| Family Nam | e: | Exam number | : |  |
|------------|----|-------------|---|--|
|            |    |             |   |  |
| First name | :  | Reg. number | : |  |

#### Notes on the exam:

Write name and registration number in the corresponding fields. Do <u>not</u> use pencils, green or red pens (used in marking). Place name and reg. number on <u>each sheet</u>, number sheets <u>consecutively</u> and write only on <u>one side</u> of the sheets! Memorize or write down the <u>exam number</u>.

You are allowed to use a non-programmable pocket calculator and two pages of equations.

| Task | 1 | 2 | 3 | 4 | 5 | 6 | Σ (36) |
|------|---|---|---|---|---|---|--------|
| Mark |   |   |   |   |   |   |        |

## 1. Task (9 Points)

Answer briefly the following questions:

- 1) Compile a list of criteria used in fracture mechanics to decide whether a crack will propagate, or not.
- 2) Sketch the relation  $\sigma(r)$  between stress and distance from crack tip in linear-elastic fracture mechanics with Irwin's correction, for a sharp crack tip.
- 3) Make a sketch of the Dugdale model and label it properly. What is the value of the J integral for this model?
- 4) What is a cohesive zone model and how is it used in finite element analysis?
- 5) Make a sketch of fatigue crack growth per cycle versus stress intensity amplitude for a material without permanent endurance limit. Mark the region in which the Paris law is considered to be valid.

## 2. Task (7 Points)

#### Failure theories

An uncracked, linear elastic material with Lame's constants  $\mu$ ,  $\lambda$  is subject to a strain state  $\varepsilon$ . Data from uniaxial tests indicates that the material will fail at  $\sigma_T = 20 \text{MPa}$  in tension and  $\sigma_C = 100 \text{MPa}$  in compression.

Determine at which strain  $\varepsilon$  the material will fail based on

- a) The maximum stress criterion.
- b) The Drucker-Prager criterion (failure surface F as given below).

#### given:

$$\lambda = \mu = 5 \text{GPa} ; F(I_{\sigma}, II_{s}) = \alpha I_{\sigma} + \sqrt{II_{s}} - k = 0$$

$$\varepsilon = \begin{bmatrix} 2\varepsilon & 0 & 0 \\ 0 & -\varepsilon & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

# 3. Task (6 Points)

Fatigue: Cycles-Till-Failure

Remark:  $\sigma = \lambda tr(\varepsilon)I + 2\mu\varepsilon$ 

A structure with a disc-shaped crack of initial radius a is subjected to cyclic tensile loading between  $\sigma=0$  and  $\sigma=\sigma_{\rm o}$ . The critical (static) stress intensity  $K_{\rm IC}$  for the material be known. The given Paris equation for crack growth be valid.

Determine

- a) The stress  $\sigma^{\rm stat}$  the part will with stand for one cycle.
- b) The number of cycles the part will withstand if the load amplitudes alternated (one cycle with  $\sigma_o^{(1)}$ , one with  $\sigma_o^{(2)}$ , ...).

## given:

$$a=1\,\mathrm{mm},\,\sigma_\mathrm{o}^{(1)}=0.5\,\mathrm{MPa},\,\sigma_\mathrm{o}^{(2)}=1\,\mathrm{MPa}$$

$$K_{\rm I} = \frac{2}{\pi} \sigma \sqrt{\pi a}, K_{\rm IC} = 10 \,\mathrm{MPa} \sqrt{\mathrm{mm}}$$

$$\frac{\mathrm{d}a}{\mathrm{d}N} = 0.01 \,\mathrm{mm} \left(\frac{\Delta K}{\mathrm{MPa}\sqrt{\mathrm{mm}}}\right)^4$$



## 4. Task (4 Points)

#### Mixed-mode fracture

An angled crack, as shown in the picture, is under mixed-mode loading (Why? Which modes?). Describe **qualitatively** how the direction of crack propagation (relative to the initial direction  $\beta$ ) can be found. What criterion is used? What general rule could be given concerning the final propagation direction?

## 5. Task (5 Points)

#### Irwin's correction

A hollow, thin-walled (thickness t) sphere with an initial crack of length 2a is subjected to an internal pressure p. The material has fracture thoughness  $K_{\rm IC}$  and yield limit  $\sigma_Y$ .

 a) Why should Irwin's correction be used in this situation?
 Calculate the crack length correction!

b) At what pressure p would crack propagation start?

c) Verify again that LEFM+Irwin's correction is appropriate.

## given:

 $t=1 \text{mm}, \ r=100 \text{mm}, \ a=10 \text{mm},$   $K_{\text{IC}}=25 \text{MPa} \sqrt{\text{m}}, \ \sigma_Y=500 \text{MPa},$ and  $K_{\text{I}}=1.6 \sigma_0 \sqrt{\pi a}$  for this geometry, with  $\sigma_0=\frac{pr}{2t}$ .



## 6. Task (5 Points)

### Energy release rate

To determine the fracture toughness  $G_C$  of an adhesive a set-up as shown below is used: a ring (R>>w) is glued onto a base with an adhesive layer of thickness t. Torque is applied to the ring until the adhesive layer fails. The measured torque-angle relation  $M(\varphi)$  is shown below. Ring and base can be considered rigid.

- a) Determine the critical energy release rate  $G_{\rm C}$ .
- b) Assuming the material was linear-elastic (Poisson's ratio  $\nu$ ), calculate the critical stress intensity factor  $K_{\rm HC}$ .
- c) By what factor whould the result from a) change if, due to imperfect application, the adhesive only covered 95% of the surface between ring and base?

#### given:

$$t = 1$$
mm,  $R = 100$ mm,  $w = 10$ mm,  $\nu = 0.33$ 

#### Remark:

The relation between Young's and shear modulus is  $E = 2G(1 + \nu)$ .

