Inhaltsverzeichnis

	Se	eite
1	Einleitung und Problemstellung	1
2	Wärmeeinwirkung	4
	2.1 Berechnung der Temperaturfelder	4
	2.2 Thermische Dehnung	5
3	Materialgesetze aus instationären Kriechversuchen	7
	3.1 Materialgesetz für Beton	12
	3.1.1 Grundlagen	13
	3.1.2 Materialgleichungen	14
	3.1.3 Rechenverfahren	19
	3.1.4 Versagenskriterium	26
	3.2 Materialgesetz für Spannstahl	31
	3.2.1 Grundlagen	32
	3.2.2 Materialgleichungen	33
	3.2.3 Rechenverfahren	35
	3.2.4 Versagenskriterium	39
	3.3 Anwendung der Materialgesetze	42
	3.3.1 Beton	42
	3.3.1.1 Berechnung der Verformung	42
	3.3.1.2 Berechnung der Zwangspannung	45
	3.3.2 Spannstahl	49
	3.3.2.1 Berechnung der Verformung	49
	3.3.2.2 Berechnung der Zwangspannung	52
	3.4 Integriertes Materialverhalten	54
	3.4.1 Rechenmodell	55
	3.4.1.1 Betonproben mit nichtisothermer	
	Temperaturverteilung	56
	3.4.2 Einfluß der Spannungsgeschichte auf die Schnittgrößen	
	im Augenblick des Versagens bei Brandeinwirkung	62

		Seite
4	Vereinfachte Materialgesetze in Form von temperaturabhän-	
	gigen Spannungs-Dehnungs-Beziehungen (Rechengesetze)	69
	4.1 Allgemeiner Rechenansatz	71
	4.1.1 Materialkennwerte bei Raumtemperatur	75
	4.1.1.1 Rechenannahmen bei Kenntnis der Prüfkörper-	
	Festigkeit	76
	4.1.1.2 Berechnung mit Nennwerten der Festigkeit	77
	4.1.1.3 Zusammenfassung	78
	4.2 Rechengesetze für Beton	81
	4.3 Rechengesetze für Spannstahl	84
	4.4 Rechengesetze für thermische Dehnung von	
	Beton und Spannstahl	86
5	Biegetragfähigkeit von brandbeanspruchten Spannbetonbauteilen	87
	5.1 Grundlagen	91
	5.2 Berücksichtigung der Brandeinwirkung	97
	5.3 Veränderung des Hebelarms der inneren Kräfte	
	bei Brandeinwirkung	99
	5.3.1 Gebrauchslast	99
	5.3.2 Bruchzustand	100
	5.3.2.1 Zugkraft in der Spannstahlbewehrung	101
	5.3.2.2 Resultierende der Betondruckspannungen	104
	5.3.3 Zusammenfassung	107
	5.4 Spannstahlspannung bei Brandeinwirkung	109
	5.4.1 Spannstahlspannung im Augenblick des Versagens	110
6	Biegetragfähigkeitsnachweis bei Brandeinwirkung	116
	6.1 Nachweisverfahren durch Berechnung	117
	6.1.1 Vergleich der Spannstahltemperatur im Augenblick	
	des Versagens im Experiment und in der Berechnung	121
	6.1.2 Vergleich berechneter Spannstahlspannungen im	
	Augenblick des Versagens	123
7	Zusammenfassung	126
8	Literaturverzeichnis	128