Family Name :		Exam number	:	
First name	·	Reg. number	:	

Instructions:

Write your name and registration number in the corresponding fields. Do <u>not</u> use pencils, green or red pens (used in marking). Write your name and reg. number on <u>each sheet</u>, number your sheets <u>consecutively</u> and write only on <u>one side</u> of the sheets! Memorize or write down the <u>exam number</u>.

You are allowed to use a non-programmable pocket calculator and an A4 sheet of paper for formulas.

Task	1	2	3	4	5	Σ (60)
Mark						

Task 1 (11 Points)

Mark the following statements as true (T) or false (F) (1 point/question).

- 1. Visco-elastic models always show creep and relaxation.
- 2. Visco-elastic models show a rate-dependent behaviour.
- 3. When passing from tension to compression the creep response of the Kelvin-Voigt model approaches zero asymptotically.
- 4. In linear elasto-plastic materials we have an additive decomposition of the strains in small deformation.
- 5. An elasto-plastic material model requires at least a yield criterion, a hardening law and a flow rule.
- 6. The Kuhn-Tucker conditions are valid only in case of linear elasticity.
- 7. Kinematic hardening increases the elastic stiffness when the history variable becomes negative.
- 8. The amount of damage depends only on the current state of the material.
- 9. Damage does not degrade the shear modulus G.
- 10. The deformation gradient includes the effect of rigid-body rotations.
- 11. Almansi strain and first Piola-Kirchhoff stresses are work conjugate of the deformed configuration.

Task 2 (16 Points)

Viscoelasticity

For the given rheological model,

- a) derive the constitutive equation (assuming that the constitutive law for the Maxwell-element is known).
- b) determine if it is fluid or solid-like. Why?
- c) suppose $E_1 = E_2 = \infty$; is the model now fluid or solid-like? What is such a model called?
- d) suppose $\eta_1 = \eta_2 = \infty$; is the model now fluid or solid-like? What is the name of such a model?

Task 3 (13 Points)

Hyperelasticity

Given strain energy density ψ and deformation gradient ${\bf F}.$

- a) Compute the right and left Cauchy-Green deformation tensors,
- b) their invariants I_1 , I_2 , I_3 and J.
- c) Calculate the constant β such that the given strain energy density ψ is zero in the underformed configuration ($\alpha \neq 0$).
- d) With the result in part c), compute the second Piola-Kirchhoff stress tensor.

Given:
$$\mathbf{F} = \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda_z \end{bmatrix}, \ \psi = \alpha(I_1 - 3) + 10\alpha(J^2 - 1) - \beta \ln(J + I_1).$$

Task 4 (13 Points)

Plasticity

An elasto-plastic material is subjected to a state of pure shear, characterized by the strain tensor ε_s . The material is linear elasto-plastic, with elastic modulus E, Poisson's ratio ν and initial yield limit σ_Y .

- a) Determine the stress tensor.
- b) Compute the strain $\varepsilon = \varepsilon_y$ at which the material starts to yield following the Tresca and Von Mises criteria.
- c) Consider now an elasto-plastic material with isotropic hardening, characterized by hardening modulus H, and subjected to a uniaxial strain.

Sketch the stress-strain relation for the following load path:

$$0 \to \varepsilon_{max} \to 0 \to -\varepsilon_{max} \to 0$$
.

Given:
$$E = 70 \text{ GPa}, \ \nu = 0.5, \ \sigma_Y = 210 \text{ MPa}, \ \boldsymbol{\varepsilon}_s = \begin{bmatrix} -\varepsilon & 0 & 0 \\ 0 & \varepsilon & 0 \\ 0 & 0 & 0 \end{bmatrix},$$
 $\varepsilon_{max} = 0.007, \ H = 10 \text{ GPa}.$

Task 5 (7 points)

Damage

An initially linear-elastic material with elastic modulus E is subjected to monotonic tension. For monotonic loading, the damage is supposed to evolve following the damage law

$$D(k) = \begin{cases} 0 & \text{if } \omega(k) \le 0\\ 1 - \omega(k) & \text{if } 0 < \omega(k) < 1\\ 1 & \text{if } \omega(k) \ge 1, \end{cases}$$

where k is the history variable taken as the maximum strain that occurred during the loading history $(k = max\{\varepsilon(t)\})$ and $\omega(k) = \frac{5}{4}(1 - \frac{\varepsilon_0}{k})$.

- a) Calculate the stress at ε_0 , $2\varepsilon_0$, $5\varepsilon_0$ and $6\varepsilon_0$.
- b) Sketch the monotonic stress strain response between 0 and $5\varepsilon_0$ and add the unloading response at $4\varepsilon_0$.