Last Name : Exam Number :

First Name : Matriculation No. :

General examination rules:

Write your name and matriculation number on all sheets.

Please remember or note your exam number.

Please do **NOT** write with a lead pencil or red or green colors.

New task = new sheet. Write only on one side of each sheet.

All calculations must be comprehensible.

Allowed tools: a scientific calculator and a double-sided hand written A4 sheet for formulae etc.

Task	1	2	3	4	5	Σ60
Points						

Problem 1 (11 Points)

- a) Prove that the expression $a_ib_j\delta_{ij}$ represents the dot product of two vectors **a** and **b**, while
- b) $\epsilon_{ijk}a_jb_k\mathbf{e}_i$ represents the cross product of two vectors \mathbf{a} and \mathbf{b} .
- c) Given $\epsilon_{jki}\epsilon_{nmi}=(\delta_{jn}\delta_{jn}-\delta_{jm}\delta_{kn})$, prove that

$$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c},$$

where $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are vectors in 3D space.

Problem 2 (15 Points)

a) With reference to a rectangular Cartesian coordinate system, the state of strain at a point is given by the tensor,

$$\varepsilon = \begin{bmatrix} 5 & 3 & 0 \\ 3 & 4 & -1 \\ 0 & -1 & 2 \end{bmatrix} \times 10^{-4}.$$

- i) Compute the unit elongation in the direction of $2e_1+2e_2+e_3$.
- ii) Calculate the change in angle between two perpendicular lines (in the undeformed state) emanating from the point and in the directions $2\mathbf{e}_1 + 2\mathbf{e}_2 + \mathbf{e}_3$ and $3\mathbf{e}_1 6\mathbf{e}_3$.
- b) For the displacement field:

$$u_1 = kX_1^2, \ u_2 = kX_2X_3, \ u_3 = k(2X_1X_3 + X_1^2), \ k = 10^{-6},$$

find the maximum unit elongation for an element that is initially at (1,0,0) .

Problem 3 (12 Points)

A material is called *incompressible* if there is no change of volume under any and all states of stresses.

for an incompressible isotropic linearly elastic solid with finite Young's modulus E, Prove that

- a) Poisson's ratio $\nu = \frac{1}{2}$,
- b) the shear modulus $G = \frac{1}{3}E$,
- c) Bulk's modulus $k \to \infty$,
- d) Lamme's constant $\lambda \to \infty$, and
- e) $k \lambda = \frac{2}{3}G$

Problem 4 (9 Points)

A rectangular plate of length 2ℓ , height 2h and thickness t is loaded in accordance to the Figure below.

For the approximation of the bending stress an Airy's stress function is given as:

$$\Phi = \frac{1}{2}Cy^2 + \frac{1}{6}Dy^3,$$

- a) Determine the in-plane stresses.
- b) Apply the necessary boundary conditions to obtain the constants C and D of the given Airy's stress function

Problem 5 (13 Points)

Mark the correct statement(s) or write down the answer.

- 1. The kinematics of a body describes its
 - \square rigid body motion \square shape change \square volume change \square surface tractions \square body forces \square elastic properties
 - \square thermal properties \square velocity and acceleration
- 2. What is the definition of the infinitesimal strain tensor ε , and under which two conditions shall it not be used?
- 3. The invariants of a tensor are scalar measures which do not change under a coordinate system transformation. Prove that the determinant of a tensor is an invariant.
- 4. What does it mean that a material is isotropic? Name one isotropic and one anisotropic material.
- 5. If a material is elastic, then the stress
 - ☐ is a function of current strain ☐ is a function of strain rate ☐ is a linear function of strain ☐ is equal in all directions
 - \Box is a bijective function of strain \Box can be derived from a potential
- 6. What is the definition of the traction vector **t**, and how can it be calculated?
- 7. What is the relation between principal normal and shear stresses, both in terms of magnitude and direction?
- 8. Write down the weak form of the mechanical boundary value problem. Why is this form called "weak"?
- 9. In a thermo-elasticity problem, what are the equilibrium and possible boundary conditions on the thermal field?

T2) i)
$$\mathcal{E}'_{M} = \underline{e}'_{1}^{T} \underline{\mathcal{E}} \underline{e}'_{1} = \underline{58} \times 10^{-4}$$

ii)
$$2 \frac{E_{12}}{2} = 2 \frac{E_{1}^{7}}{4} \frac{E}{2} \frac{E}{2} = \frac{32}{\sqrt{2}} 10^{-4} \text{ rad}.$$

T3) a) incompressible material =>
$$\varepsilon_{ii} = 0$$
 => $V = \frac{1}{2}$

b)
$$G = \frac{E}{2(1+V)}$$

$$\sigma_{ii}$$
 = 35; $e = \frac{1}{\epsilon} (1-2v) 3 \overline{\epsilon}$

$$K = \frac{\overline{\sigma}}{e} = \gamma \quad k \to \infty \quad (for \ V = 1/2)$$

T4) BCs
$$y_2$$

$$\int_{y_2} \varphi(\ell, y) t dy = F$$

$$\int_{y_2} \varphi(-\ell, y) t dy = F$$

$$\int_{y_2} \varphi(-\ell, y) t dy = F$$

$$t\int_{-y_{2}}^{y_{2}} \sigma_{x}(\ell,y) y dy = F \cdot h = > D = \frac{3}{2} \frac{F}{h^{2}t}$$