INHALT

BEZEICHNUNGEN

1.	EINLEITUNG	1
1.1	Problemstellung und Ziel	1
1.2	Inhaltliche Übersicht	2
2.	STOFFGESETZE	3
3.	VERBUND IM VERBUNDSYSTEM LASCHE-KLEBSTOFF-BETON	5
3.1	Vorbemerkungen	5
3.2	Grundsätzliches zum Verbundverhalten	5
3.3	Modelle zur Beschreibung von Spannungen und Verschiebungen	10
3.3.1	Möglichkeiten der Modellierung	10
3.3.2	Die Differentialgleichung des verschieblichen Verbundes	14
3.3.3	Lösung der Dgl. für einen linearen Verbundansatz	16
3.3.4	Lösung der Dgl. für den Verbundansatz nach Wicke und Pichler	20
3.3.5	Lösung der Dgl. für einen bilinearen entfestigenden Verbundansatz	23
3.3.6	Beurteilung der Vorhersagefähigkeit der Verbundansätze	27
3.3.6.1	Beschreibung des Versuchs HILTI 21.3	27
3.3.6.2	Grundsätzliches zur Vergleichbarkeit von Verbundansätzen	29
3.3.6.3	Versuchsbeobachtung und Diskussion der Verbundansätze	32
3.3.7	Wahl des Verbundansatzes	35
3.4	Verallgemeinerung des bilinearen Verbundansatzes	36
3.4.1	Maximale Verbundspannung $ au_{\ell 1}$	36
3.4.2	Grenzwert der elastischen Verschiebung s $_{m\ell 1}$	39
3.4.3	Bruchenergie Gr und maximale Verschiebung soo	42

3.5	Bruchmodelle	44
3.5.1	Einführung	44
3.5.2	Das Modell von Ranisch	45
3.5.3	Das Modell von Wicke und Pichler	48
3.5.4	Die Verbundbruchkraft nach linear-elastischer Bruchmechanik	49
3.5.5	Das Verbundverhalten bei Annahme eines bilinearen Verbundansatzes	52
3.5.5.1	Rechenergebnisse bei bilinearem Ansatz	52
3.5.5.2	Eigene Versuche	55
3.5.5.3	Bruchverhalten im Versuch	58
3.5.5.4	Vergleich von Theorie und Versuch	62
3.5.6	Rechenmodell zur Vorhersage der Verbundtragfähigkeit	66
3.5.6.1	Vergleich der Tragfähigkeit bei bilinearem und linearem Ansatz	66
	Einfluß der Versuchsart	68
3.5.6.3	Einfluß der Lage der Klebfläche in bezug auf die Betonierrichtung	68
	Größeneinflüsse bø und bø/bc	69
	Auswertung von Versuchsergebnissen	72
3.6	Die Wirkung von Anpreßdruck normal zur Klebschicht	75
3.7	Entwurfsmodell der Verbundtragfähigkeit	83
3.8	Zusammenfassung	85
4.	ZUSAMMENWIRKEN VON BETON UND KLEBELASCHE	87
4.1	Vorgehensweise	87
4.2	Kraft-Dehnungszusammenhänge	90
4.3	Entkopp1ung	92
4.4	Ingenieurmodell der Kraft-Dehnungsbeziehung und maximale Rißbreite	96
4.5	Bauteildehnung	107
4.6	Zusammenfassung	112

5.	ZUSAMMENWIRKEN BEI GEMISCHTER BEWEHRUNG	114
5.1	Vorbemerkung	114
5.2	Die Differentialgleichungen des Verbundes für das Verbundsystem	114
5.3	Ingenieurmodell des Zusammenwirkens von Lasche und Bewehrung	118
5.3.1	Vorgehen	118
5.3.2	Kraft-Dehnungszusammenhänge und Entkopplung	119
5.3.3	Bauteildehnungen bei gemischter Bewehrung	132
5.3.4	Überprüfung des Ingenieurmodells anhand von Versuchen	135
5.4	Zusammenfassung	138
6.	NACHWEIS UND DURCHBILDUNG LASCHENVERSTÄRKTER BIEGETRAGGLIEDER	141
6.1	Einführung	141
6.2	Biegebemessung	142
6.3	Schubbemessung	144
6.4	Zugkraftdeckung und Verankerung	146
6.4.1	Versagensursachen im Überblick	146
6.4.2	Nachweis am Laschenende	148
6.4.3	Nachweis im Punkt E der Zugkraftlinie	150
6.4.4	Entkopplungsnachweis	157
6.5	Zusammenfassung	160
7.	FOLGERUNGEN FÜR FORSCHUNG UND PRAXIS	162
8.	ZUSAMMENFASSUNG	164
9.	LITERATUR	167
ANHANG		177