 31

2.5 Example cycle within a cost assigned network 31

2.6 Example spanning trees within a cost assigned network 33

2.7 Minimal spanning tree using Prim’s Algorithm 1 34

2.8 Minimal spanning tree using Kruskal’s Algorithm 2 35

2.9 Example of a directed network . 37

2.10 Sources, sinks as well as predecessor and successor set of example network from
Figure 2.9 . 38

2.11 Flow relation within the example network from Figure 2.9 39

VIII LIST OF FIGURES

2.12 Improved flow relation within example network from Figure 2.9 41
2.13 Flow increasing path within example network from Figure 2.12 43
2.14 Maximal flow for example network from Figure 2.9 45
2.15 Minimal cut for example network from Figure 2.9 46
2.16 Manhattan distance using streets networks at TU Braunschweig 50
2.17 Example network with multiplicities . 50
2.18 Reachable set of vertex A from example network in Figure2.17 51
2.19 Tree induced by reachable setR(A) from example network in Figure 2.17 52
2.20 Minimal path from vertex A to vertex E for network from Figure 2.17 53
2.21 Minimal paths and path sequences forR(A) for network from Figure 2.17 . . . 58
2.22 Milk run in logistics2 . 59
2.23 Example of a vehicle routing problem . 60
2.24 Bin packing for example from Figure 2.23 . 65
2.25 Nearest neighbor based on bin packing for example from Figure 2.23 67
2.26 Result of savings algorithm for example from Figure 2.23 70

3.1 Connection of serious games to working methods 75
3.2 State of example network from Figure 2.9 . 77
3.3 Sketch of a dynamic flow and a trajectory . 78
3.4 Sketch of a three stage supply network . 79
3.5 Bullwhip effect in supply chain . 80
3.6 Separating the example network from Figure 2.9 81
3.7 Communication structure for leader follower systems 83
3.8 Projections for example network from Figure 2.9 86

List of Definitions and Theorems

Definition 1.1 System . 2
Definition 1.2 Process . 2
Definition 1.3 Object . 2
Definition 1.4 Load carrier and load unit . 2
Definition 1.6 De-/commissioning . 3
Definition 1.7 Transport . 3
Definition 1.8 Storage . 3
Definition 1.9 Handling . 4
Definition 1.11 Logistics . 4
Definition 1.12 Modes of logistics processes . 4
Definition 1.13 Sinks, sources and nodes . 5
Definition 1.14 Components of logistics processes . 5
Corollary 1.15 Identity of sources/sinks . 5
Definition 1.16 Transport chain or path . 5
Corollary 1.17 Necessary components . 6
Definition 1.18 Multimodality . 6
Definition 1.19 Intermodality . 6
Definition 1.24 Network . 11
Corollary 1.25 Identification of components and network 11
Definition 1.28 System and process . 13
Definition 1.29 Intralog, extralog and interlog . 13
Definition 1.30 Incidence matrix . 14
Definition 1.32 Directed network . 15
Definition 1.34 Configuration . 16
Definition 1.36 Marking and multiplicity . 16
Definition 1.38 Network constraints . 17
Definition 1.39 Solution of network . 17
Definition 1.41 Key performance criterion . 19
Definition 1.42 Aim . 19
Definition 1.43 Network costs . 20

X LIST OF DEFINITIONS AND THEOREMS

Definition 1.44 Network utilization factor . 21

Definition 1.45 Network detour factor . 21

Theorem 1.47 Limits of detour factor . 22

Corollary 1.48 Detour optimal network . 23

Definition 1.50 Digital model/shadow/twin . 25

Definition 2.2 Path . 30

Definition 2.4 Cycle . 30

Theorem 2.6 Cost minimal solution . 32

Definition 2.7 Tree . 32

Definition 2.8 Spanning tree . 32

Definition 2.10 Minimal spanning tree . 32

Definition 2.16 Source, sink, predecessor and successor set 36

Definition 2.18 Flow . 37

Definition 2.21 Feasible flow . 39

Definition 2.22 Zero flow . 40

Definition 2.23 Flow order . 40

Definition 2.25 Maximal flow problem . 41

Theorem 2.26 Existence of maximal flow . 41

Definition 2.28 Flow increasing path . 42

Theorem 2.30 Maximal flow . 44

Theorem 2.32 Max flow – min cut . 45

Definition 2.34 Cost minimal flow problem . 47

Definition 2.37 Reachable set . 49

Theorem 2.39 Reachable set as tree . 51

Definition 2.42 Minimal path . 52

Theorem 2.44 Bellman’s principle of optimality . 54

Definition 2.47 Transshipment problem . 54

Corollary 2.48 Spanning tree of optimal paths . 55

Definition 2.49 Label setting and label correcting . 56

Definition 2.54 Depot . 60

Definition 2.55 Tour . 60

Definition 2.59 Route . 62

Definition 2.61 Capacity constraint . 62

Definition 2.62 Capacitated vehicle routing problem 63

Definition 3.1 Serious game . 74

Definition 3.2 Time set . 74

Definition 3.5 State . 76

LIST OF DEFINITIONS AND THEOREMS XI

Definition 3.8 Discrete time system . 77
Definition 3.10 Operation point . 78
Definition 3.13 Bullwhip effect . 79
Definition 3.15 Entity . 82
Definition 3.18 Projection . 84
Definition 3.19 Decomposition . 84
Definition 3.22 Neighboring index set . 85
Definition 3.23 Neighboring data . 86

LIST OF ALGORITHMS

1 Prim algorithm for minimal spanning tree . 33
2 Kruskal algorithm for minimal spanning tree . 35
3 Flow capacity calculation . 43
4 Algorithm to compute a flow increasing path . 44
5 Algorithm to add an increasing path to a flow relation 46
6 Ford-Fulkerson algorithm for maximal flows . 47
7 Floyd-Warshall algorithm for minimal paths . 55
8 Dijkstra’s algorithm for minimal paths . 57
9 Bin packing algorithm . 64
10 Nearest neighbor algorithm . 66
11 Savings algorithm . 68
12 2-opt algorithm . 70
13 Heuristic for capacitated vehicle routing problem 71

14 Serious game . 76
15 Leader follower . 87

CHAPTER 1

TRANSPORT AND LOGISTICS SYSTEMS

Amateurs discuss tactics, professionals discuss logistics.

Napoleon Bonaparte

While modern transport and logistics systems are not primarily driven by military developments
but instead by civil needs of people and companies, the tasks, utilities, approaches and methods of
such systems remain identical. Within this lecture, we discuss modes and transport and logistics
systems with a particular focus on how to intertwine modes. Here, we not only consider different
modes as in road, rail, water etc. transport, but also modes of operation such as cooperation and
non-cooperation.
Within the present chapter, we introduce the basic terms which we are going to use throughout
the lecture. Thereafter, we continue by defining the general concept of a system before stating
standard methods to describe such systems in models. Knowing the description of a transport
system, we discuss performances measures.

1.1 Modes

The task of logistics systems is provide the right amount of required objects in the right compo-
sition at the right location at the right time. In order to fulfill this task, three basic utilities are
required: infrastructure, vehicles and operation. Within this section, we introduce basic terms in
a descriptive manner. Based on these, in the following section we formalize the latter to utilize
computational methods for solving the logistics task.
In order to arrive at a logistics system, we need to go along the task definition of such systems and
introduce respective terms. Based on DIN IEC 60050-351 [2], we start by the terms of a system,
a process and an object:

2

Definition 1.1 (System).
A system is a set of interrelated elements that are viewed as a whole in a particular context and
considered as distinct from their environment.

Building on the description of a system, a process is given as follows

Definition 1.2 (Process).
A process is the entirety of relations and interacting elements in a system through which matter,
energy or information is transformed, transported or stored.

In logistics, the object to be transformed, transported or stored is defined more precisely in
DIN 30781 [1]:

Definition 1.3 (Object).
A logistics object may consist of people, goods, energy or information.

We like to stress that an logistics object is not restricted to be of the types mentioned in Defini-
tion 1.3 but, e.g., be a combination of good and information. Moreover, while objects may be time
dependent, e.g. degradable such as fruits, time itself is not a logistics object. In real life, objects
are humans, trading goods, food, raw materials or material, pre-products, semi-finished prod-
ucts, products as well as investment and consumer goods and production and operating resources.
Additionally, in reverse logistics also waste and exhausted goods are objects.
Continuing with the task of logistics systems, we next define composition. To this end, we require
an auxiliary, which is fundamental in any kind of logistics system.

Definition 1.4 (Load carrier and load unit).
A load carrier is a bearing means to accumulate objects to one load unit. A load unit consists of
one or multiple objects combined by a load carrier together with necessary safety agents.

Remark 1.5
Note that even for single objects such as humans, load carriers such as seats or tethers are

provided which in that case also serve as safety agents.

1Source: https://commons.wikimedia.org/wiki/File:EPAL-Europalette.jpg
2Source: https://www.europlanttray.com/de/

https://commons.wikimedia.org/wiki/File:EPAL-Europalette.jpg
https://www.europlanttray.com/de/

1.1 MODES 3

(a) Euro pallet1 (b) Plant tray2

Figure 1.1: Examples of load carriers

While load size one is common in transport of people, the standard case for transporting goods
is to accumulate several objects. Following Definition 1.2 of a process, we clarify the terms
„transform“, „transport“ and „store“.

Definition 1.6 (De-/commissioning).
Commissioning/decommissioning is the process of assembling and disassembling load units.

Having defined an object, we can introduce the meaning of transport.

Definition 1.7 (Transport).
A transport is the possibly time dependent process of moving of a load unit starting at an initial
time at an initial location to a target location at a target time.

At this point we observe that time enters into our description. For one, the displacement starts
and ends at certain time and certain places like, e.g., the start and end points of a trip, but also
the displacement may be time dependent, e.g., caused by traffic. Still we require object to be
available at the right time. Therefore, starting/arriving to early may render the task of a transport
and logistics system to be infeasible. Hence, storage is required as an option to bridge time gaps.

Definition 1.8 (Storage).
Storage is the time displacement of a load unit in an unchanging location.

Last, it may be necessary to rearrange load units between two transports or between transport and
storage.

4

Definition 1.9 (Handling).
The consecutive decommissioning and commissioning is called handling.

(a) Automated storage facility3 (b) Automated handling facility4

Figure 1.2: Examples of storage and handling processes

Remark 1.10
Note that the resulting number of load units may change by handling.

Now we can combine the definitions above and formally introduce a logistics system.

Definition 1.11 (Logistics).
Logistics refers to the combination of the processes transport, de-/commissioning, handling and
storage of objects.

Each of the four logistics processes may be executed in different environments. Stemming from
transport, these are referred to as modes. Depending on technology, the list of modes may be
extended in the future. Currently, the following modes are known:

Definition 1.12 (Modes of logistics processes).
The modes of the logistics processes

for transport and storage include air, land (rail and road), water, cable, pipeline, space and
cyberspace, and

for de-/commissioning and handling include manual, automated, and machine supported.

3Source: https://commons.wikimedia.org/wiki/File:TGW-Stingray-Shuttle.jpg
4Source: https://commons.wikimedia.org/wiki/File:Float_Glass_Unloading.jpg

https://commons.wikimedia.org/wiki/File:TGW-Stingray-Shuttle.jpg
https://commons.wikimedia.org/wiki/File:Float_Glass_Unloading.jpg

1.1 MODES 5

Additionally, for logistics process three core components can be identified: For one, passive
components provide and consume objects, active components modify time, space and consistency
of objects, and process components determine the sequence and composition of passive and active
components. To introduce these components, we require the following:

Definition 1.13 (Sinks, sources and nodes).
A point in space is called source if it generate objects, sink if it consumes objects, and node if it
may hold objects.

Now, the norm DIN 30781 [1] provides us with respective terms of the components.

Definition 1.14 (Components of logistics processes).
We call

sinks, sources and nodes of objects infrastructure,

time, space and consistency changes to objects utilities, and

the method to define paths from sinks to sources operations.

The terms infrastructure, utilities and operations are called components of logistics systems.

In real life, sources are all kinds of warehouses, manufacturing plants and workshops. Sinks
correspond to consumers, shops and markets. Hence, by conservation of energy/material, we
directly see the following:

Corollary 1.15 (Identity of sources/sinks).
Sources are always sinks in other logistics systems.

Note that we do not use operations as paths from sources to sinks, but methods to determine such
paths. Within DIN 30781 [1], the term transport chain is used for such paths. The term itself is
technically misleading as it also includes de-/commissioning, handling and storage:

Definition 1.16 (Transport chain or path).
A transport chain or path is a sequence of logistics processes.

Based on the latter, we can already derive a necessary condition for a transport and logistics
system:

6

Corollary 1.17 (Necessary components).
Any transport and logistics system requires infrastructure, utilities, and operations.

Considering a specific transport, it is possible to use different modes. These modes may exist in
parallel or may be used in sequence. In the parallel case there is a choice between these modes
and the object may be displaced using any of these modes. This case is referred to as multimodal:

Definition 1.18 (Multimodality).
Consider an object, for which there exist several transport options with different modes. Then the
transport is called multimodal. Moreover, any transport and logistics system is called multimodal

if there exists at least one multimodal transport.

The multimodal case is quite common in transport of humans, which may choose to walk, use
a bike or car or public transport. Hence, multimodality provides us with options. In contrast to
that, the sequential case means that an object is transported using different modes (and possible
intermediate handlings).

Definition 1.19 (Intermodality).
We call a transport chain intermodal if more than one transport mode is used.

The typical example of an intermodal transport chain is transportation by ship, rail or aircraft. In
any of these cases, a transport chain can be split in three (or more) parts: a preliminary leg, a main
leg or main run, and a subsequent leg. In a preliminary leg the respective object is first transported
to utilities (ports, railway stations, airports etc.), where they are handled to switch transport mode
for the main run. Arriving at end point of the main run, the object is again handled and then fed
to the subsequent leg.

Remark 1.20
We like to stress that intermodality refers to transport chains, whereas multimodality refers to a

transport, cf. Figure 1.3

Note that the multimodal example in transport of humans is not completely correct, i.e. before
taking public transport, one typically has to walk to a respective station. So technically the chosen
transport itself is an intermodal one.
Having introduced the basic terms we are dealing with, our next aim is to formalize these terms
to use them in an automated way such as, e.g., simulation.

1.2 MODELING 7

Road

Rail

Water

RoadSource Utility Utility Sink

Figure 1.3: Multimodal transport (blue) in an intermodal transport chain

1.2 Modeling

Within modeling, there are several sources which can lead to misunderstandings. These range
from industrial sector specific terms or objects to coding languages up to cultural diversity. Yet
the aim is always to provide insight into the system at hand. Hence, the overall tasks to be included
in concepts of modeling is to provide a holistic view of the information model. For transport and
logistics systems, these views may differ depending on their purpose. For example, for real time
planning a functional description using differential equation is more appropriate than the graph
description used for planning and vice versa.
Modeling itself as cognition method exhibits the components shown in Figure 1.4.

System

Signal

Sensor Actuator Tool

Cognition Mental model Expression Model

Reference Ontology

Learning

Mental area

Memory

Real area Model area

Figure 1.4: Modeling as cognition method

Here, the model can exist on various levels and degrees of detail. An example is given by the
robot arm in Figure 1.5, which can be abstracted to its main physical components.
However, these components can be further detailed to satisfy a set of differential equations, which
need to be parametrized and identified. The level of detail therefore depends on the purpose of
the model and how it shall be used.
Regardless of the usage, there exist process requirements for modeling, that is working princi-
ples found within any modeling process. These requirements are a state-of-the-art list, which is

8

l1 φ
1

l2

φ2

l3
φ

3

Figure 1.5: Robot arm in real and model area

commonly used as a convention and not as a definition.

Convention 1.21 (Process requirements of modeling)
During the modeling process, six principles need to be met:

1. Principle of Correctness: A model needs to present the facts correctly regarding structure
and dynamics (semantics). Specific notation rules have to be considered (syntax).

2. Principle of Relevance: All relevant items have to be modeled. Non-relevant items have to
be left out, i.e. the value of the model doesn’t decline if these items are removed.

3. Principle of Cost vs. Benefit: The amount of effort to gather the data and produce the model
must be balanced against the expected benefit.

4. Principle of Clarity: The model must be understandable and usable. The required knowl-
edge for understanding the model should be as low as possible.

5. Principle of Comparability: A common approach to modeling ensures future comparability
of different models that have been created independently from each other.

6. Principle of Systematic Structure: Models produced in different views should be capable
of integration. Interfaces need to be designed to ensure interoperability.

Here, we like to stress that the principle of cost vs. benefit already dictates that it does not make

1.2 MODELING 9

sense to model the entirety of any system. Instead, we have to accept that the model is to some
(hopefully known) extend not perfect. Figure 1.6 illustrates this idea.

Model

Remainder

Figure 1.6: Model and remainder

Similarly, any concept of modeling should satisfy the following functional requirements:

Convention 1.22 (Functional requirements of modeling)
For any concept of modeling, the fitness of methods, tools and implementation need to be aligned.

1. Fitness for methods:

Consideration of modern software development methods

Consideration of development phase

Analytical/mathematical properties

Theoretical soundness and provability

Vertical and horizontal consistency

Composability and decomposability

Consideration of deterministic and stochastic properties

Graphical presentability

Ability for simulation

Testability, traceability and comprehensibility

2. Fitness for tools

Portability

Compatibility

Usability

3. Fitness for implementation

10

Viability in soft- and hardware

Reverse engineering

Depending on the purpose of the description, a variety of methods are applied. In the following
Table 1.1, we structure these methods according to usage. The sequence follows a top down idea:

Table 1.1: List of description methods

Class Example

Abstraction oriented Verbal description, algebra, proposition logic, predicate logic

Structure oriented Sequential logic system, combinatorial logic

Implementation oriented Logic plan, function plan, contact diagram, structure diagram,
timing diagram, instruction list, gantt chart

State oriented Decision table, transition table, state diagram, state graph,
Karnaugh-Veitch diagram

Technology oriented Flow chart, switching plan, computer aided design (CAD)

Method oriented Network diagram, Nassi-Shneidermann diagram, unified model-
ing language (UML), structure-analysis-real-time (SA/RT) dia-
gram

Decision/Time oriented Boolean algebra, differential/difference equations, Markov chains

Note that the methods cannot be considered to stand by themselves, they require specification top
down and connection bottum up.
Within this lecture, we focus on methods and decision making. Therefore, we utilize networks
and equation systems for our models. Both approaches are suitable for modern computer sci-
ence concepts such as object orientation, allow for mathematical concepts such as discrete event
triggered dynamical systems and integrate both compact description as well as horizontal and
hierarchical structures. Generally speaking, the (mathematical) description of models varies de-
pending on the considered time, space and amplitude properties. Figure 1.7 provides a rough
overview on these characteristics.

1.2 MODELING 11

Time

Space

static continuous time discrete time event triggered

0 D

1 D

2 D

n D

Amplitude

continuous

discrete

Figure 1.7: Dimensions of model characteristics

Remark 1.23
Regarding time, static models are characterized by the fact that inputs, outputs, and measure-

ments of the system are available. In contrast to that, continuous time models exhibit data streams

being received continuously. Discrete-time models differ from that by the availability of data,

which is received at certain, not necessarily equidistant time instances. Last, event-triggered

models require issues to trigger receiving data.

Regarding space, models may vary from a simple connection to complex systems.

Regarding amplitude, models may differ regarding continuous spaces e.g., mass, and discrete

spaces such as gear shifts.

Following Table 1.1 on networks, we more formally define the following:

Definition 1.24 (Network).
Consider a set of V = {v1, . . . vnV} where nV ∈ N is the maximal entry of V . Moreover,
suppose E = V × V where nE ∈ N is the maximal entry of E . Then we call V the set of

vertexes, E the set of edges connecting the vertexes, and N = (V , E) a network.

Regarding our transport and logistics processes (Definition 1.14), we can directly identify the
network and logistics components:

Corollary 1.25 (Identification of components and network).
For logistics processes, we identify definable infrastructure as vertexes and definable utilities as

edges.

12

Note that Corollary 1.25 does not require all components to be defined. This is in accordance
with our concept of a model, for which certain parts are modeled and the remainder is considered
as disturbance.

Remark 1.26
In the computer science or mathematics literature, a network is also called a graph, for which the

set of vertexes is typically referred to as set of nodes.

In the process automation literature, vertexes are split into attributes and methods. Attributes are

also called places indicating the physical position of an object. Methods, on the other hand, are

also called transitions, i.e. transportation from start to destination or modifications from initial

to target property.

Task 1.27
Consider the transportation system given by V = {A, B, C, D, E, F}, which is complete.

Draw the respective network.

Solution to Task 1.27: Within a complete network for each pair of vertexes there exists an
edge. The network is displayed in Figure 1.8.

ab

ac

adae

af bc

bdbe

bf

cdce

cf

de

dfef

A B

C

DE

F

Figure 1.8: Graph of network from Task 1.27

Within these networks, there are value streams between vertexes. Coming back to the special
vertexes sources and sinks, cf. Definition 1.13, there is a feed entering the network at the sources
and leaving the network at the sinks. More generally, we define the input/output and value stream
using the following:

1.2 MODELING 13

Definition 1.28 (System and process).
Consider two sets U and Y . Then a map Σ : U → Y is called a system and the application of this
map to an input u ∈ U to obtain an output y = Σ(u) ∈ Y is called a process.

The latter definition will be very useful on both the planning / tactical level as well as the control
/ operational level. In particular, the sets U and Y are called input and output sets. An element
from the input set u ∈ U is called an input, which acts from the environment to the system and is
not dependent on the system itself or its properties, cf. Figure 1.9.

System

u1
u2

...
unu

y1
y2

...
yny

Figure 1.9: Term of a system

We distinguish between inputs, which are used to specifically manipulate (or control) the system,
and inputs, which are not manipulated on purpose. We call the first ones control or manipulation

inputs, and we refer to the second ones as disturbance inputs. An element from the output set
y ∈ Y is called an output. In contrast to an input, the output is generated by the system and
influences the environment.
In practice, we subdivide between three different networks:

Definition 1.29 (Intralog, extralog and interlog).
Consider a transport and logistics system to be modeled by a network. Then we define

intralog network as a system within one infrastructure of one company,

extralog network as a system between the infrastructure of one company, and

interlog network as a system of all companies.

14

Table 1.2: Atrributes of logistics systems

Intralog Extralog Interlog

Scope System within one in-
frastructure

System between the in-
frastructure of one com-
pany

System between all in-
frastructures

Site One Multiple Multiple

Networking Low Medium High

Paths Internal Cross infrastructure Cross company

Source Stock receipt
Manufacturing plant

Supplier
Other sites

Companies
Households

Sink Goods issue
Point of consumption

Customer
Other sites

Companies
Households

Configuration Machine system
Storage system
Commissioning system
Conveying system

Procurement
Distribution
Disposal
Transport

Intralog
Extralog
Transport

Algebraically, the network or graph resulting from using the network notion stated above can be
summarized in the so called incidence matrix.

Definition 1.30 (Incidence matrix).
For any network N = (V , E), we call

I =
[
Ijk
]

where Ijk :=

1 vertex vj is incident with edge ek

0 else
(1.1)

incidence matrix of the network.

Hence, the incidence matrix is arranged with vertexes as rows and edges as columns.

Task 1.31
Compute the incidence matrix of the network from Task 1.27.

1.2 MODELING 15

Solution to Task 1.31: The incidence matrix is given by

I :=



1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 1 1 1 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 1 1 1 0 0 0
0 0 1 0 0 0 1 0 0 1 0 0 1 1 0
0 0 0 1 0 0 0 1 0 0 1 0 1 0 1
0 0 0 0 1 0 0 0 1 0 0 1 0 1 1


.

In many cases, also the direction of edges is of importance, e.g. if a road or pipeline can only be
used in one direction. Then the graph is called directed.

Definition 1.32 (Directed network).
Consider a network N = (V , E). If the set of edges E is ordered, then we call N a directed

network. The incidence matrix is defined via

I =
[
Ijk
]

where Ijk :=


−1 edge ek leaves vertex vj

1 edge ek enters vertex vj

0 else

(1.2)

Task 1.33
Consider a complete transport system V = {A, B, C}. Draw the network and compute the

incidence matrix.

Solution to Task 1.33: For the network displayed in Figure 1.10 we obtain

I :=

 1 1 −1 0 −1 0
−1 0 1 1 0 −1
0 −1 0 −1 1 1


as the respective incidence matrix.

The incidence matrix not only provides us with a compact description of the network, it can also
be used for computations. It can be used to identify, e.g., whether certain vertexes are neces-
sary/sufficient or may ever be reached. The core tool for such assessments are configurations. In

16

ab

ac

ba

bcca

cb

A B

C

Figure 1.10: Graph of network from Task 1.33

principle, these configuration are nothing else than use cases of a system or process, for which
we like to answer certain questions.

Definition 1.34 (Configuration).
Consider a network N = (V , E). Then any subset C ⊆ V is called a configuration. We call the
tuple (N , C) an elementary network.

Hence, a configuration is a subnet within a network. As such, it interacts with the rest of the
network, yet we are only interested in answers for this specific subset.

Remark 1.35
Loosely speaking, if the entire world would be represented as a network, then a configuration is

a model of a process/system, which interacts with its surroundings and is disturbed by it.

We extend the notion of a configuration by introducing markings and multiplicities. Markings can
be interpreted as units assigned to a vertex, like load units waiting to be transported. Multiplicities
may be used to assign transport costs along an edge.

Definition 1.36 (Marking and multiplicity).
Consider a network N = (V , E). Then the maps

CV : V → R
nV
0 , CV (v) = # (v ∈ CV (v)) ∀v ∈ V (1.3)

CE : E → R
nE
0 , CE (e) = # (e ∈ CE (e)) ∀e ∈ E (1.4)

are multisets where CV is called marking and CE is called multiplicity. The triple (N , CV , CE) is
called marked network.

1.2 MODELING 17

Remark 1.37
We like to note that multiplicities may also be used to display the required number of units for a

utility, i.e. how many load units are required for a specific transport. Such a graph is the more

special case of a Petri network.

Within Figure 1.11, multiplicities are added to a network. Similarly, the vertexes can be comple-
mented with values.

11

8

110

12

4

11

7

5

15

v2 v4

Sink

v3v1

Source

Figure 1.11: Multiplicity within a network

Based on markings and multiplicities, we can introduce bounds of infrastructure and utilities by
defining inequalities for the vertexes and edges:

Definition 1.38 (Network constraints).
Consider a network N = (V , E). Then we call

vj ≤ vj ≤ vj (1.5)

ej ≤ ej ≤ ej (1.6)

network constraints for all vertexes v ∈ V and all edges e ∈ E .

Figure 1.12 illustrates the network constraints.
Hence, if the constraints are satisfied, we call the respective maps a solution of the network.

Definition 1.39 (Solution of network).
Given a network N = (V , E) with constraints. Then we call any (CV , CE) satisfying the con-
straints a solution of the network.

18

0 ≤ e1 ≤ 11

0 ≤ e2 ≤ 8

0 ≤ e3 ≤ 10 ≤ e4 ≤ 10

0 ≤ e5 ≤ 12

0 ≤ e6 ≤ 4

0 ≤ e7 ≤ 11

0 ≤ e8 ≤ 7

0 ≤ e9 ≤ 5

0 ≤ e10 ≤ 15

0 ≤ v2 ≤ 10 0 ≤ v4 ≤ 15

Sink

0 ≤ v3 ≤ 50 ≤ v1 ≤ 3

Source

Figure 1.12: Network constraints

At this point, the theory and design of networks splits into two different areas. For one, re-
searchers and practitioners look for answers regarding properties of networks. Some of the most
popular questions range from the static ideas of

reachability: Can all markings be set? Which markings can be set?

coverability: Can specific markings be set?

to dynamic/time dependent properties such as

liveness: Is a process/system deadlock free, can all vertexes be marked and unmarked?

consistency: Will all markings be set uniquely?

boundedness: Will all markings stay bounded?

In practice, such questions are found in the design phase or on the strategic level of a system, e.g.
introduction of new transport modes, a new train station or bus line.
In contrast to topology questions, the second trail deals with optimization regarding – among
others – the questions

minimal cost: Which transport chain shows minimal costs?

maximal throughput: Which infrastructure or utility provides a bound on the throughput of
objects?

1.3 PERFORMANCE INDICATORS 19

robustness: Is a transport system robust against disturbances/blockages?

Such questions are part of planning on a tactical level. Within this lecture, we include both means
in the subsequent chapters.

Remark 1.40
Apart from description via networks, transport and logistics systems can also be modeled using

maps from inputs to outputs, that is, e.g., transport requests to changes of load units over time.

A basic example is a given transport system where we supply a number of load units to be trans-

ported. The system will then show how the load units are transported within the system, e.g.,

within a simulation.

1.3 Performance indicators

Regarding intent, we are going to use the term a key performance criterion, also called key per-
formance indicator (KPI), throughout the lecture. Formally, the definition follows ISO 22400 [6]:

Definition 1.41 (Key performance criterion).
Given a system/process Σ, a key performance criterion is a function J : Y → R, which measures
defined information retrieved from the system against a standard.

Performance indicators are not to be misunderstood as strategies. A performance indicator is a
rating, which allows us to assess aims and strategies. To clarify the difference between KPI and
aim, we introduce the following:

Definition 1.42 (Aim).
Consider a system/process Σ and a KPI J to be given. An aim is the definition of a desired
system/process behavior.

The following Table 1.3 summarizes examples of typical performance measures, which are sorted
by strategies. Here, the goals, capabilities and measurements are specified for transport and
logistics systems.

20

Table 1.3: Decomposition and measurement of KPIs

Strategy Aims Capability decomposition Performance measurements

Cost leadership Productivity ◦ Throughput ◦ Transported units per period

◦ Effectiveness ◦ Availability, performance

◦ Efficiency ◦ Input used for specific output

Differentiation Agility ◦ Response speed ◦ Response/cycle time

◦ On time delivery ◦ Rate to complete and deliver

◦ Fault recovery ◦ Rate of downtime

Quality ◦ Transport quality ◦ Customer denial/rejection

◦ Innovation ◦ Innovation cycle time

◦ Diversity ◦ Services and personalization

◦ Service ◦ Customer’s evaluation

Sustainability ◦ Utility/infrastructure ◦ Energy efficiency, lifetime,

reusability

◦ Process ◦ Energy use, CO2 balance

Regarding networks, a cost function depends on the choices of routes along the network only.
Therefore, the same notation as for dynamical systems may be used by setting the state set X =

(CV (V), CE (E)) and U = ∅. For simplicity, we define the following:

Definition 1.43 (Network costs).
We call a key performance criterion given by a function J : (CV (V), CE (E))→ R network costs.

The reference, which is required by Definition 1.41, can be designed by capacity usage of both
infrastructure and utilities, or by topology of again both infrastructure and utilities.
Here, we start with the network utilization factor, which provides a reference for the summarized
utilization of all logistics components within a network.

1.3 PERFORMANCE INDICATORS 21

Definition 1.44 (Network utilization factor).
Given a network N = (V , E) with constraints. Then we call

J(CV (V), CE (E)) :=
1

nV

nV

∑
j=1

vj

vj︸ ︷︷ ︸
Infrastructure

+
1

nV

nE

∑
j=1

ej

ej︸ ︷︷ ︸
Utilities

(1.7)

network utilization factor.

In particular, the utilization factor is an unweighted factor, which looks at percentages of uti-
lization of components. The factor can be split between capacities of infrastructure (storage and
handling) and capacities of utilities (transport) and may also be broken down to individual com-
ponents. One of the outcomes of utilization is to identify the maximal flow or respectively the
minimal cut of a network.
Apart from utilization, also topology plays a critical role for transport and logistics systems. The
relevant factor regarding topology is the so called detour factor:

Definition 1.45 (Network detour factor).
Consider a network N = (V , E). Then we call the ratio

J(CV (V), CE (E)) :=
1

nV · (nV − 1)

nV

∑
j=1

nV

∑
k=1
k ̸=j

dN (vj, vk)

d(vj, vk)
(1.8)

network detour factor where dN (vj, vk) is the shortest path and d(vj, vk) is the Euclidean distance
between the points vj, vk

To illustrate the difference between shortest path and Euclidean distance, we utilize the Manhattan
norm.

Task 1.46 (Manhattan norm)
Define the Manhattan norm to characterize the distances to be taken if the road network

provides a rectangular street grid.

22

Solution to Task 1.46: Using a rectangular grid, we obtain the shortest path ∥x∥1 =
nx
∑

j=1
|xj|

whereas the Euclidean distance is given by ∥x∥2 =

√
nx
∑

j=1
x2

j .

1 2 3 4 5 6

1

2

3

4

5

Manhattan

Euclid
ean

Manhattan

Figure 1.13: Sketch Euclidean and Manhattan norm

An example of the Manhattan distance vs. the Euclidean distance on road networks for the TU
Braunschweig is given in Figure 1.14.
As we can directly deduce from the Manhattan norm Task 1.46, the detour factor is limited:

Theorem 1.47 (Limits of detour factor).
Given a network N = (V , E). Then the detour factor is bound from below by

J(CV (V), CE (E)) ≥ 1. (1.9)

If the network is a grid, then the detour factor is additionally bounded from above by

J(CV (V), CE (E)) ≤
√

2. (1.10)

From Theorem 1.47 we can directly deduce the optimal topology:

1.3 PERFORMANCE INDICATORS 23

Figure 1.14: Manhattan distance using streets networks at TU Braunschweig

Corollary 1.48 (Detour optimal network).
If a given network N = (V , E) is complete and all edges e ∈ E are Euclidean connections, then

the network is detour optimal, i.e. ℓ(CV (V), CE (E)) = 1.

Consequently, any network can be improved regarding the detour factor via direct connections.
In general, a detour factor, which is significantly greater than 1.2 is deemed inefficient.

Remark 1.49
Both utilization and detour factor can be generalized by weighting components individually.

In the concluding section, we will link both models and discuss their interrelation.

24

1.4 Hierarchy of systems

As outlined before, we introduced network models to deal with planning problems on the tactical
level, whereas dynamic models are used for control problems on operational level. Figure 1.15
displays the connections between the problems.

Operational layer

Tactical layer

Strategic layer

Control problem

Planning problem

Design problem

Figure 1.15: Working layers for transport and logistics systems

The solutions of the problems are connected in both directions. Within this lecture, we are par-
ticularly interested in the connection between the tactical and operational layer. For this case,
the solution of the planning problem reveals the operational point required by the optimal control
problem on the operational layer. The solution of the control problem is fed back to the network
problem to ensure monitoring.
Between strategic and tactical layer, a similar circle exists. The strategic layer provides network
structures, the tactical layer allows evaluation using simulation.

Design problem

Planning problem

Control problem

Network structure

Operating pointMonitoring data

Design validation

Figure 1.16: Feedback structure between layers/systems

In the literature, such representations are also called digital model/shadow/twin. More specifi-
cally, the latter differ as to their purpose:

1.4 HIERARCHY OF SYSTEMS 25

Definition 1.50 (Digital model/shadow/twin).
Suppose a system/process with inputs and outputs, a digital representation of the same sys-
tem/process and communication possibility between both to be given.

If there exists at least a manual data flow from the system/process to the digital representa-
tion, then we call the digital respresentation a digital model.

If there exists at least an automated data flow from the system/process to the digital repre-
sentation, then we call the digital respresentation a digital shadow.

If there exists a bidirectional automated data flow between the system/process and the dig-
ital representation, then we call the digital representation a digital twin.

System/process

Digital representation

(a) Digital model

System/process

Digital representation

(b) Digital shadow

System/process

Digital representation

(c) Digital twin

Figure 1.17: Difference between digital model/shadow/twin

Using Definition 1.50, we see that the difference between the three forms exists in the interaction
structure. For the digital model, a data transfer is done manually from real system/process to
the digital one. The intention of such a structure is to obtain insights into the system/process
behavior and its properties. Its applications are on the strategic layer to design transport and
logistics networks. Using an automated (and possible real time capable) data stream, the digital
shadow can be used for monitoring purposes. Due to the automated nature, it is a reporting tool
and can be used for planning. Last, the automated backwards flow to the physical system/process
allows the digital twin to be applied on the operational layer.

CHAPTER 2

DESIGN AND PLANNING

The line between disorder and order lies in logistics.

Sun Tzu

As we have seen in the previous Chapter 1, networks can be utilized for design and planning
problems. Within this chapter, we will derive solution methods for both tasks. On the strategic
level, we start by the design problem of how a transport and logistics system should look like just
in terms of a given KPI for utilities. Thereafter, we address the issue of constraints of utilities.
On the tactical level, we switch perspective from the global view of the entirety of the trans-
port and logistics system towards single transports. In particular, we consider the search of the
most efficient (in the sense of a KPI) connection between two infrastructure components within
a transport and logistics system. Thereafter, we extend this problem to identify the most efficient
connections between all vertexes.

2.1 Strategic level

Considering the design problem, we abstract from load units and consider the entirety of the
transportation and logistics network. In this setting, the edges are utilities in the form of street,
rail, waterways, air, pipelines or electricity lines. Here, we first ignore the issue of constraints and
of the orientation of edges within the network.

2.1.1 Spanning tree problem

In case of a given infrastructure for a transport and logistics system, the problem arises to identify
a network between all infrastructure components which is minimal in the sense of a KPI.

28

Remark 2.1
We like to stress that the KPIs network utilization and network detour factors we introduced in

the previous chapter are typical, there exists a wide variety of KPIs depending on the stakeholder

group currently addressed. For this reason, network utilization and network detour are consid-

ered as (secondary) systemic indicators.

In a general setting, there exist several options to get from one infrastructure component to another
one using utilities and/or other infrastructure components. Figure 2.1 shows the realization of the
German high speed train network, which represents a choice of realized options.

Figure 2.1: ICE network of Germany1

1Source: https://commons.wikimedia.org/wiki/File:Germany_-_ICE_line_network,_train_frequencies_and_top_speeds.svg

https://commons.wikimedia.org/wiki/File:Germany_-_ICE_line_network,_train_frequencies_and_top_speeds.svg

2.1 STRATEGIC LEVEL 29

Examples of such problems may be the transport from production facilities to distribution centers
using road, rail or waterways and/or transfer halls and repackaging. In a different setting, the
network may represent gas pipelines linking storage areas, inflow manifolds, compressors and
end users. A more generic setting is given in Figure 2.2 sketching an abstract transport network.

Figure 2.2: Example of spanning tree problem

In all cases, the question arises which utilities should be chosen to connect the infrastructure, or
in network terms which edges should be chosen in order to obtain a cost minimal coverage of
all vertexes. In order to be cost minimal, we require costs to be assigned to edges. To illustrate
the solution approach for such a problem we utilize the example of such a network given in
Figure 2.3.
Within this figure, there exists a variety of possibilities to connect the vertexes. Regarding a cost
minimal solution, it is directly clear that there cannot exist more than one possibility to connect
any two vertexes. To see the latter a simple counterexample can be used: If the solution is cost
minimal suppose there exists a second possibility to get from one vertex to another. Since the
costs of that edge are greater than zero, the edge can be left out reducing the total costs while still
connecting all vertexes. Hence, the solution was not cost minimal.
To formalize this idea, we first introduce the concept of connecting two vertexes formally:

30

6

5

4

2 45

13

2

57

A B

C

DE

F

Figure 2.3: Example of a cost assigned network

Definition 2.2 (Path).
Suppose a network N = (V , E) to be given. Then we call a sequence of edges p := {ej} given
by ej = (vj1 , vj2) a path if

vj2 = vk1 (2.1)

holds for all j, k satisfying k = j + 1.

Task 2.3 (Path)
Consider the network given in Figure 2.3. Highlight a path between vertex A and vertex E.

Solution to Task 2.3: A path connecting A and E may include the edges AD and DE, cf.
Figure 2.4.

Secondly, we already saw from the counterexample idea shown before that there cannot be two
different paths between two vertexes. Such a case is called a cycle:

Definition 2.4 (Cycle).
Suppose a network N = (V , E) to be given. A path with sequence p = (e1, . . . , ej) is called a
cycle if it is nonempty and the vertex sequence is of the form (v1, v2, . . . , vj, v1).

2.1 STRATEGIC LEVEL 31

6

5

4

2 45

13

2

57

A B

C

DE

F

Figure 2.4: Example path within a cost assigned network

Task 2.5 (Path)
Consider the network given in Figure 2.3 and insert a cycle between vertex A and vertex E.

Solution to Task 2.5: A path connecting A and E may include the edges AD and DE, cf.
Figure 2.5.

6

5

4

2 45

13

2

57

A B

C

DE

F

Figure 2.5: Example cycle within a cost assigned network

Using the picture of a cycle, we can now formally state the result we discussed beforehand:

32

Theorem 2.6 (Cost minimal solution).
For a given network N = (V , E) with multiplicities CE : E → R

nE
0 a cost minimal solution is

cycle free.

The central question now is, how does such a solution look like and how can we compute it. Since
the solution must be cycle free, it must look like a tree:

Definition 2.7 (Tree).
Given a network N = (V , E) a tree is a subset E ⊂ E such that

∀vj, vk ∈ V : ∃1 path connecting vj, vk. (2.2)

Since our aim was to connect the entirety of infrastructure, we need to make sure that all vertexes
are connected. To include this property, we require a so called spanning tree:

Definition 2.8 (Spanning tree).
Consider a network N = (V , E). Suppose E ⊂ E to be a tree. If

∀vj ∈ V : ∃e ∈ E ∧ vk ∈ V : e = (vj, vk) (2.3)

holds, then E is called a spanning tree.

Task 2.9 (Spanning tree)
Given the network from Figure 2.3 insert two possible spanning trees.

Solution to Task 2.9: The two spanning trees are indicated using black and red in Figure 2.6.

As we have seen, there are several possibilities for spanning trees. To decide which of these
trees is the best one considering the KPI of costs assigned to the edges, we directly obtain the
following:

Definition 2.10 (Minimal spanning tree).
For a network N = (V , E) with multiplicities CE : E → R

nE
0 we call a tree a minimal spanning

2.1 STRATEGIC LEVEL 33

6

5

4

2 45

13

2

57

A B

C

DE

F

Figure 2.6: Example spanning trees within a cost assigned network

tree if it spans all vertexes V and minimizes the multiplicities within the tree, i.e.

E = argmin
E

∑
e∈E
CE (e). (2.4)

Having answered the question which properties a solution to cost minimal connection of vertexes
has, we now require a method to compute such a solution. Since the property (2.4) is linear and
the network itself is also linear, we can obtain a solution using a so called greedy approach.
For our specific problem of identifying a minimal spanning tree, two different methods exist. The
first one is called Prim’s algorithm and aims to complete a spanning tree in the cost minimal way
possible.

Algorithm 1 Prim algorithm for minimal spanning tree

Input: Connected network N = (V , E)
Input: Multiplicities CE : E → R

nE
0

1: procedure CLASS PRIM(N , CE)
2: E ← ∅
3: E ← E ∪ {e = argmine∈E CE (e)}
4: for j = 2, . . . , nV − 1 do
5: E ← E ∪ {e = argmine∈E∪{e} CE (e) | E ∪ {e} is a tree}
6: end for
7: end procedure

Output: Minimal spanning tree E

The idea of Prim’s Algorithm 1 is to start with a cost minimal edge defining an initial tree. Based

34

on this tree, the algorithm considers only edges which are adjacent to the current tree and choose
the cost minimal one of them. Continuing this way, a total of nV − 1 edges are chosen resulting
in a spanning tree.

Task 2.11 (Minimal spanning tree)
Given the network from Figure 2.3 compute a minimal spanning tree using Algorithm 1.

Solution to Task 2.11: The result is given in Figure 2.7. The minimal cost is 14.

6

5

4

2 45

13

2

57

A B

C

DE

F

Figure 2.7: Minimal spanning tree using Prim’s Algorithm 1

Remark 2.12
Note that the result of Prim’s algorithm is not unique. In fact, neither the choice of the initial

edge nor the intermediate choices may be unique if two edges with identical costs exist.

A different approach is the so called Kruskal’s Algorithm 2. In contrast to Prim, Kruskal always
uses the cost minimal edge and adds it to a set.
As a consequence of this strategy, Kruskal’s Algorithm considers the entirety of vertexes as a
forest of several trees. In each step, it fuses two trees to a bigger one. Hence, after nV − 1 steps
only one tree remains, which is then also a spanning tree.

2.1 STRATEGIC LEVEL 35

Algorithm 2 Kruskal algorithm for minimal spanning tree

Input: Connected network N = (V , E)
Input: Multiplicities CE : E → R

nE
0

1: procedure CLASS KRUSKAL(N , CE)
2: E ← ∅
3: E ← E ∪ {e = argmine∈E CE (e)}
4: for j = 1, . . . , nV do
5: E ← E ∪ {e = argmine∈E CE (e) | E ∪ {e} is free of circles}
6: end for
7: end procedure

Output: Minimal spanning tree E

Task 2.13 (Minimal spanning tree)
Given the network from Figure 2.3 compute a minimal spanning tree using Algorithm 2.

Solution to Task 2.13: The result is given in Figure 2.8. Similar to Task 2.11 the minimal
costs are 14.

6

5

4

2 45

13

2

57

A B

C

DE

F

Figure 2.8: Minimal spanning tree using Kruskal’s Algorithm 2

Remark 2.14
We like to note that both Prim’s and Kruskal’s algorithm require the network to be connected. If

this is not the case, no spanning tree exists. If these algorithms are applied to such a network,

both algorithms are capable to identify that no spanning tree exists.

36

Remark 2.15
Kruskal’s algorithm can be implemented very efficiently if the set of edges E is stored as a heap

sorted by the multiplicities. This is not possible for Prim’s algorithm.

Table 2.1: Advantages and disadvantages of Prim/Kruskal algorithms

Advantage Disadvantage
✓ Compute basic network ✗ Neglects directions
✓ Includes any KPI ✗ Neglects constraints

As we have seen, we can use Prim’s and Kruskal’s algorithms to compute basic supply network.
Up till now, we supposed that the edges may be used in both directions and did not worry about
capacities. In the following, we will dig deeper into networks using constraints and orientations.

2.1.2 Flow problem

The flow problem is coming up in case when a network consisting of vertexes and edges, which
are limited in capacity and also exhibit a direction. In transportation systems, these correspond to
limits of load carriers per edge. Here, one central question is to assess how many load carriers can
be transported from one vertex to another one. The flow problem is also termed transportation

problem.
To answer this question, we first need to clarify how a transport can be put onto a network. In
that regard, if a transport is executed, the remaining capacities of edges are modified. In order
to calculate on such a network, we first introduce some basic terms to properly describe a flow
within a network.

Definition 2.16 (Source, sink, predecessor and successor set).
Consider a directed network N = (V , E). For any vertex vj ∈ V we call

S(vj) :=
{

v ∈ V | ∃(vj, v) ∈ E
}

(2.5)

P(vj) :=
{

v ∈ V | ∃(v, vj) ∈ E
}

(2.6)

successor and predecessor set of vj. Moreover, we identify vertexes as sinks if the condition

s = {v ∈ V | S(v) = ∅} (2.7)

2.1 STRATEGIC LEVEL 37

and sources if

r = {v ∈ V | P(v) = ∅} (2.8)

holds.

Task 2.17 (Source, sink, predecessor and successor set)
Given the network from Figure 2.9 mark sources r and sinks s as well as the predecessor set

P(s) and the successor set S(r).

0 ≤ e1 ≤ 11

0 ≤ e2 ≤ 8

0 ≤ e3 ≤ 10 ≤ e4 ≤ 10

0 ≤ e5 ≤ 12

0 ≤ e6 ≤ 4

0 ≤ e7 ≤ 11

0 ≤ e8 ≤ 7

0 ≤ e9 ≤ 5

0 ≤ e10 ≤ 15

A B

C

DE

F

Figure 2.9: Example of a directed network

Solution to Task 2.17: Source and its successor set are displayed in red and sink and its
predecessor set are shown in blue in Figure 2.10.

Using sources and sinks, we can introduce the concept of a flow:

Definition 2.18 (Flow).
Suppose a directed network N = (V , E) to be given. Then we call a function F : E →

38

0 ≤ e1 ≤ 11

0 ≤ e2 ≤ 8

0 ≤ e3 ≤ 10 ≤ e4 ≤ 10

0 ≤ e5 ≤ 12

0 ≤ e6 ≤ 4

0 ≤ e7 ≤ 11

0 ≤ e8 ≤ 7

0 ≤ e9 ≤ 5

0 ≤ e10 ≤ 15

A B

Sink

DE

Source

Figure 2.10: Sources, sinks as well as predecessor and successor set of example network from Figure 2.9

R+ ∪ {∞} a flow relation if it satisfies the flow condition

∑
vk∈S(vj)

F (ejk)− ∑
vl∈P(vj)

F (el j) =


ω, if vj = r

−ω, if vj = s

0, if vj ∈ V \ {r, s}

(2.9)

for all vertexes vj ∈ V where r, s ∈ V denote source and sink of the network. We refer to ω as
the flow strength.

For intermodal systems, the latter condition (2.9)

∑
vk∈S(vj)

F (ejk)− ∑
vl∈P(vj)

F (el j) = 0, if vj ∈ V \ {r, s}

is of particular importance: It refers to the handling of load units from one edge to another without
storage, i.e. commissioning/decommissioning. Hence, the vertexes satisfying this condition are
possible vertex for intermodal transport changes.
It is worth mentioning that a flow relation is not the same as a path. While both represent connec-
tions between two vertexes, a path is a line whereas a flow can be a line or multiple lines between
the vertexes.

2.1 STRATEGIC LEVEL 39

Task 2.19 (Flow)
Given the network from Figure 2.10 insert a flow from source to sink.

Solution to Task 2.19: A flow relation is shown in Figure 2.11.

0 ≤ e1 ≤ 11

0 ≤ e2 ≡ 8 ≤ 8

0 ≤ e3 ≤ 10 ≤ e4 ≡ 8 ≤ 10

0 ≤ e5 ≡ 8 ≤ 12

0 ≤ e6 ≤ 4

0 ≤ e7 ≤ 11

0 ≤ e8 ≤ 7

0 ≤ e9 ≤ 5

0 ≤ e10 ≡ 8 ≤ 15

A B

Sink

DE

Source

Figure 2.11: Flow relation within the example network from Figure 2.9

Remark 2.20
Note that the flow condition (2.9) resembles Kirchhoff’s law for electrics, i.e. the inflow and

outflow at each vertex of an electrical network are identical.

Since we are dealing with capacities on the edges, we need to include these into the definition of
the flow.

Definition 2.21 (Feasible flow).
Given a directed network N = (V , E) with constraints

ekl ≤ ekl ≤ ekl (2.10)

we call a flow relation F : E → R+ ∪ {∞} feasible if

ekl ≤ F (ekl) ≤ ekl (2.11)

40

holds for all ekl = (vk, vl) ∈ E .

One special case of a feasible flow is the so called zero flow. In practice, a zero flow is quite
common as it refers to the case of no transportation within the network.

Definition 2.22 (Zero flow).
Consider a directed network N = (V , E) with constraints (2.10) and a flow relation F : E →
R+ ∪ {∞}. If the condition

F (ekl) = 0 (2.12)

holds for all ekl = (vk, vl) ∈ E , then it is called zero flow.

Note that a zero flow is only feasible if ej = 0 holds for all ej ∈ E . As such, it is also a prime
candidate to start any iterative algorithm to compute the best possible flow. The latter already
points us in the direction to use a KPI and assess possible solutions respectively. As a flow
relation is typically not single valued, it is difficult to compare flow relations with one another.
To render flow relations comparable, we introduce the concept of a flow order.

Definition 2.23 (Flow order).
Given a directed and connected network N = (V , E) with constraints (2.10) and flow relation
F 1,F 2 : E → R+ ∪ {∞}. Then we define the order of flows via the flow strength

ω(F 1) > ω(F 2) (2.13)

resembling the natural order > in R.

Task 2.24 (Flow order)
Consider the flow relation from Figure 2.11 suggest a improved flow relation.

Solution to Task 2.24: An improved flow relation is shown in Figure 2.12.

Based on this order, it is straight forward to define the problem of finding a maximal flow within
a network.

2.1 STRATEGIC LEVEL 41

0 ≤ e1 ≡ 4 ≤ 11

0 ≤ e2 ≡ 8 ≤ 8

0 ≤ e3 ≤ 10 ≤ e4 ≡ 8 ≤ 10

0 ≤ e5 ≡ 12 ≤ 12

0 ≤ e6 ≤ 4

0 ≤ e7 ≤ 11

0 ≤ e8 ≤ 7

0 ≤ e9 ≤ 5

0 ≤ e10 ≡ 12 ≤ 15

A B

Sink

DE

Source

Figure 2.12: Improved flow relation within example network from Figure 2.9

Definition 2.25 (Maximal flow problem).
For a directed and connected networkN = (V , E) with constraints (2.10) we call a flow relation
F : E → R+ ∪ {∞} maximal if it solves the maximal flow problem

max
F

ω(F) (2.14)

such that ∑
vk∈S(vj)

F (ejk)− ∑
vl∈P(vj)

F (el j) =


ω, if vj = r

−ω, if vj = s

0, if vj ∈ V \ {r, s}

ekl ≤ F (ekl) ≤ ekl ∀ekl = (vk, vl) ∈ E .

Before we start to design a method or algorithm to compute a maximal flow, we need to make
sure that such a flow actually exists. Fortunately, existence can be guaranteed very easily.

Theorem 2.26 (Existence of maximal flow).
Suppose a directed and connected network N = (V , E) with constraints (2.10) to be given. If

there exists a feasible flow relation F : E → R+ ∪ {∞} and ekl < ∞ for all ekl = (vk, vl) ∈ E ,

then there exists a solution to maximal flow problem (2.14).

42

Task 2.27 (Existence of maximal flow)
Given the network from Figure 2.10. Show that the conditions of Theorem 2.26 hold.

Solution to Task 2.27: For all edges we can directly observe that ej < ∞ holds for all ej ∈ E .
Moreover, as all lower bounds satisfy ej = 0 for all ej ∈ E , there exists a zero flow. Hence,
existence of a feasible flow relation is shown and the conditions of Theorem 2.26 hold.

As the existence theorem already indicates, we require a feasible solution. Based on the latter, we
can derive improvements. As we are dealing with flows, such an improvement is characterized
by a flow increase:

Definition 2.28 (Flow increasing path).
Suppose a directed and connected network N = (V , E) with constraints (2.10) to be given. Let
r, s ∈ V be source and sink of the network and suppose p(r, s) to be a path connecting r ∈ V and
s ∈ V . Furthermore let F : E → R+ ∪ {∞} be a feasible flow relation. If there exists p > 0
such that

p ≤ p(vk, vl) :=

ekl −F (ekl), if ekl = (vk, vl) and ekl is oriented along p(r, s)

F (ekl)− ekl, if ekl = (vk, vl) and ekl is oriented against p(r, s)
(2.15)

holds, then the path p(r, s) is called flow increasing.

While we could manually searched for a flow increasing path, we require a function to do so
using a computer. In order to start such a calculation, we require knowledge on which edges still
provide open capacities in both forward or backward flow. A respective list can be generated
using Algorithm 3.
The flow capacity calculation now allows us to identify a flow increasing path. A respective
function is given by Algorithm 4.
Again, we can use our ongoing example to highlight the computation of a flow increasing path.

Task 2.29 (Flow increasing path)
Consider the flow relation from Figure 2.12. Insert a flow increasing path.

2.1 STRATEGIC LEVEL 43

Algorithm 3 Flow capacity calculation

Input: Feasible flow relation F : E → R+ ∪ {∞}
Input: Constraints ejk, ejk for all ejk = (vj, vk) ∈ E

1: function CALCULATEFLOWCAPACITIES(N , CE ,F)
2: for j = 1, . . . , nV do
3: M(vj)← ∅ ▷M(vj) will hold all markable vertexes connected to vj
4: end for
5: for j = 1, . . . , nV do
6: for all vk ∈ S(vj) do
7: Identify ejk = (vj, vk)
8: if F (ejk) < ejk then
9: M(vj)←M(vj) ∪ {vk} ▷ Allows forward increase of capacity

10: else if F (ejk) > ejk then
11: M(vk)←M(vk) ∪ {vj} ▷ Allows backward decrease of capacity
12: end if
13: end for
14: end for
15: end function
Output: Flow capacitiesM

Solution to Task 2.29: As a path is simply connected, we consider edge e10 in Figure 2.12
to be improved. One (and in this case the only) remaining path with unused capacities from
source to sink is given by (e1,−e4, e7, e8, e10). In this case, e10 is the limiting factor as it
allows for a maximum increase of 3 units. The result is shown in Figure 2.13.

0 ≤ e1 ≡ 4 ≤ 11

+3

0 ≤ e2 ≡ 8 ≤ 8

0 ≤ e3 ≤ 10 ≤ e4 ≡ 8 ≤ 10−3

0 ≤ e5 ≡ 12 ≤ 12

0 ≤ e6 ≤ 4

0 ≤ e7 ≤ 11

+3

0 ≤ e8 ≤ 7+3

0 ≤ e9 ≤ 5

0 ≤ e10 ≡ 12 ≤ 15

+3

A B

Sink

DE

Source

Figure 2.13: Flow increasing path within example network from Figure 2.12

44

Algorithm 4 Algorithm to compute a flow increasing path

Input: Connected network N = (V , E)
Input: Feasible flow relation F : E → R+ ∪ {∞}
Input: Constraints ejk, ejk for all ejk = (vj, vk) ∈ E
Input: Flow capacitiesM

1: function CALCULATEFLOWINCREASINGPATH(N ,F , (ejk, ejk),M)
2: b← false, pr ← r, εr ← ∞, Q← {r}, L← {r} ▷ Q and L are snakes
3: while Q ̸= ∅ do
4: Obtain vk from Q(1), remove head of Q ▷ Q(1) is head of snake
5: for all vk ∈ M(vj) \ L do
6: Insert vk at end of Q and L
7: if vk ∈ S(vj) then
8: pvk ← vj, εvk ← min{εvj , ejk −F (ejk)} ▷ Forward marking
9: else

10: pvk ← −vj, εvk ← min{εvj ,F (ejk)− ejk} ▷ Backward marking
11: end if
12: if vk = s then
13: Terminate ▷ Sink s is marked
14: end if
15: end for
16: end while
17: b← true ▷ No connection to sink s
18: end function
Output: Stopping criterion b
Output: Flow increase εs
Output: Flow direction list p

Here, we like to point out that Algorithm 4 is able to identify whether or not a flow increasing
path exists. Hence, if no flow increasing path exists, this knowledge can be used as a breaking
criterion in finding a maximal flow. Theorem 2.30 formalizes this finding.

Theorem 2.30 (Maximal flow).
Given a directed and connected network N = (V , E) with constraints (2.10) and a feasible flow

relation F : E → R+ ∪ {∞}. If there exists no flow increasing path, then the flow relation is

maximal.

Task 2.31 (Flow increasing path)
Given the network from Figure 2.9 insert the maximal flow.

2.1 STRATEGIC LEVEL 45

Solution to Task 2.31: The maximal flow is displayed in Figure 2.14.

0 ≤ e1 ≡ 11 ≤ 11

0 ≤ e2 ≡ 8 ≤ 8

0 ≤ e3 ≤ 10 ≤ e4 ≡ 1 ≤ 10

0 ≤ e5 ≡ 12 ≤ 12

0 ≤ e6 ≤ 4

0 ≤ e7 ≡ 7 ≤ 11

0 ≤ e8 ≡ 3 ≤ 7

0 ≤ e9 ≡ 4 ≤ 5

0 ≤ e10 ≡ 15 ≤ 15

A B

Sink

DE

Source

Figure 2.14: Maximal flow for example network from Figure 2.9

Note that due to the property of nonexistence of a flow increasing path, the latter results is identi-
cal to a cut in the network, i.e. the network is split into two disconnected parts. To this end, only
the remaining capacities for each edge are shown.

Theorem 2.32 (Max flow – min cut).
Given a directed and connected network N = (V , E) with constraints (2.10). Then the maximal

flow from a source r ∈ V to a sink s ∈ V is identical to the capacity of the minimal cut in N .

Task 2.33 (Minimal cut within a network)
Given the maximal flow relation from Figure 2.14 show the minimum cut within the network.

Solution to Task 2.33: The minimum cut is displayed in Figure 2.15. In our case, the
minimal cut separated the source from the rest of the network.

Before coming to an overall algorithm to compute maximal flows, we first need to be able to
increment a given flow using a flow increasing path. A respective function is outlined in Algo-
rithm 5.

46

0 ≤ e3 ≤ 10 ≤ e4 ≡ 1 ≤ 10 0 ≤ e6 ≤ 4

0 ≤ e7 ≡ 7 ≤ 11

0 ≤ e8 ≡ 3 ≤ 7

0 ≤ e9 ≡ 4 ≤ 5

A B

Sink

DE

Source

Figure 2.15: Minimal cut for example network from Figure 2.9

Algorithm 5 Algorithm to add an increasing path to a flow relation

Input: Connected network N = (V , E)
Input: Feasible flow relation F : E → R+ ∪ {∞}
Input: Constraints ejk, ejk for all ejk = (vj, vk) ∈ E
Input: Flow capacitiesM, flow increase εs, flow direction list p, flow strength ω

1: function FLOWINCREASE(N ,F , (ejk, ejk),M, εs, p, ω)
2: ω ← ω + εs, set j indicator of sink s
3: while vj ̸= r do ▷ Until source is reached
4: k← j, set j indicator of pvj

5: M(vk)←M(vk) ∪ {vj}
6: if pvk > 0 then
7: F (ejk)← F (ejk) + εs ▷ Forward mark increases flow
8: if F (ejk) = ejk then
9: M(vj)←M(vj) \ {vk}

10: end if
11: else
12: F (ejk)← F (ejk)− εs ▷ Backward mark decreases flow
13: if F (ejk) = ejk then
14: M(vj)←M(vj) \ {vk}
15: end if
16: end if
17: end while
18: end function
Output: Flow relation F
Output: Flow capacitiesM
Output: Flow strength ω

2.1 STRATEGIC LEVEL 47

The result we obtain from Algorithm 5 is twofold: For one, the algorithm adds the flow increas-
ing path to the already existing flow relation. At the same time, the algorithm also updates the
remaining flow capacities for forward and backward flows. Hence, we are not required to recom-
pute these using Algorithm 3.
Now, we can combine Algorithms 3–5 to obtain the so called Ford-Fulkerson algorithm for com-
puting maximal flows. The basic requirement of this algorithm is that there exists a zero flow,
which is also used as initialization of the algorithm. Algorithm 6 resembles the respective pseudo-
code.

Algorithm 6 Ford-Fulkerson algorithm for maximal flows

Input: Connected network N = (V , E)
Input: Feasible flow relation F : E → R+ ∪ {∞}
Input: Constraints ejk, ejk for all ejk = (vj, vk) ∈ E

1: procedure CLASS FORD-FULKERSON(N ,F , (ejk, ejk))
2: ω ← 0
3: M← INITIALIZEFLOWCAPACITIES(F , (ejk, ejk))
4: [b, εs, p]← CALCULATEFLOWINCREASINGPATH(N ,F , (ejk, ejk),M)
5: while b = false do
6: [F ,M, ω]← FLOWINCREASE(N ,F , (ejk, ejk),M, εs, p, ω)
7: [b, εs, p]← CALCULATEFLOWINCREASINGPATH(N ,F , (ejk, ejk),M)
8: end while
9: end procedure

Output: Maximal flow F

Table 2.2: Advantages and disadvantages of Ford-Fulkerson algorithm

Advantage Disadvantage
✓ Addresses constraints ✗ Neglects costs
✓ Includes directions ✗ Results in NP problem with costs

The result of the maximal flow problem (2.14) in a second step be used to find a cost minimal flow
of given flow strength. This reveals the so called cost minimal flow or transshipment problem.

Definition 2.34 (Cost minimal flow problem).
Consider a network N = (V , E) with multiplicities CE : E → NE0 and constraints (2.10) and
suppose a flow strength ω ∈ R+ to be given. Then we call

min
F ∑

e∈E
CE (e) · F (e) (2.16)

48

such that ∑
vk∈S(vj)

F (ejk)− ∑
vl∈P(vj)

F (el j) =


ω, if vj = r

−ω, if vj = s

0, if vj ∈ V \ {r, s}

ejk ≤ F (ejk) ≤ ejk ∀ejk ∈ E .

cost minimal flow problem.

Technically, the latter problem can be reformulated using the incidence matrix to obtain a linear
optimization problem of the form

min C⊤E · F min c⊤ · x
such that H · F = ω ⇐⇒ such that A · x = b

e ≤ F ≤ e x ≤ x ≤ x

which can be solved using the simplex method. This is outside the scope of this lecture.

Remark 2.35
We like to note that the combination of cost minimal maximal flow is possible by redefining the

KPI in problem (2.16) to

min
F

max
ω

∑
e∈E
CE (e) · F (e). (2.17)

Such a min-max problem is typically NP hard, yet an efficient solution for this particular problem

can be found using the Busacker-Gowen algorithm, cf. [7] for details.

2.2 Tactical level

On the tactical level, planning of tours for load units is the most prominent task. Similar to the
cost minimal flow problem (2.16), the network consists of a directed graph with constraints and
costs. In contrast to this problem, our aim is to find a tour, which optimizes the KPI CE . In the
literature, one typically refers to the KPI as distance, which leads to respective methods being
called shortest path methods. Here, we will not follow this denomination but instead utilize the
term of costs per edge.

2.2 TACTICAL LEVEL 49

Remark 2.36
Note that KPIs other than distance, e.g. energy, transportation time and mode, are typically more

important for transport and logistic systems. Most of the latter can be transformed into costs, yet

also multi-KPI systems are possible but beyond the scope of this lecture.

For the planning process, there are four typical problem we can formulate to optimize the KPI:

Single-pair shortest path problem: Find the optimal path between an initial vertex r and a
terminal vertex s.

Single-source shortest path problem: Find the optimal paths between an initial vertex r and
all other vertexes of the network.

Single-destination shortest path problem: Find the optimal paths between any vertex of the
network and the terminal vertex s.

All-pairs shortest path problem: Find the optimal paths between any pair of vertexes of the
network.

Here, we first focus on the single-source shortest path problem as illustrated in Figure 2.16 con-
necting the Central Campus and the Airport Campus at TU Braunschweig.

2.2.1 Shortest path problem

The shortest path problem addresses the issue finding a shortest path from a given starting point
to any reachable destination. Within this section, we utilize the example network given in Fig-
ure 2.17 to illustrate definitions and methods.
To formulate the so called transshipment problem, we first define the so called reachable set, i.e.
those vertexes v ∈ V which can be reached from the initial one.

Definition 2.37 (Reachable set).
Consider a network N = (V , E). For any vertex vj ∈ V we call

R(vj) := {v ∈ V | there exists a path connecting vj and v} (2.18)

the reachable set of vj.

50

Figure 2.16: Manhattan distance using streets networks at TU Braunschweig

40

20

10

30

30

10

55

20

10

A

B

C

D

E

F

Figure 2.17: Example network with multiplicities

Task 2.38
Compute the reachable set of vertex A from the network in Figure 2.17.

2.2 TACTICAL LEVEL 51

Solution to Task 2.38: From A all vertexes except F can be reached. In fact, we have

S(A) = {B, C},
S(B) = {D, E},
S(C) = {A, E},
S(D) = {C}, and

S(E) = ∅.

Hence, we obtain

R(A) = SnE (A) = {B, C, D, E}.

The solution is also highlighted in Figure 2.18.

40

20

10

30

30

10

55

20

10

A

B

C

D

E

F

Figure 2.18: Reachable set of vertex A from example network in Figure2.17

We can directly observe that the reachable set is an extension of the successor set S , cf. Defi-
nition 2.16, by allowing for paths containing more than one edge. Moreover, if we combine the
adjacent edges of all nodes in the reachable set, then by Definition 2.7 the result is a tree:

Theorem 2.39 (Reachable set as tree).
Suppose a networkN = (V , E) to be given. Then for any vertex v ∈ V the adjacent edges of the

reachable setR(v) are a tree.

52

Task 2.40
Highlight the tree induced by the reachable setR(A) for the network in Figure 2.17.

Solution to Task 2.40: The solution is highlighted in Figure 2.19.

40

20

10

30

30

10

55

20

10

A

B

C

D

E

F

Figure 2.19: Tree induced by reachable setR(A) from example network in Figure 2.17

Remark 2.41
Note that we are operating on directed graphs. Hence, even if the graph is fully connected, there is

no guarantee that each vertex can be reached from any other vertex. As a result, the reachable set

may not cover the entirety of V . This is exactly the case for our example network, cf. Figure 2.18

where F ̸∈ R(A).

Since we want to compute optimal paths starting at r ∈ V , we have to extend the KPI from a
single edge to an entire path.

Definition 2.42 (Minimal path).
Consider a network N = (V , E) with multiplicities CE : E → R

nE
0 . Then we call

dvj :=


0, if vj = r

dvk + CE (ekj), if vk ∈ P(vj)

∞, else

(2.19)

2.2 TACTICAL LEVEL 53

path value. Moreover, we call

dvj := min
vk∈P(vj)

(
dvk + CE (ekj)

)
(2.20)

for all vj ∈ R(r) minimal path value.

Task 2.43
Compute the minimal path from vertex A to vertex E for the example network from Fig-

ure 2.17.

Solution to Task 2.43: We obtain

dE = min
vk∈P(E)

{dB + 30, dC + 10, dF + 10} ,

dB = min
vk∈P(B)

{dA + 40} = 40,

dC = min
vk∈P(C)

{dA + 20, dD + 10} = min
vk∈P(C)

{20, dD + 10} ,

dD = min
vk∈P(D)

{dB + 10, dF + 20} = min
vk∈P(D)

{50, dF + 20} .

Hence, we obtain dF = ∞ and therefore dD = 50, dC = 20 and dE = 30. The solution is
highlighted in Figure 2.20.

40

20

10

30

30

10

55

20

10

A

B

C

D

E

F

Figure 2.20: Minimal path from vertex A to vertex E for network from Figure 2.17

Note that by construction, the so called Bellman’s principle of optimality holds:

54

Theorem 2.44 (Bellman’s principle of optimality).
Consider a network N = (V , E) with multiplicities CE : E → R

nE
0 . Furthermore suppose an

initial vertex r and a terminal vertex s to be given. If vj is an element along the minimal path

from r to s, then the path from vj to s is also minimal.

Task 2.45
Argue why any endpiece of an optimal path is again optimal.

Solution to Task 2.45: Suppose the endpiece of an optimal path is not optimal. Then there
exists a different path exhibiting an improved path value. Hence the entire path was not
optimal contradicting the assumption.

Generically speaking, Bellman’s principle states that the tails of optimal solutions are again opti-
mal.

Remark 2.46
Bellman’s principle also holds true for very general nonlinear systems and forms the foundation

of the so called dynamic programming approach.

For our setting, we additionally obtain that also the starting tails are optimal. This result, how-

ever, does not hold true for arbitrary systems.

Unfortunately, the latter approach only allows us to compute a minimal path for one terminal
vertex. For planning transport and logistics systems, we are interested to generate minimal paths
to all possible vertexes and want such an algorithm to avoid any double computations. This gives
us the minimal path reachable set problem:

Definition 2.47 (Transshipment problem).
Suppose a network N = (V , E) with multiplicities CE : E → R

nE
0 and an initial vertex r ∈ V to

be given. Then we call

min
v∈R(r)

∑
v∈R(r)

dv (2.21)

such that dvj :=


0, if vj = r

dvk + CE (ekj), if vk ∈ P(vj)

∞, else

2.2 TACTICAL LEVEL 55

transshipment problem.

To solve the latter efficiently, we utilize another insight we obtain from Bellman:

Corollary 2.48 (Spanning tree of optimal paths).
Consider a network N = (V , E) with multiplicities CE : E → R

nE
0 and minimal paths from r to

be given. Then minimal paths are a spanning tree of the reachable set.

Based on Bellman’s principle, we can not only construct one solution in a backwards manner as
we did in Task 2.43, but instead apply it in a forward manner to construct a spanning tree of the
reachable set. A respective construction algorithm is shown in Algorithm 7.

Algorithm 7 Floyd-Warshall algorithm for minimal paths

Input: Connected network N = (V , E)
Input: Multiplicities CE : E → R

nE
0

Input: Initial vertex r ∈ V
1: procedure CLASS TREE ALGORITHM(N , CE , r)
2: dr ← 0, pr ← 0, Q← {r}
3: for all j ∈ {1, . . . , nV} \ {r} do
4: dvj ← ∞, pvj ← ∞
5: end for
6: while Q ̸= ∅ do
7: Select vj from Q ▷ Select arbitrary end of minimal path
8: Q← Q \ {vj}
9: for all vk ∈ S(vj) do

10: if dvk > dvj + CE (ejk) then ▷ Check for improvement of successor vertex
11: dvk ← dvj + CE (ejk)
12: pvk ← vj ▷ Label path predecessor
13: if vk ̸∈ Q then
14: Q← Q ∪ {vk}
15: end if
16: end if
17: end for
18: end while
19: end procedure
Output: Minimal path values dv for all v ∈ R(r)
Output: Path sequences pv for all v ∈ R(r)

For these tree algorithms, there exist two possible technical outcomes, the so called label-setting
and the label-correcting methods.

56

Definition 2.49 (Label setting and label correcting).
The Tree Algorithm 7 is called label setting if any vertex v ∈ V is added to the queue Q only
once. If any vertex is added more than once, the algorithm is called label correcting.

The major difference regarding setting and correcting occurs in line 7 of Algorithm 7 where the
next candidate vertex is selected. If an arbitrary vertex is selected, we cannot guarantee that the
vertex will not reenter the queue Q. However, we may utilize the following assumption:

Assumption 2.50 (Nonnegative multiplicities)
The multiplicities CE : E → R

nE
0 satisfy

CE (e) ≥ 0 (2.22)

for all e ∈ E .

Based on the latter assumption, we can apply a greedy heuristic and simply consider that vertex
in the queue Q which exhibits the lowest minimal path value. This greedy idea leads to the so
called Dijkstra Algorithm 8.

Remark 2.51
Note that due to the nonnegativity assumption (2.22), we obtain that the vertex will never reenter

the queue Q. Again, the argumentation is built on a contradiction assumption: Suppose a vertex

will reenter the queue, then its value must be reduced before reentering. As it is already the

minimal value in the queue and all multiplicities that can be applied are positive, it can only

increase. Hence, this case cannot occur.

Task 2.52
Apply Dijkstra’s algorithm to the example network from Figure 2.17.

Solution to Task 2.52: We obtain the steps given in Table 2.3. The solution is visualized in
Figure 2.21.

2.2 TACTICAL LEVEL 57

Algorithm 8 Dijkstra’s algorithm for minimal paths

Input: Connected network N = (V , E)
Input: Multiplicities CE : E → R

nE
0

Input: Initial vertex r ∈ V
1: procedure CLASS DIJKSTRA(N , CE , r)
2: dr ← 0, pr ← 0, Q← {r}
3: for all j ∈ {1, . . . , nV} \ {r} do
4: dvj ← ∞, pvj ← ∞
5: end for
6: while Q ̸= ∅ do
7: vj ← argminvj∈Q dvj ▷ Select end of minimal path
8: Q← Q \ {vj}
9: for all vk ∈ S(vj) do

10: if dvk > dvj + CE (ejk) then ▷ Check for improvement of successor vertex
11: dvk ← dvj + CE (ejk)
12: pvk ← vj ▷ Label path predecessor
13: if vk ̸∈ Q then
14: Q← Q ∪ {vk}
15: end if
16: end if
17: end for
18: end while
19: end procedure
Output: Minimal path values dv for all v ∈ R(r)
Output: Path sequences pv for all v ∈ R(r)

Table 2.3: Dijkstra table for example from Figure 2.17

Iteration 1 2 3 4 5 6

Queue Q {A} {B, C} {B, E} {B} {D} ∅

Vertex j dvj pvj dvj pvj dvj pvj dvj pvj dvj pvj dvj pvj

A 0

B ∞ 40 A

C ∞ 20 A

D ∞ 50 B

E ∞ 30 C

Continued on next page

58

Table 2.3 – continued from previous page

Iteration 1 2 3 4 5 6

Queue Q {A} {B, C} {B, E} {B} {D} ∅

Vertex j dvj pvj dvj pvj dvj pvj dvj pvj dvj pvj dvj pvj

F ∞

40

20

10

30

30

10

55

20

10

A

B

C

D

E

F

Figure 2.21: Minimal paths and path sequences forR(A) for network from Figure 2.17

Remark 2.53
Dijkstra’s algorithm can be extended to the so called Bellman-Dijkstra algorithm. For this ver-

sion, Assumption 2.50 is replaced by a cycle-free assumption. This version is beyond the scope of

the lecture and can be found, e.g., in [7].

Table 2.4: Advantages and disadvantages of the Dijkstra algorithm

Advantage Disadvantage
✓ Computes reachable set ✗ Requires symmetry
✓ Derives shortest paths ✗ Neglects constraints

2.2 TACTICAL LEVEL 59

Similar to the cost minimal flow problem (2.16) the transshipment problem problem (2.21) can
be reformulated using the linear model for directed graphs. To this end, we denominate minimal
path value for vertex vj by xj and design one constraint for each multiplicity of an edge revealing

max
nV

∑
j=1

xj (2.23)

such that xk − xj ≤ CE (ejk) ∀ejk ∈ E (2.24)

xr = 0 (2.25)

xj ≥ 0 ∀j ∈ {1, . . . , nV} (2.26)

Again, the latter problem can be addressed using the simplex method (or more accurately a net-
work version of it), which is outside the scope of this lecture.

2.2.2 Vehicle routing problem

Different from the shortest path problem, the vehicle routing problem does not only consider the
shortest paths to destinations, but aims to design a route for a vehicle/utility. As it addresses more
than one destination but still requires point-to-point operation, it is an extension of the single-
source shortest path problem. Here, a route always starts and ends at the same vertex. Vehicle
routing problems may be found in various fields of transport and logistics, i.e. in the delivery of
goods to final destinations or the collection of goods from destinations, hence in both forward
and reverse logistics. In both cases, it is often called milk run and requires to identify which
destinations should be combined to form a tour, cf. Figure 2.22.

Figure 2.22: Milk run in logistics2

2Source: https://www.hellmann-east-europe.com

https://www.hellmann-east-europe.com/hellmannpedia/m/milk-run/

60

To introduce the problem formally, we need to define what we mean by a tour. The core of a tour
is the so called depot, i.e. the start and ending point.

Definition 2.54 (Depot).
Given a network N = (V , E) a depot is a fixed vertex v0 ∈ V .

To illustrate and accompany the introduced terms, we consider the example given in Figure 2.23.
To separate the depot from other vertexes, we utilize a second layer in Figure 2.23.

Destinations

Sources

v0

A

B

C

D

E

F

Figure 2.23: Example of a vehicle routing problem

Based on the depot, we introduce the concept of a tour.

Definition 2.55 (Tour).
Consider a network N = (V , E) and suppose v0 ∈ V to be depot. Then the set of vertexes
T := {v0} ∪ {vj}j∈I ⊂ V that may be connected via a path is called a tour.

Note that a tour does not state in which sequence vertexes occur within a path, only that these
vertexes shall be contained in one path. To derive the sequence, we build up on the shortest path

2.2 TACTICAL LEVEL 61

concept from the previous section and suppose that each edge is associated with a certain cost.
Within this section, we adopt the following standard assumption:

Assumption 2.56 (Symmetry)
Given a network N = (V , E) with multiplicity CE : E → R

nE
0 we have that

∀ejk = (vj, vk) ∈ E : ∃ekj = (vk, vj) ∈ E (2.27)

and the multiplicities satisfy

CE (ejk) = CE (ekj). (2.28)

Mapped into reality, Assumption 2.56 requires all edges to be bidirectionally usable (equation (2.27))
and the respective costs to be identical (equation (2.28)).

Remark 2.57
Assumption 2.56 is a purely simplifying and may be disregarded for the upcoming concept.

For our example problem, these multiplicities/KPI costs per edge are given in Table 2.5.

Table 2.5: Distance table for example from Figure 2.23

Vertex v0 A B C D E F CV (v)

v0 − 20 30 30 20 50 35

A − 30 45 35 65 45 5

B − 30 45 75 55 2

C − 35 70 60 5

D − 35 25 8

E − 25 4

F − 6

62

Remark 2.58
Due to symmetry, the lower left quadrant of the cost matrix in Table 2.5 is identical to the upper

right and therefore left out.

Utilizing the multiplicities, we can introduce an order to assess tours. Each of such candidates is
called a route:

Definition 2.59 (Route).
Consider a network N = (V , E) and suppose v0 ∈ V to be depot and T ⊂ V to be a tour. Then
any path with initial and terminal vertex v0 and intermediate vertexes vj ∈ T is called a route

R ⊂ E .

Remark 2.60
We like to stress that tours are sets of vertexes whereas routes are sets of edges.

In practice, the utilities servicing a route are limited regarding their capacity of load units. At
the same time, each vertex requires a defined number of load units, which we can model using
markings CV : V → R

nV
0 . Combining markings, capacity of utilities and route gives us route the

capacity constraint.

Definition 2.61 (Capacity constraint).
Suppose a network N = (V , E) with marking CV : V → R

nV
0 and a route R ⊂ E to be given.

Furthermore suppose a utility to exhibit the maximal capacity C ∈ R+. Then the inequality

∑
e=(vj,vk)∈R

CV (vj) ≤ C (2.29)

is called capacity constraint.

Now the aim of the vehicle routing problem is to tackle four issues at the same time, that is

1. to calculate how tours shall be defined and

2. which utility shall be matched to which tour,

3. in which sequence the elements of tours shall be brought to form a route and

4. how an efficient plan considering the KPI can be obtained.

2.2 TACTICAL LEVEL 63

In contrast to the cost minimal maximal flow problem we discussed on the strategic level, here all
problems exhibit the same nature of minimizing cost. Hence, no two level problem arises.

Definition 2.62 (Capacitated vehicle routing problem).
Consider a network N = (V , E) with marking CV : V → R

nV
0 and multiplicity CE : E → R

nE
0

as well as capacities of utilities Cj, j = 1, . . . , nu to be given where nu ∈N is the the number of
utilities. Then we call

min
Rj

nu

∑
j=1

∑
e∈Rj

CE (e) (2.30)

such that Rj is a route ∀j ∈ {1, . . . , nu}
nu⋃

j=1

{v|v ∈ Rj} = V

Rj ∩Rk = ∅ ∀j, k ∈ {1, . . . , nu} with j ̸= k

∑
e=(vk,vl)∈Rj

CV (vk) ≤ C ∀j ∈ {1, . . . , nu}

capacitated vehicle routing problem. The minimizing set of routes is called routing plan.

Remark 2.63
There are many extension of the capacitated vehicle routing problem that can be found in theory

and practice. These include, among others,

heterogeneous utilities,

time windows for delivery/collection,

simultaneous pickup-and-delivery,

preferred right turn,

minimal energy and

working hour limitations of drivers as well as driving and resting periods.

The capacity vehicle routing problem can be solved using the branch-and-bound method. The
downside of this method, however, is its complexity which leads to long runtimes. An alternative
to branch-and-bound as deterministic approach, a heuristic solution approach can be used.

64

Remark 2.64
In practice, heuristics are quite common. Reasons for using heuristics are – apart from reduced

complexity – that problems are simplifications with mostly not exact parameters. For such prob-

lems near optimal but quickly avaialbe solutions are sufficient and allow for a quicker reaction.

Applying heuristics, we first need to identify how many utilities may be needed. To get an edu-
cated guess, the so called Bin Packing Algorithm 9 can be used.

Algorithm 9 Bin packing algorithm

Input: Connected network N = (V , E)
Input: Markings CV : V → R

nV
0

Input: Capacity of utilities C
1: procedure CLASS BIN PACKING(N , CV , C)
2: Q← V , nu ← 1, C(T) = 0
3: while Q ̸= ∅ do
4: v← argmax

v∈Q
CV (v)

5: Q← Q \ {v}
6: if Cnu + CV (v) ≤ C then
7: Tnu ← Tnu ∪ {v}
8: Cnu ← Cnu + CV (v)
9: else

10: nu ← nu + 1, Tnu ← {v}
11: Cnu ← CV (v)
12: end if
13: end while
14: end procedure
Output: Number of utilities nu ∈N

Output: Used capacities per utility Cnu

Output: Tours Tnu

Task 2.65
Apply the bin packing algorithm to our example problem from Figure 2.23 with C = 10.

Solution to Task 2.65: From the markings we obtain the sequence order indicated in Fig-
ure 2.24

CV (D) ≥ CV (F) ≥ CV (A) ≥ CV (C) ≥ CV (E) ≥ CV (B).

2.2 TACTICAL LEVEL 65

We start by inserting D into utility 1.
Since CV (D) + CV (F) > C, we add F to utility 2.
Again we have CV (F) + CV (A) ≥ C and hence add A to utility 3.
Now we have CV (A) + CV (C) = C and add C to utility 3.
Since CV (A) + CV (C) + CV (E) > C, we add E to utility 4.
Last, we have CV (E) + CV (B) ≤ C and add B to utility 4.

Destinations

Sources

v0

A

B

C

D

E

F

Figure 2.24: Bin packing for example from Figure 2.23

While the Algorithm 9 additionally reveals tours, these tours are purely based on the markings
and not on the multiplicities used for minimization. To address multiplicities, the so called nearest
neighbor Algorithm 10 can be applied to generate a route based on a given tour.
The nearest neighbor algorithm is operates on the greedy heuristic that utilizes the end vertex of
a route and adds that edge to the route which exhibits the least additional costs.

Task 2.66
Given the tours from Task 2.65 use Algorithm 10 to derive respective routes.

66

Algorithm 10 Nearest neighbor algorithm

Input: Connected network N = (V , E)
Input: Multiplicities CE : E → R

nE
0

Input: Tour T and depot v0 ∈ V
1: procedure CLASS NEAREST NEIGHBOR(N , CE , T)
2: for j = 1, . . . , ♯R do
3: v← argmin

v∈S(vj−1)∩T
CE ((vj−1, v))

4: T ← T \ {v}
5: R ← R∪ {(vj−1, v)}
6: end for
7: R ← R∪ {(v, v0)}
8: end procedure

Output: RouteR

Solution to Task 2.66: We directly obtain

{(v0, D), (D, v0)} for utility 1

{(v0, F), (F, v0)} for utility 2.

For utility 3, we have the tour (A, C). Since CE ((v0, A)) < CE ((v0, C)) we directly obtain
the route

{(v0, A), (A, C), (C, v0)} for utility 3.

Similarly, for utility 4 we have the tour (B, E) and observe CE ((v0, B)) < CE ((v0, E)) to
conclude

{(v0, B), (B, E), (E, v0)} for utility 4.

The result is sketched in Figure 2.25 and reveals the cost

J(R) = 20 + 45 + 30︸ ︷︷ ︸
utility 3

+ 30 + 75 + 50︸ ︷︷ ︸
utility 4

+ 20 + 20︸ ︷︷ ︸
utility 1

+ 35 + 35︸ ︷︷ ︸
utility 2

= 360.

Remark 2.67
Alternatively to nearest neighbor, successive insertion may be used. Here, the greedy heuristic

utilizes the vertex, for which the minimal cost of a connecting edge is maximal and inserts the

2.2 TACTICAL LEVEL 67

Destinations

Sources

v0

A

B

C

D

E

F

Figure 2.25: Nearest neighbor based on bin packing for example from Figure 2.23

respective minimal edge.

From Task 2.66, we observe that the tours computed by the bin packing algorithm are not optimal.
In fact, there are two different ways to improve such a solution:

Swap sequence of vertexes within a tour (neighborhood search)

Unite tours (savings search)

Here, we discuss the so called Savings Algorithm 11. The idea of the algorithm is to start with
one route per vertex. Then, routes are united using the greedy heuristic of maximal savings of
return trips while maintaining the capacity constraint.

Remark 2.68
Note that Algorithm 11 in the displayed form does not assume an initial route to be given. Yet it

can be applied to given routes as well by removing the first ForAll-loop.

68

Algorithm 11 Savings algorithm

Input: Connected network N = (V , E)
Input: Multiplicities CE : E → R

nE
0

Input: Markings CV : V → R
nV
0

Input: Capacity of utilities C
1: procedure CLASS SAVINGS(N , CE , CV , C)
2: for all ejk = (vj, vk) ∈ E do
3: sjk ← CE (ej0) + CE (e0k)− CE (ejk)
4: if sjk > 0 then
5: S ← S ∪ {sjk}
6: end if
7: end for
8: for all j = 1, . . . , nV do
9: Rj ← {e0j, ej0}, Cj ← CV (vj)

10: end for
11: while S ̸= ∅ do
12: e← argmax

ejk∈E
sjk, S ← S \ {e}

13: if CV (vj) + CV (vk) ≤ C then
14: Rj ← Rj ∪ {ejk} ∪Rk \ {ej0, e0k}
15: DeleteRk
16: end if
17: end while
18: end procedure
Output: RoutesRj, j = 1, . . . , nu

Task 2.69
Apply the savings algorithm to example problem from Figure 2.23 with C = 10.

Solution to Task 2.69: From Table 2.5 we obtain the savings

[sjk] =



− 20 + 30− 30 20 + 30− 45 20 + 20− 35 20 + 50− 65 20 + 35− 45

− 30 + 30− 30 30 + 20− 45 30 + 50− 75 30 + 35− 55

− 30 + 20− 35 30 + 50− 70 30 + 35− 60

− 20 + 50− 35 20 + 35− 25

− 50 + 35− 25

−



2.2 TACTICAL LEVEL 69

=



− 20 5 5 5 10

− 30 5 5 10

− 15 10 5

− 35 30

− 60

−


Then we identify the maximum for sEF. Since the markings reveal required capacities
CV (EF) = CV (E) + CV (F) = 4 + 6 = 10 ≤ C we can unite the routes.
The next maximum is given by sDE. Yet we have CV (D) + CV (EF) = 8 + 10 = 18 > C
and cannot combine the routes. The same holds for sDF.
Following, we consider sBC and see CV (BC) = CV (B) + CV (C) = 5 + 2 = 7 ≤ C, which
allows us to unite the routes.
Next we consider sAB which gives us CV (ABC) = CV (A) + CV (BC) = 5 + 7 = 12 > C
and we cannot combine the routes.
Based on the algorithm, we would have to continue with all positive combinations. Based on
the markings, however, we can already state that no further unions are possible. Figure 2.26
shows the result. The respective costs sum up to

J(R) = 20 + 20︸ ︷︷ ︸
utility 1

+ 30 + 30 + 30︸ ︷︷ ︸
utility 2

+ 20 + 20︸ ︷︷ ︸
utility 3

+ 50 + 25 + 35︸ ︷︷ ︸
utility 4

= 280,

which is a clear improvement over the bin packing / nearest neighbor approach.

Remark 2.70
As an alternative to the saving algorithm the so called sweep algorithm can be used. Instead of

uniting routes using saved costs, the sweep utilizes a geometric approach. The idea is to unite

routes via a (counter-)clockwise logic, i.e. neighboring routes are combined. The approach,

however, requires the vertexes to be positioned as in carthesian coordinates and the costs to be

defined via distances.

Different from the savings algorithm, the following so called 2-opt Algorithm 12 aims to identify
improvements within a route, i.e. not between routes. To this end, the algorithm stochastically
crawls routes to find possible improvements.

70

Destinations

Sources

v0

A

B

C

D

E

F

Figure 2.26: Result of savings algorithm for example from Figure 2.23

Algorithm 12 2-opt algorithm

Input: Connected network N = (V , E)
Input: Multiplicities CE : E → R

nE
0

Input: RouteR
1: procedure CLASS 2-OPT(N , CE ,R)
2: Select ejj+1, ekk+1 ∈ Rl
3: if CE (ejj+1) + CE (ekk+1) > CE (ejk) + CE (ej+1k+1) then
4: Rl ← Rl \ {ejj+1, ekk+1} ∪ {ejk, ej+1k+1}
5: end if
6: end procedure

Output: RouteR

Task 2.71
Utilize the 2-opt algorithm to improve the solution obtained for Task 2.69.

Solution to Task 2.71: For our example from Figure 2.23 it does not make sense to apply
the 2-opt improvement. The reason is that 2-opt at minimum requires 5 vertexes (including

2.2 TACTICAL LEVEL 71

the depot) within a route to be applicable.

To conclude this section, we can combine the above mentioned algorithms to obtain a heuristic
solution of the capacitated vehicle routing problem (2.30).

Algorithm 13 Heuristic for capacitated vehicle routing problem

Input: Connected network N = (V , E)
Input: Multiplicities CE : E → R

nE
0

Input: Markings CV : V → R
nV
0

Input: Capacity of utilities C
1: procedure CLASS HEURISTIC CVRP(N , CE , CV , C,R)
2: (R, nu)← CLASS SAVINGS(N , CE , CV , C)
3: for j = 1, . . . , nu do
4: Tj ← CLASS 2-OPT(N , CE ,Rj)
5: end for
6: end procedure

Output: Number of utilities nu ∈N

Output: RoutesRj, j = 1, . . . , nu

Table 2.6: Advantages and disadvantages of heuristics for CVRP

Advantage Disadvantage
✓ Includes costs and constraints ✗ Computes suboptimal solution
✓ Computes usage of utilities ✗ Neglects robustness
✓ Matches routes and utilities ✗ Disregards structure

Remark 2.72
Algorithm 13 is only an example, where we applied the choice of the Savings Algorithm 11 for

designing tours and initializing/uniting routes. Alternatively, the Bin packing Algorithm 9 can be

used to design tours and Nearest Neighbor Algorithm 10 for initializing/uniting routes. Regarding

a neighborhood search for improving the routes we imposed the 2-opt Algorithm 12.

Having established basic methods for strategic design and tactical planning from an operations
research perspective, in the following chapter we concentrate on learning patterns for people
operating, learning, analyzing and improving intermodal transport and logistic systems on a large
scale.

CHAPTER 3

COORDINATION

In structural gamification the content does not become game-like: only the structure
around the content does.

Karl Kapp

In the previous chapter, we discussed several problems arising in transport and logistic systems
with a particular focus on deriving an optimal solution or a characteristical insight. In practical
applications, the required conditions are rarely fulfilled and the provided models are typically
not very good. Hence, the solutions/insights may serve as benchmark but in many cases require
different ideas regarding implementation.
In the present chapter, we focus on ideas to abstract from optimality but include the complex and
distributed nature of transport and logistics systems. The first approach outlined in Section 3.1
utilizes gamification, that is the idea to formulate a problem as a game and cherish the antic-
ipativity of human interaction. While typically not optimal, such an approach allows to train
personal and question existing processes. In the following Section 3.2, we discuss the idea of a
leader follower principle, which allows us to split the problem into subproblems and introduce a
coordination structure.

3.1 Serious gaming

One of the most basic approaches to design or improve intermodal transport and logistic pro-
cesses is called serious gaming. Instead of „truely optimizing“ the system, the approach applies
interactive and immersive gaming experiences to address challenges, train professionals, optimize
operations, and enhance decision-making processes. As such, it addresses

74

training and education for individuals to improve understanding,

process optimization for companies to design improved processes,

collaboration and coordination for stakeholders,

risk management for individuals to enhance preparedness, and

sustainability practices to highlight ecologic impacts.

Here, we particularly focus on the first and second point.
In the context of transport and logistics processes, we formulate a serious game as an approach
to find solutions for problems such as our minimal spanning tree problem (Definition 2.10), the
max flow problem (Definition 2.25), the transshipment problem (Definition 2.47), the spanning
tree problem (Definition 2.48) or the capacitated vehicle routing problem (Definition 2.62). In
order to be applicable, we require that for any user input the respective solution can be evaluated,
i.e. simulation.

Definition 3.1 (Serious game).
Consider a network N = (V , E) with marking CV : V → R

nV
0 and multiplicity CE : E →

R
nE
0 and possible further constraints regarding infrastructure and utilities C : V × E → R

nE
0 .

Furthermore suppose a method to complement inputs to a solution and evaluate the respective
output of the latter to be given. Then we call an approach of iteratively defining inputs by a user
a serious game.

The intent of a serious game is to utilize the learning capability of users, cf. Figure 3.1 regarding
the conceptional context.
From Definition 3.1 we directly obtain that a respective method is not a solution method as we
discussed so far, but instead requires inputs from a user. More formally, we can describe the latter
in Algorithm 14.
As described in Algorithm 14 and Definition 3.1 a serious game is of iterative nature. In this
context, the iterations are seen as time whereas the goal of serious gaming is to derive an optimal
solution via convergence over time.
To continue with a system defined via such a map, we need to introduce the concept of time:

Definition 3.2 (Time set).
A time set T is a subgroup of (R,+).

3.1 SERIOUS GAMING 75

Simulation

Games

Learning

Edutainmant

Simulation
games

Training

Serious
game

Figure 3.1: Connection of serious games to working methods

Remark 3.3
We like to note that the definition of time in Definition 3.2 allows for continuous time, discrete

time and event time. Continuous time is used to model systems varying continuously whereas

discrete and event time are sampled.

For our serious game, we apply the discrete time idea, i.e. a user can choose an input at any
tj ∈ T where j indicates the time choices in Algorithm 14.

76

Algorithm 14 Serious game

Input: Connected network N = (V , E)
Input: Multiplicities CE : E → R

nE
0

Input: Markings CV : V → R
nV
0

Input: Constraints on infrastructure and utilities C : V × E → R
nE
0

1: procedure SERIOUS GAME(N , CE , CV , C)
2: while Not stopped do
3: Get input ej ∈ E , vj ∈ V
4: Complement input to solution
5: Evaluate network problem
6: end while
7: end procedure

Output: Solution statistics

Task 3.4 (Time set)
Give an example of a continuous time, discrete time and event time set.

Solution to Task 3.4: The continuous time set is T = R. Introducing a time discretization
by a factor T ∈ R+, we obtain the discrete time set T = {t ∈ R | t = t0 + k · T; k ∈
Q, t0 ∈ R}. In contrast to the equidistant nature of the discrete time set, the event time set is
given by T = {tj | ∀j, k : tj ̸= tk ∧ tj, tk ∈ R}.

In order to discuss about convergence of results for our serious game, we first require an internal
notion for the condition of the game. To this end, we introduce the so called state of a system.

Definition 3.5 (State).
Consider a system Σ : U → Y . If the output y(t) uniquely depends on the history of inputs u(τ)
for t0 ≤ τ ≤ t with t0, τ, t ∈ T and some x(t0), then the variable x(t) is called state of the
system and the corresponding set X is called state set.

Task 3.6
Reconsider the example network sketched in Figure 2.9. Sketch a possible state representing

a feasible solution.

3.1 SERIOUS GAMING 77

Solution to Task 3.6: A possible state is given in Figure 3.2.

1

1

00

1

0

1

0

1

1

A B

Sink

DE

Source

Figure 3.2: State of example network from Figure 2.9

Remark 3.7
Given Task 3.6, the aim of serious gaming is to obtain the optimal solution for the network by

guessing. To this end, improvements taking, e.g., flow increasing steps are suitable and are then

identified by the users.

In discrete time, that is T = Z, we obtain the standard description of a state space system:

Definition 3.8 (Discrete time system).
Consider a system Σ : U → Y in discrete time T = Z satisfying the property from Defini-
tion 3.5. If X is a vector space, then we call it state space and refer to

x(tj+1) = f (x(tj), u(tj), tj), x(t0) = x0 (3.1a)

y(tj) = h(x(tj), u(tj), tj). (3.1b)

as discrete time system. Moreover, u, y and x are called input, output and state of the system.

Remark 3.9
Similar to the discrete time case, descriptions for continuous time and event driven systems exist.

78

For convergence of our serious game and many other practical applications, so-called operating
points are of interest. These points exhibit the property that the dynamics comes to a stop which is
practially relevant to have steady operations, e.g. constant transports or other logistics processes.

Definition 3.10 (Operation point).
Consider system (3.1). Then the pairs (x⋆, u⋆) satisfying

f (x⋆, u⋆) = x⋆ (3.2)

are called operating points of the system. If (3.2) holds true for any u⋆, then the operating point
is called strong or robust operating point.

The dynamic reveals a flow of the system at hand, whereas a trajectory is bound to a specific initial
value and input sequence. The following Figure 3.3 illustrates the idea of flow and trajectory. In
this case, the flow is colored to mark its intensity whereas the arrows point into its direction. The
trajectory is evaluated for a specific initial value and „follows“ the flow accordingly.

x1

x2

Figure 3.3: Sketch of a dynamic flow and a trajectory

Remark 3.11
Figure 3.3 additionally marks the point that an operating point is not necessarily a point but may

be an orbit. In system theory, the property of such an orbit we are looking for is attraction, i.e.

any solution converges to it.

3.1 SERIOUS GAMING 79

This convergence is exactly what we are looking for given a serious game. To make this point
clear, we use the following example.

Task 3.12 (Beer game)
Consider the beer game1 given a four tier supply chain network to produce, distribute and

sell beer as depicted in Figure 3.4. Suppose each player represents one company within a

single tier and may order quantities of beer packs per week while simultaneously keeping the

stock at a reasonable level with no backlog orders as they generate additional costs.

M
an

uf
ac

tu
re

r

D
is

tr
ib

ut
or

W
ho

le
sa

le
r

R
et

ai
le

r

oC

dR

oR

dM

oM

dS

τ S
S

oS

aS

τSM τMR τRC

ℓS

aM

ℓM

aR

ℓR

aC

Figure 3.4: Sketch of a three stage supply network

From this basic example, two basic observations may be made:

If players communicate with one another, then convergence is achieved faster than without
communication.

If players do not understand the complexity of the system, then the solution is ramping up
quickly and diverging.

Within this section, we focus on the latter, the so called Bullwhip effect for supply chains:

Definition 3.13 (Bullwhip effect).
Consider a supply chain system Σ : U → Y similar to Figure 3.4. We call a behavior of the
system a bullwhip effect if increase in demand and delay on delivery lead to an excessive increase
in orders throughout the supply chain.

Graphically, Figure 3.5 sketches the Bullwhip effect within a supply chain.
The bullwhip effect signifies the increasing distortion of information and the amplification of
demand fluctuations as orders float from the customer end to the manufacturer end of the supply
chain.

80

Time

Orders Retailer
Wholesaler
Distributor

Manufacturer

Figure 3.5: Bullwhip effect in supply chain

Task 3.14
Given the example network from Figure 2.9. Split the network into two parts similar to the

supply chain given in Figure 3.4.

Solution to Task 3.14: Figure 3.6 highlights a possible split, in this case using the predeces-
sor and successor sets of the sink and source respectively.

Several countermeasures may help to mitigate the bullwhip effect by improving coordination, re-
ducing information distortion, and aligning inventory levels with actual customer demand. Com-
mon employed strategies include

Smoothing demand: Encouraging stable and consistent customer demand, e.g. via price
incentives, can help reduce the amplification of fluctuations.

Just-in-time (JIT) and lean principles: Implementing JIT principles, such as reducing lead
times, improving production flexibility, and minimizing batch sizes, can help align produc-
tion with actual customer demand. This approach reduces inventory levels and enhances
responsiveness in the supply chain.

Supply chain visibility and real-time data: Implementing information systems, such as
Enterprise Resource Planning (ERP) systems, Warehouse Management Systems (WMS),

3.1 SERIOUS GAMING 81

0 ≤ e1 ≤ 11

0 ≤ e2 ≤ 8

0 ≤ e3 ≤ 10 ≤ e4 ≤ 10

0 ≤ e5 ≤ 12

0 ≤ e6 ≤ 4

0 ≤ e7 ≤ 11

0 ≤ e8 ≤ 7

0 ≤ e9 ≤ 5

0 ≤ e10 ≤ 15

A B

Sink

DE

Source

Figure 3.6: Separating the example network from Figure 2.9

or RFID technology, can provide real-time data on inventory levels, demand patterns, and
order statuses and allows to respond to fluctuations promptly.

Reduce order and delivery variability: Minimizing variability in order quantities and deliv-
ery lead times may enhance coordination without communication.

Collaborative planning, forecasting, and replenishment (CPFR): CPFR is a framework that
emphasizes collaboration between supply chain partners in planning, forecasting, and re-
plenishing inventory.

Demand forecasting and information sharing: Accurate demand forecasting, e.g. via shar-
ing demand information among supply chain partners, can help to align production and
inventory levels.

Vendor-managed inventory (VMI): VMI involves the supplier or manufacturer having ac-
cess to inventory data at the retailer’s end and taking responsibility for replenishment deci-
sions.

Strategic partnerships and long-term contracts: Establishing long-term relationships and
strategic partnerships with key suppliers and customers can enhance trust, communication,
and collaboration to improve forecasting.

Among the latter, the first four points address local control, i.e. without communication. As
such, these ideas are limited by disturbances emanating from supply chain partners, which remain
unknown. The last four points require some kind of information exchange.

82

Table 3.1: Advantages and disadvantages of serious gaming

Advantage Disadvantage
✓ Requires no preknowledge ✗ Delivers suboptimal solution
✓ Applies to all systems ✗ Neglects bullwhip
✓ May be distributed ✗ Disregards automation

Despite being discussed as cartels, these alternatives offer insights in the structure of the supply
chain. In the following sections, we discuss the typical structures of such chains.

3.2 Leader follower

In most logistics networks and also in transport systems, there exist big players who dominate
their local networks. Typical examples may be OEMs for trucks, trains, airplanes, cars etc., but
also market players like airline companies, 3PL, shipping lines and so forth. Locally, even bus
companies are able to enforce a bus schedule according to their needs. Apart from the strategic
level, also on the tactical level leader follower structures are possible: For example, AGVs in
harbors are typically coordinated by a central entity.
Abstracting from these examples, respective entities are – at least to some extend – able to define
their solution and other entities have to accept this lead. Figure 3.7 illustrates the sequence of
decisions.
Here, we first need to split the system

x(tj+1) = f (x(tj), u(tj), tj), x(t0) = x0 (3.3)

into multiple ones, which represent the entities within a transport and logistics system. Note that
these entities may be load units, utilities, infrastructure or even combinations of the latter. Our
only requirement is that the subsystem is controlled by one and only one operations logic.

Definition 3.15 (Entity).
Consider a system Σ : U → Y given by (3.1). Then we call

xp(tj+1) = f p(xp(tj), up(tj), tj), xp(t0) = xp
0

operating on X p ⊂ X , U p ⊂ U a subsystem and its operations logic an entity.

3.2 LEADER FOLLOWER 83

Subsystem x1

Subsystem x2

· · ·

Subsystem xp

n n + 1

Figure 3.7: Communication structure for leader follower systems

Remark 3.16
Note that the solution to Task 3.14 provides an example for separating a network into two entities.

We like to point out that the split into subsystems is not always clear. The following example
illustrates this point:

Task 3.17
Consider the dynamics(

x1(tj+1)

x2(tj+1)

)
=

(
x1(tj) + x2(tj) + u(tj)/2

x2(tj) + u(tj)

)

and split the system into two subsystems using x1 = x1, x2 = x2 and u2 = u.

Solution to Task 3.17: Setting x1 = x1, x2 = x2 and u2 = u and leaving u1 undefined, we

84

obtain

x1(tj+1) = x1(tj) +

from subsystem 2︷ ︸︸ ︷
x2(tj) + u2(tj) /2

x2(tj+1) = x2(tj) + u2(tj).

For that choice, subsystem 2 is independent from subsystem 1. However, to evaluate sub-
system 1 the information i1(tj) is required to evaluate x2(tj) and u2(tj) from subsystem 2.
Note that the connection depends on how the input from the overall system is assigned to
the subsystems. Setting u1 = u and leaving u2 undefined, both subsystems depend on each
other.

The aim of a split is that by recombining the subsystems (3.4) we reobtain the overall transport
and logistics system (3.1).
As we have seen in Task 3.17, it may be necessary to split up both the state set X as well as the
input set U . To do that in a coordinated manner, we introduce the following:

Definition 3.18 (Projection).
Given a set S, let π : S → S be a linear map which is idempotent, that is π ◦ π = π. We call
π a projection of S onto Im(π) (along Ker(π)) where Im(π) and Ker(π) denote the image and
kernel of π.

The projectors can be interpreted as focus lenses to highlight entities only. Apart from highlight-
ing, the projectors directly deliver the links between entities. These will be the basis for any
coordination using communication. Formally, we can apply the projections to define a decompo-
sition of a vector space:

Definition 3.19 (Decomposition).
Consider a set S, a set P = {1, . . . , P} where P ∈ N, and a set of projections (πp)p∈P where
Sp := Im(πp) is a subset of S for all p ∈ P to be given. If we have that

⟨(Sp)p∈P ⟩ = S and Sq ∩ ⟨(Sp)p∈P ,p ̸=q⟩ = {0} for all q ∈ P

hold, then we call the set (Sp)p∈P a decomposition of S.

Now we can use the decompositon to rewrite our overall system into subsystems defined on
subspaces, i.e. entities working on pieces of the transport and logistics network. To derive the
entities, we require two projection sets for all p ∈ P , that is

3.2 LEADER FOLLOWER 85

π
p
X : X → X to split the state set such that Im(π

p
X) = X

p, and

π
p
U : U → U to split the input set such that Im(π

p
U) = U

p.

Unfortunately, these projections will in general not simply separate the state and input set. We
already saw the reason for this deficiency in Task 3.17: Subsystems may depend on variables
which we project into other subsystems. Hence, the projection in general leave us with three
components each, that is:

For the state projection, we obtain [X p, X̃ p,X p
] where xp ∈ X p are our primary variables

of interest. In particular, we have that x̃p ∈ X̃ p are the states of neighbors necessary to
evaluate the projected dynamic π

p
X ◦ f correctly.

For the input projection, we have [U p, Ũ p,U p
] where again up ∈ U p is at the core of our

interest. Again, ũp ∈ Ũ p is the necessary input information of neighbors to evaluate the
projected dynamic π

p
X ◦ f .

Remark 3.20
Note that the inputs ũp ∈ Ũ p are computed by different entities. Hence, to include them to

evaluate another system, we have to transmit the respective data.

Different from X̃ p and Ũ p we find that π
p
X ◦ f is independent of xp ∈ X p

and up ∈ U p
. For this

reason, we call the latter independent states and inputs.

Task 3.21
Reconsider the example network sketched in Figure 2.9. Color code the state/input projec-

tions.

Solution to Task 3.21: Figure 3.8 shows the color codes split where the green lines represent
the required information by both the red and the blue subsystem.

Utilizing the latter task, we obtain that X̃ and Ũ are required information to be exchanged, and
in particular from which entity this information is required. This reveals

Definition 3.22 (Neighboring index set).
Consider a decomposition of system (3.1). Then we call I p = {p1, . . . , pm} ⊂ P \ {p} neigh-
boring index set if it satisfies

(X p1 × . . .×X pm)× (U p1 × . . .×U pm) ⊃ (X̃ p × Ũ p). (3.4)

86

0 ≤ e1 ≤ 11

0 ≤ e2 ≤ 8

0 ≤ e3 ≤ 10 ≤ e4 ≤ 10

0 ≤ e5 ≤ 12

0 ≤ e6 ≤ 4

0 ≤ e7 ≤ 11

0 ≤ e8 ≤ 7

0 ≤ e9 ≤ 5

0 ≤ e10 ≤ 15

A B

Sink

DE

Source

Figure 3.8: Projections for example network from Figure 2.9

Here, we like to stress that the above definition allows us to simply define all systems as part of
the index set. However, regarding bandwidth constraints, it is typically a good idea to keep these
sets as small as possible. The respective data is called neighboring data:

Definition 3.23 (Neighboring data).
Consider a neighboring index set I p(tj) of subsystem p ∈ P . We call the set

ip(tj) = {(q, tj,q, xq, uq) | q ∈ I p(tj)} ∈ Ip (3.5)

neighboring data. The neighboring data set is given by Ip = 2Q with Q = (P \ {p})×N0 ×
X × U .

Task 3.24
Reconsider Task 3.17 and compute neighboring index set and neighboring data.

Solution to Task 3.24: For our choice of variables we have I1(tj) = {2} and I2(tj) = ∅.
As we have seen in the solution of Task 3.17, we require the information contained in the
neighboring data i1(tj) =

{(
2, tj, x2(tj), u2(tj)

)}
to evaluate the system.

Algorithmically, the leader follower approach is very simple, cf. Algorithm 15.
The downside of the latter algorithm is that the sequence of subsystems in P is not clear and
massively influences the outcome of the method.

3.2 LEADER FOLLOWER 87

Algorithm 15 Leader follower

Input: Decomposition of system x(tj+1) = f (x(tj), u(tj), tj)
Input: Subsystems p ∈ P

1: procedure LEADER FOLLOWER(f ,P)
2: while Not stopped do
3: j← 0
4: for all p ∈ P do
5: Compute optimal input u(tj)
6: Send neighboring data ip(tj) to all neighbors, j← j + 1
7: end for
8: end while
9: end procedure

Remark 3.25
The leader follower approach can be modified to work in full parallel, which is outside the scope

of this lecture. While such an approach may be more fair for subsystems which are at the end

of the sequence in P , in reality such sequences do exist in particular for transport and logistics

systems. There are, however, exceptions, e.g. if utilities such as single trains or busses are

considered. In such cases, the sequence should be fair or according to traffic rules.

Table 3.2: Advantages and disadvantages of leader follower

Advantage Disadvantage
✓ Allows coordination without commu-

nication
✗ Introduces SPOF

✓ Applies directly to distributed systems ✗ Limited to distributed systems
✓ Simplifies implementation ✗ Disregards global optimality

Further methods regarding coordination and coordination are subject in lectures such as Modern

control systems.

BIBLIOGRAPHY

[1] DEUTSCHES INSTITUT FÜR NORMUNG E.V.: DIN 30781-1:1989-05 Transportkette,

Grundbegriffe. Beuth, 1989

[2] DEUTSCHES INSTITUT FÜR NORMUNG E.V.: DIN IEC 60050-351 Internationales Elek-

trotechnisches Wörterbuch Teil 351: Leittechnik (IEC 60050-351:2014-09). Beuth, 2014

[3] FEICHTINGER, G. ; HARTL, R.F.: Optimale Kontrolle ökonomischer Prozesse. deGruyter,
2011

[4] GUDEHUS, T.: Logistik: Grundlagen, Strategien, Anwendungen. 4th edt. Springer, 2010

[5] GUDEHUS, T. ; KOTZAB, H.: Comprehensive Logistics. Springer, 2012

[6] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION: ISO 22400-2:2014 Automa-

tion systems and integration — Key performance indicators (KPIs) for manufacturing oper-

ations management. ISO, 2014

[7] NEUMANN, K. ; MORLOCK, M.: Operations Research. 2nd edt. Hanser, 2004

[8] SARDER, M.D.: Logistics Transportation Systems. Elsevier, 2020

[9] SCHÖNBERGER, J.: Model-Based Control of Logistics Processes in Volatile Environments.
Springer, 2011

[10] VOGT, J.J.: Business Logistics Management. 5th edt. Oxford University Press, 2016

Jürgen Pannek
Institute for Intermodal Transport and Logistic Systems
Hermann-Blenck-Str. 42
38519 Braunschweig

During summer term 2023 I give the lecture to the module Multimodal Transport Sys-
tems (Multimodale Transportsysteme) at the Technical University of Braunschweig. To
structure the lecture and support my students in their learning process, I prepared these
lecture notes. The aim of the module is to provide an overview on intermodal trans-
port and logistics systems with a particular focus on methods for planning, design and
coordination of such systems.
In particular, students shall be able to describe, explain, apply and analyze modes and
systems in transport and logistics. Moreover, students can recall, interpret and evaluate
key performance indicators for unimodal and intermodal systems. Regarding planning
and design, students are able to characterize, apply and differentiate methods with re-
spect to the area of application and assess suitability of these methods. Last, students
are able to describe, categorize and evaluate methods of coordination regarding inter-
modality.

	Contents
	List of tables
	List of figures
	List of definitions and theorems
	List of algorithms
	1 Transport and logistics systems
	1.1 Modes
	1.2 Modeling
	1.3 Performance indicators
	1.4 Hierarchy of systems

	2 Design and planning
	2.1 Strategic level
	2.1.1 Spanning tree problem
	2.1.2 Flow problem

	2.2 Tactical level
	2.2.1 Shortest path problem
	2.2.2 Vehicle routing problem

	3 Coordination
	3.1 Serious gaming
	3.2 Leader follower

	Bibliography
	Index

