Inhalt		Seite
1.	Einleitung und Problemstellung	1
2.	Stand der Kenntnisse	5
3.	Entwicklung und Bau einer Versuchsanlage für	15
	zweiaxiale Betonversuche bei hohen Temperaturen	
3.1	Allgemeines	15
3.2	Probekörper	15
3.3	Belas tungsrahmen	16
3.4	Lasteintragungskonstruktion	18
3.4.1	Anforderungen	18
3.4.2	Vergleichsuntersuchungen mit unterschiedlichen Lasteintragungen	20
3.4.3	Ermittlung der einaxialen Druckfestigkeit	23
3.5	Belastungsregelung	25
3.6	Ofen und Heizungsregelung	27
3.7	Meßsysteme und Meßwerterfassung	29
3.7.1	Bel as tungsme ssungen	29
3.7.2	Verformungsmessungen	29
3.7.3	Temperaturme ssungen	31
3.7.4	Meßwerterfassung	32
4.	Versuchsprogramm	33
4.1	Ziel	33
4.2	Parameter der Untersuchungen	34
4.2.1	Beton	34
4.2.2	Mec hanis che Beanspruchungen	35
4.2.3	Thermische Beanspruchungen	35
4.3	Temperatur - Last - Programme und Durchführung	35
	der Versuche	
5.	Ergebnisse der Untersuchungen zum	
	Festigkeitsverhalten	39
5.1	Allgemeines	39
5.2	Bruchverhalten	39
5.3	Zweiaxiale Hochtemperaturdruckfestigkeit	42

5.4	Druckfestigkeitsverhalten bei 150°C	49
5.5	Bruchgrenzkurven	54
5.5.1	Bedeutung der Bruchgrenzkurven	54
5.5.2	Analytische Formulierung der Bruchgrenzkurven	54
6.	Ergebnisse der Untersuchungen zum Verformungs-	
	und Relaxationsverhalten	57
6.1	Allgemeines	57
6.2	Verformungen bei stationären Temperaturen	57
6.2.1	Dehnungen in den Hauptachsen	57
6.2.2	Volumenverformungen	66
6.2.3	Querdehnzahlen	69
6.2.4	Arbeitsvermögen	71
6.3	Verformungen unter instationärer Temperatur-	74
	beanspruchung	
6.3.1	Gesamtverformungen	74
6.3.2	Kritische Temperaturen	77
6.3.3	Mechanisch verursachte Verformungsanteile	78
6.3.4	Volumenverformungen	81
6.4	Zwängungskräfte bei vollständiger Dehnungs-	84
	behinderung	
7.	Ein rißmechanisches Modell zur Diskussion	88
	des Festigkeits- und Verformungsverhaltens	
	von Normalbeton	
7.1	Allgemeines	88
7.2	Verhalten der einzelnen Betonbestandteile	88
7.2.1	Zementstein	88
7.2.2	Zuschlag	89
7.2.3	Poren- und Rißsysteme	90
7.3	Rißbilder in beanspruchten Normalbetonprobe-	97
	körpern	
7.4	Spannungsverteilungen in beanspruchtem	99
	Normalbeton	
7.5	Kräfteverläufe und Verformungsverhalten	103
7.6	Rißmechanismen und ihre Auswirkungen auf	105
	das Festigkeitsverhalten	
8.	Zusammenfassung und Ausblick	111
9.	Literatur	116