

SCHRIFTENREIHE

Institut für Straßenwesen Technische Universität Braunschweig Univ.-Prof. Dr.-Ing. Rolf Leutner Univ.-Prof. em. Dr.-Ing. Wolfgang Arand

STRASSENWESEN

Stefan von der Decken

Triaxialversuch mit schwellendem Axial- und Radialdruck zur Untersuchung des Verformungswiderstandes von Asphalten

Heft 15 Braunschweig, 1997

Inhaltsverzeichnis

1	Einf	ührung		1	
2	Behandlung des Themas in der Literatur				
3	Entv	vicklun	g der Prüfmaschine	12	
	3.1	Aufbau	ı der Druckzelle	12	
3.2 Aufbringen der schwellenden Spannungen				14	
	3.3 Messen von Verformungen und Spannungen				
	3.4	Tempe	rieren der Probekörper	17	
4	Fest	tlegung	der Prüfbedingungen	18	
	4.1	Prüfbe	dingungen aufgrund frei wählbarer Vorgaben	18	
	4.2	4.2 Prüfbedingungen aufgrund von Vorversuchen		19	
		4.2.1	Vorbehandlung der Probekörper	19	
		4.2.2	Scheitelwerte der axialen Lastimpulse	22	
		4.2.3	Scheitelwerte der radialen Lastimpulse	22	
		4.2.4	Phasenverschiebung zwischen den axialen und radialen Lastimpulsen	27	
5	Ent	wicklur	ng der Steuer- und Prüfsoftware	29	
	5.1	Treibe	r	30	
		5.1.1	Funktionsprinzip des Treibers	. 30	
		5.1.2	Detailbeschreibung des Treibers	. 32	
	5.2	Anwe	nderprogramme	. 37	
		5.2.1	Programm zur Versuchssteuerung	. 38	

		5.2.2	Anwendungsprogramm zum Verringern des Datenvolumens	41	
		5.2.3	Verfahren zur Anpassung einer mathematischen Funktion an die Meßwerte	42	
6	Entv	vicklun	g der Auswertungssoftware	46	
	6.1	Progra	mm zur visuellen Auswertung	47	
	6.2	6.2 Programm zur Auswertung der axialen Dehnungen		48	
		6.2.1	Verfahren zur Anpassung einer mathematischen Funktion an die Daten	51	
		6.2.2	Einfache lineare Regressionsanalyse	56	
7	Unte	ersuch	ungsergebnisse	59	
	7.1	Erläut	erungen zu den graphischen Darstellungen	59	
	7.2	Bleibe	nde axiale Dehnungen	65	
	7.3	Bleibe	nde radiale Verformungen	70	
8	Validierung des Prüfverfahrens 82				
	8.1	Auswa	ahl und Beschreibung der Strecken	82	
		8.1.1	Auswahl nach Augenschein	83	
		8.1.2	Nutzungszeitraum der Strecken	84	
		8.1.3	Verkehrsbelastung der Strecken	85	
		8.1.4	Wetterdaten der Strecken	87	
	8.2	Berec	hnungen der fiktiven Dehnungen	92	
	8.3	Validie	erung mittels linearer Regressionsanalysen	95	
9	Offe	ene Fra	gen und Perspektiven der Weiterentwicklung	103	
10 Zusammenfassung 104					

- 1	١	1	
1	1		
- 1		t	

INHALTSVERZEICHNIS

11	1 Literaturverzeichnis									
An	Anhang									
Α	Prog	rammlistings	113							
	A.1	Deskriptor fkt.a	113							
	A.2	Treibermodul fkt_drv.a	114							
	A.3	Programm verformung.cc	124							
	A.4	Programm packdata.cc	129							
	A.5	Programm verform2plot.cc	136							
	A.6	Programm verform2print.cc	. 141							
В	Nas	si-Shneiderman-Diagramme	162							
	B.1	Treibermodul fkt_drv.a	. 162							
	B.2	Programm verformung.cc	. 165							
	B.3	Programm packdata.cc	. 167							
	B.4	Programm verform2plot.cc	. 168							
	B.5	Programm verform2print.cc	. 169							
C	Graf	fische Darstellung der Versuchsergebnisse	171							

10 Zusammenfassung

Zu den wichtigsten Gebrauchseigenschaften von Asphalten für den Straßenbau zählen neben einem günstigen Haftverhalten und einer guten Alterungsbeständigkeit der Verformungswiderstand, die Rißresistenz und die Ermüdungsbeständigkeit. Die drei zuletzt genannten Eigenschaften können unter dem Begriff der mechanischen Eigenschaften zusammengefaßt und durch Eingriffe in die Zusammensetzung der Asphalte gezielt beeinflußt werden. Dabei stehen allerdings die Forderungen nach Verformungsbeständigkeit, Rißresistenz und Ermüdungsbeständigkeit teilweise in Konkurrenz zueinander. Kompositionelle Maßnahmen, welche die eine Eigenschaft verbessern, wirken sich nicht selten ungünstig auf die anderen Eigenschaften aus. Im Interesse einer möglichst langen Nutzungsdauer von Fahrbahnbefestigungen aus Asphalt ist es daher erforderlich, den Einfluß kompositioneller Eingriffe auf die drei mechanischen Eigenschaften — Verformungswiderstand, Rißresistenz und Ermüdungsbeständigkeit — quantitativ abschätzen sowie die Asphaltzusammensetzung gezielt optimieren und damit Qualität planen zu können.

Für die Durchführung eines Forschungsvorhabens [3], das zum Ziel hatte, einen weiteren Beitrag zur Qualitätsplanung und Qualitätslenkung bei der Herstellung und Verarbeitung von Asphalten zu leisten, wurde ein Triaxial-prüfverfahren mit schwellendem Axial- und Radialdruck zur Untersuchung des Verformungswiderstandes entwickelt, mit dessen Hilfe quantitative Bewertungsmaßstäbe zur optimalen Anpassung der Mischgutzusammensetzung an die durch Topographie, örtliche Gegebenheiten, Wetter und Verkehr gegebenen Anforderungen geschaffen werden können.

Für das Triaxialprüfverfahren wurde eine spezielle Prüfmaschine konstruiert. Um mit dieser Prüfmaschine möglichst realitätsnahe Ergebnisse erzielen zu können, mußten für die Untersuchungen ein Verfahren zur Probekörperbehandlung, die Prüfbedingungen, die Software zur Steuerung der axialen und radialen Lasten und der Datenerfassung sowie die mathematischen Auswerteverfahren mit ihrer softwaremäßigen Realisierung entwickelt werden.

Um herauszufinden, ob das Prüfverfahren die Wirklichkeit ausreichend genau repräsentiert, wurden Deckschichtproben aus unterschiedlich stark verformten Straßen mit bekannter Wetter- und Verkehrsgeschichte gezogen und zum Gegenstand von Prüfungen zur Untersuchung des Verformungswiderstandes unter Anwendung des triaxialen Prüfverfahrens gemacht. Für eine Bewertung des Prüfverfahrens wurden zusätzlich Ergebnisse von anderen dynamischen Prüfverfahren herangezogen. Um eine Vergleichbarkeit der Zahlenwerte zu ermöglichen, wurde auch für diese Prüfverfahren das oben genannte Probenmaterial verwendet.

Als am besten geeignetes Prüfverfahren soll dasjenige gelten, dessen Ergebnisse — unter Berücksichtigung von Wetter und Verkehr während der Nutzungsdauer bis zur Probenahme — am besten mit den auf den Straßen meßtechnisch erfaßten Verformungen korrelieren.

Es zeigte sich, daß der Verformungswiderstand von Asphalten zur Herstellung von Deckschichten für Straßen am zutreffendsten durch das Triaxalprüfverfahren mit schwellendem Axial- und Radialdruck prüftechnisch angesprochen werden kann.