Wissenschaftliche Gesellschaft Fügetechnik e.V. im DVS

NGE

Areas of Competence

Joining Technology

- Development and Optimization of Welding Processes
- Calorimetry of Joining Processes
- Development of Hybrid Joining Technologies
- Process Automation, Sensing, Measuring

Materials and Welding

- Weldability of Materials
- Welding Metallurgy
- Microstructure- Property- Relationship
- Joining of Dissimilar Materials steels, aluminum, magnesium, plastic,...

Component Safety

- Construction and Design
- Determination of Strength Parameters
- Stress Analyses / Simulation

Laboratory

- Microstructure Analysis
- Mechanical Testing
- Failure Analysis
- Consulting and Expertise

Automation

Measurement and Analyses

- Dilatometer

Professur Schweißtechnik Institut für Füge- und Montagetechnik

Equipment

Joining Equipment

 Various Arc Welding Equipment (GMAW, TIG, PAW, SAW) Laser Beam Sources Diffusion Welding

Resistance Welding

Mechanical Joining (Clinching and Blind Riveting)

 Large Variety of Automation Solutions from 3 Axis Portal to 9 Axis Industrial Robots Software for Process Controlling Welding Guns for Automation

 High Speed Data Recording • High speed Video Technology Energy Balancing - Calorimetry Welding Fume Analysator • Thermography • Static and Dynamic Mechanical Testing Machines

____5 mm

Kontakt

Univ.-Prof. Dr. Peter Mayr Institut für Füge- und Montagetechnik Reichenhainer Straße 70 09126 Chemnitz Tel.: +49 (0)371 531 23720 E-Mail: schweisstech@mb.tu-chemnitz.de

Current Projects

Diffusion and Laser based Joining for Micro - Components

Joining of Materials for Energy Applications

Energy Efficiency of Joining Processes

Fabrication of Hybrid Components by Joining

Cladding and Modification of Highly Loaded Surfaces

