An introduction to isogeometric collocation methods with some applications

Prof. Dr. Alessandro Reali
Università di Pavia, Italien

Montag, 18. November 2013
15:00 Uhr Campus Nord, Raum BI 87.2

Isogeometric Analysis (IGA) is a recent idea introduced to bridge the gap between Computational Mechanics and Computer Aided Design (CAD). The key feature of IGA is to extend the finite element method representing the geometry by functions - such as NURBS - typically used by CAD systems, and then invoking the isoparametric concept to define field variables. Thus, the computational domain exactly reproduces the NURBS description of the physical domain, and, also thanks to the high regularity properties of the employed functions, numerical testing in different situations has shown a substantial increase, with respect to standard finite elements, of the ratio between accuracy and number of degrees-of-freedom.

In the framework of NURBS-based IGA, collocation methods have been recently proposed as a viable and interesting low-cost alternative to standard isogeometric Galerkin approaches. In this talk, we introduce such methods and focus on some applications, including elastostatics and explicit elastodynamics, as well as the solution of the Cahn-Hilliard equation, for which isogeometric collocation represents an accurate, efficient, and geometrically flexible option.