Sensors integrable with functional compliance

Prof. Dr. rer. nat. Andreas Dietzel | TU Braunschweig | Institute of Microtechnology Prof. Dr.-Ing. Walter Lang | Universität Bremen | Institut of Microsensors, -actuators & -systems Prof. Dr.-Ing. Michael Sinapius | TU Braunschweig | Institute of Adaptronics and Function Integration Dr.-Ing. Steffen Opitz | German Aerospace Center | Institute of Composite Structures & Adaptive Systems

Most Important Preparatory Work

Various PhD-theses have already been supervised by the applicants, mostly funded by the DFG:

- "Mode Selective Transmission of Lamb Waves in Composite Structures" (D. Schmidt, supervisor Sinapius)
- "Simulative Experimentally DSesign Methodology of Sensor Networks for Structural Health Monitoring" (A. Szewieczek, supervisor Sinapius)
- "Localization of interaction of Lamb Waves in complex composite structures" (F. Raddatz, supervisor Sinapius)

- "Micro sensor systems for aeronautical application in harsh environment" (M. Schwerter, supervisor Dietzel)
- ", Capillary Self-Assembly of Components for Systems-in-Foil" (Gari Arutinov, supervisor Dietzel)
- "Wireless Sensors and Actuators for Structural Health Monitoring of Fiber Composite Materials " (M. Salas Ramirez., supervisor Lang)
- "Fabrication and characterization of a flexible capacitive sensor for monitoring of CFRP" (D. Boll, supervisor Lang)

Structure integrable MEMS thin *chip pressure sensor (CRC880)*

Objectives of the First Funding Period

- Observability of the propagation of guided ultrasonic waves for relevant modes in the interior of fibre metal laminates.
- □ Information and energy provided by wireless transmission.

Research hypotheses:

SP2

- The integrity of the adhesive bond between fibre composite and metal can be • monitored by sensors located at the interface.
- Novel structure-integrated, micro-manufactured MEMS sensors can detect ultrasonic waves.
- Outer metal layers can be used as transmitting antennas for wireless energy and signal transmission.

Important aspects:

- Precise knowledge of the wave field in order to align the sensor at strain maxima.
- Minimizing effects of the FML manufacturing processes on the sensor function (function-conformity).
- Sensors integration with low influence on FML structural properties to avoid weakening (structure-conformity).

Preliminary concept of structure integrated sensor node with laser structured antenna.

Methods

To achieve sensor functionality, wireless data transmission and structural conformity, the following methodology will be applied:

- Three consecutive versions of MEMS sensors will be developed ullet
- Acoustic impedance matching between sensor node and laminate by material and geometry adjustment.
- Bilateral integration tests. F1: sensor \leftrightarrow wireless data transmission; F2: sensor node \leftrightarrow structural integration; F3: sensor \leftrightarrow integration in electronics (sensor node).
- Reference measurements with established methods for calibration of the new sensor.
- Design and fs-laser fabrication of the antenna. Characterization of the embedded electronics.

Strength investigations of the structure with embedded sensor nodes or applied antennas for various load cases.

Ultrasonic Monitoring of Fibre Metal Laminates Using Integrated Sensors

Research Unit FOR3022