INHALTSVERZEICHNIS

		Seite
Bez	eichnungen	6
1.	EINLEITUNG	11
	1.1 Problemstellung	11
	1.2 Bisherige Untersuchungen	13
	1.3 Zielsetzung	15
	1.4 Annahmen	18
2.	STOFFGESETZE	20
	2.1 Stoffgesetz für Beton	20
	2.1.1 Bruchfestigkeit bei biaxialer Beanspruchung	20 26
	beanspruchung · · · · · · · · · · · · · · · · · · ·	37
	2.2 Stoffgesetz für Stahl	48
	2.2.1 Spannungs-Dehnungs-Gesetz	48 52
	2.3 Materialgleichungen für das Stahlbetonelement	53
	2.3.1 Ungerissenes Stahlbetonelement	53 54
	2.3.2.1 Risse in einer Richtung	54 56
	2.3.3 Betondruckversagen	57 58 62
3.	TEMPERATUREINWIRKUNG	64
	3.1 Berechnung der Temperaturfelder	64
	3.2 Thermische Dehnungen	66
4.	RECHENMODELL	67
	4.1 Analytische Lösung	67
	4.2 Diskretisierung mit Hilfe von Finiten Elementen	70
	4.2.1 Grundgleichungen	72 75 78 82
	4.2.5 Genauigkeit und Konvergenzverhalten	84

		Seite
		7 .
5.	RECHNERISCHE UNTERSUCHUNGEN	. 85
	5.1 Gewähltes Berechnungsbeispiel	. 85
	5.2 Verformungsbehinderung durch umschließende kalte Deckenteile.	. 87
	5.2.1 Rißbildung	. 95
	5.3 Der beflammte Deckenteil	. 99
	5.3.1 Thermische Dehnung des Betons	. 99
	5.4 Das geschichtete Scheibenelement	. 103
6.	VERSUCHE	. 111
	6.1 Versuche von Abrams/Lin	. 111
	6.2 Versuche des Sonderforschungsbereichs 148 der Technischen Universität Braunschweig	
7.	KRITISCHE BEURTEILUNG DER ERGEBNISSE	. 130
8.	ZUSAMMENFASSUNG	. 134
9.	Literatur	. 136
10	Anhang	. 145